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RESUME. Cet article concerne le contrôle de vibrations. Ce problème peut être résolu par des 

méthodes passives avec des systèmes amortissant ou bien par des méthodes actives avec des 

actionneurs contrôlés pour diminuer voire annuler complètement les vibrations dans la 

structure. La seconde méthode est employée dans les travaux décrits dans cet article. 

L’objectif précis est de contrôler l’amortissement de systèmes peu amortis et incertains. La 

méthode proposée met en œuvre les contours d’isoamortissement et la commande CRONE. 

Les contours d’isoamortissement sont définis dans le plan de Nichols grâce à l’intégration 

d’ordre non entier et sont gradués par le coefficient d’amortissement de la réponse en boucle 

fermée. La commande CRONE est une méthode de contrôle robuste basée sur l’intégration 

d’ordre non entier également. La méthode est ici appliquée à un procédé multivariable qui 

est une maquette d’aile d’avion composé d’une poutre encastrée-libre avec un réservoir dont 

les différents niveaux de remplissage sont considérés comme des incertitudes. 

KEYWORDS: Commande robuste d’ordre non entier mlultivariable; contrôle actif, contours 

d’iso-amortissement. 

ABSTRACT. This article deals with the reduction of structural vibrations. Two approaches are 

possible to tackle this problem, either a passive method with dampers, or an active method 

with actuators that are controlled in order to decrease or even cancel the vibrations in the 

structure. The second method is used here. The objective is to control the damping of 

uncertain plants. The proposed methodology is based on iso-damping contours and CRONE 

control. The iso-damping contours are defined thanks to fractional order integration in the 

Nichols plane and are graduated by the value of the damping factor of the closed-loop 

response. The CRONE control is a robust control method that also uses fractional order 

integration. The methodology is here applied to a multivariable plant that is an aircraft wing 

model made with a beam and a tank whose different levels of fillings are considered as 

uncertainties. 

KEYWORDS: fractional order multivariable control; active control; robust control; iso-

damping contour. 
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1. Introduction 

The reduction of structural vibration has been challenging engineers for many 

years. Innumerable applications exist where vibration control is beneficial, if not 

essential. In the control of vibrations, the damping factor is an important data since it 

indicates how quickly the vibrations decrease. When control of vibrations is at stake, 

it can be useful to control this parameter. Works have already been achieved to this 

end (Yq and Moore, 2005). 

This article proposes a method in the frequency-domain to control uncertain 

plants while ensuring the damping factor of the response. This method is based on 

the complex fractional order integration (Samko et al., 1993; Miller and Ross, 1993) 

that makes it possible to define an open-loop transfer function whose Nichols locus 

is an any-direction straight line segment called “generalized template”. This transfer 

function is used: 

– for the construction, in the Nichols plane, of the “iso-damping” contours whose 

graduation is the damping factor (Oustaloup et al., 1995), 

– for the CRONE control methodology applied in this article (Oustaloup et al., 

1999a). 

The article falls into 6 parts. Section 2 introduces the transfer function of a 

complex non-integer integrator defining a generalized template which will be 

considered as part of an open-loop Nichols locus (Oustaloup et al., 1999a). This 

transfer function is used in section 3 for the construction of a network of iso-

damping contours in the Nichols plane (Oustaloup et al., 1995a). 

Section 4 describes the CRONE (the French acronym of “Commande Robuste 

d’Ordre Non Entier”) control based on complex fractional order differentiation 

(Samko et al., 1993; Miller et al., 1993; Oustaloup and Mathieu, 1999b). This 

control methodology can be applied to SISO and MIMO plants and also plants with 

lightly damped modes. The interest of the fractional order is to define a transfer 

function with few parameters and thus to simplify design and optimization of the 

control system. 

Section 5 presents an example of a multivariable flexible structure which is an 

aircraft wing model made of a free-clamped beam with a water tank and co-localized 

piezoelectric ceramics used as actuators to limit the vibrations and as sensors to 

measure these vibrations. The different levels of filling of the tank make it possible 

to test the robustness of the damping factor obtained with the CRONE control-design 

associated to iso-damping contours. In section 6, conclusions are given on the 

efficiency of fractional active control. 



2. Complex fractional integration 

The transfer function of a real fractional or non-integer integrator of order n is 

given by: 
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The Nichols locus of a transfer function described by this integrator in a 

frequency interval [ωA, ωB] is a vertical segment that will be called “vertical 

template” (Figure 1). The phase placement of this segment at the crossover 

frequency ωcg depends on the order n and is -n90°.  

From the extension of the description of the vertical template, the “generalized 

template” - that is to say an any-direction straight line segment in the Nichols plane - 

can be obtained using the complex non-integer integration of order n. n = a + ib 

where the imaginary unit i of the integration order n is independent of the imaginary 

unit j of the variable s (s=σ+jω). The transfer function of a complex non-integer 

integrator of order n is given by: 
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The real part a defines the phase placement of the generalized template at ωcg, 

 -Re(n)90°, and then the imaginary part b defines its angle to the vertical (Figure 1). 
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Figure 1. Representation of the vertical template and of the generalized template in 

the Nichols plane 



3. Isodamping contours  

In the time domain, the dynamic performance can be characterized by the first 

overshoot and the damping factor of a step response. In order to guarantee this 

performance by using a frequency domain control methodology, it is necessary to 

have an equivalent of this dynamic performance in the frequency domain. The well-

known magnitude contour in the Nichols plane can be considered as an iso-overshoot 

contour (Oustaloup et al., 2003). For the damping factor, Oustaloup et al. have 

constructed and defined a set of contours called “iso-damping” contours whose 

graduations are the damping factors in the Nichols plane (Oustaloup et al., 1995a). 

These contours have been constructed using an envelope technique. The contour is 

then defined as the envelope tangented by a set of segments (Figure 2). In the 

Nichols plane, each segment of the set can be considered as the rectilinear part of an 

open-loop Nichols locus that ensures the closed-loop damping factor corresponding 

to the contour. This rectilinear part around gain crossover frequency, ωcg, is the 

“generalized template” defined above. 
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Figure 2. Envelope defining an isodamping contour in the Nichols plane 

Isodamping contours can be defined analytically using a polynomial equation 

determined by interpolation of graphical data of each contour (Oustaloup et al., 

1995a). A contour Γζ FFFF is thus defined by: 
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with: 
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X and Y being the coordinates expressed respectively in degrees and in decibels and 

ajk the coefficients given in table 1. 



Table 1 - Values of coefficients ajk 

   j/ k 0 1 2 3 

0 -180.36 117.7 -74.316 40.376 

1 -1.1538 3.8888 -5.2999 2.5417 

2 -0.0057101 0.0080962 -0.0060354 0.0016158 

 

4. CRONE control 

CRONE control system design (Oustaloup et al., 1999; Oustaloup et al., 2000) is 

a frequency-domain based methodology using complex fractional integration and the 

common unity feedback configuration. CRONE control is used for the robust control 

of perturbed linear plants. It consists on determining the nominal and optimal open-

loop transfer function that guarantees the required specifications. This methodology 

uses fractional derivative orders (real or complex) as high level parameters that make 

easier the difficult design and optimization of the control-system, the plant 

perturbation being taken into account without any overestimation. Three Crone 

control generations have been developed, successively extending the application 

fields (Oustaloup et al., 1995b; Pommier et al., 2001). In this paper, the third 

generation will be, for the first time, applied to a lightly damped MIMO plant.  

4.1. Open-loop transfer function 

The open-loop transfer function (Figure 3) of the initial third generation Crone 

method is based on the generalized template described previously and takes into 

account: 

– the accuracy specifications at low frequencies, 

– the generalized template around the frequency ωcg, 

– the plant behaviour at high frequencies in accordance with input sensitivity 

specifications for these frequencies. 

For stable minimum-phase plants, this function is written: 

)()()()( hml ssss ββββ = .  [5] 

- βm(s), based on complex non-integer integration, is the transfer function 

describing the band-limited generalized template (Oustaloup et al., 1999b; Oustaloup 

et al., 2000): 
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q’ and b’ being computed to avoid discontinuity of the phase (Pommier, 2002) and K 

being computed to ensure a gain of 0 dB at ωcg.  

- βl(s) is the transfer function of an order nl proportional-integrator, whose 

corner frequency equals the low corner frequency of βm(s), so that joining βl(s) and 

βm(s) does not introduce extra parameters. βl(s) is defined by: 
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Integer order nl is chosen such that the accuracy specification can be met. 

- βh(s) is the transfer function of order nh low-pass filter, whose corner 

frequency equals the high corner frequency of βm(s), so that joining βh(s) and βm(s) 

does not introduce extra parameters. βh(s) is defined by: 
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If nph is the order of asymptotic behavior of the plant in high frequency (ω >>ωh), 

order nh is given by phh nn ≥ , with nh = nph ensuring invariability of the input 

sensitivity function with the frequency and nh > nph ensuring decrease. 
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Figure 3. Different parts of the open-loop Nichols locus 



4.2. CRONE methodology for SISO plants 
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Figure 4. Optimal open-loop Nichols locus to position the uncertainty domains 

The third generation CRONE methodology for SISO plants can be described in 

five points. The designer has: 

1) to determine the nominal plant transfer function and the frequency uncertainty 

domains. For a given frequency, an uncertainty domain (called “template” by the 

QFT users (Horowitz, 1991)) is the smallest hull including the possible frequency 

responses of the plant. The use of the edge of the domains makes it possible to take 

into account the uncertainty with the smallest number of data. To construct this 

domain with a good probability to take into account all the possible plants even if the 

number of considered plants is limited, the simplest way is be to define it convexly; 

2) to specify some parameters of the open-loop transfer function defined for the 

nominal state of the plant: the gain cross-over frequency and the integer orders nl and nh; 

3) to specify bounds of the sensitivity functions; 

4) to run a constrained nonlinear optimization that gives the parameters a and b 

and the frequencies ωl and ωh that correspond to the optimal open-loop Nichols 

locus. An open-loop Nichols locus is defined as optimal if it tangents the common 

nomrM  magnitude contour and if it minimizes the variations of Mr for the other 

parametric states or if it tangents the common isodamping contour and if it 

minimizes the variations of the damping factor for the other parametric states. By 

minimizing the cost function ( )2

minrmaxr MMJ −=  where 
maxrM  and 

minrM  are the 

maximal and minimal value of resonant peaks Mr  or ( )2

minmax εε −=J  where 
max

ε  

and 
min

ε  are the maximal and minimal value of the closed-loop damping factors ε , 

the optimal open-loop Nichols locus positions the uncertainty domains correctly, so 

that they overlap the low stability margin areas as little as possible (Figure 4: case 

(c)) is the best configuration). The minimization of J is carried out under a set of 

shaping constraints on the four usual sensitivity functions; 

5) to compute the controller. While taking into account the plant right half-plane 

zeros and poles, the controller is deduced by the frequency-domain system 



identification of the ratio of βnom(jω) to the nominal plant function transfer Gnom(jω). 

The resulting controller C(s) is a rational transfer function. 

4.3. CRONE methodology for MIMO plants 

4.3.1. Principle 

The CRONE methodology for n by n MIMO plants consists in finding a diagonal 

open-loop transfer matrix: 

][
00 i

βdiagβ =   [9] 

whose n elements are fractional order transfer functions. 

It is parametered to satisfy the four following objectives: 

– perfect decoupling for the nominal plant, 

– accuracy specifications at low frequencies, 

– required nominal stability margins of the closed loops (behaviours around the 

required cut-off frequencies), 

– specifications on the n control efforts at high frequencies. 

After an optimization of the diagonal open-loop transfer matrix (relation [9]), the 

fractional controller matrix is computed from the relation [10] and synthesized by 

frequency-domain identification. 
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4.3.2. Optimized solution 

Let G0 be the nominal plant transfer matrix such that G0(s)=[ )(sgij ]i,j∈N and let 

β0 be: 
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where: 

–  )(sgij is a strictly proper transfer function, 

– N= { }n,...,1 , 

–  
i

i

d

n
β

i
=0  is the element of the i

th
 column and row. 



As mentioned above the aim of CRONE control for MIMO plants is to find a 

decoupling controller for the nominal plant. G0 being not diagonal, the problem is to 

find a decoupling and stabilizing controller C (Vardulakis, 1987). This controller 

exists if and only if the following hypotheses are true: 

–  [ ] exist 
1
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–  [ ] [ ] 0)()(: 002 =∩ ++ sGPsGZH , [13] 

where [ ])(0 sGZ+  and [ ])(0 sGP+  indicate the positive real part zero and pole sets. 

The controller C(s) is: 
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with adj(G0(s))=[G0
ij
(s)]

T
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ji
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(s) being the cofactor corresponding to 

element )(sgij  and |G0| corresponding to determinant of G0(s). 

Thus each term of the matrix C is: 
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The nominal sensitivity and the complementary sensitivity transfer function 

matrices are: 
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For plants other than the nominal, the closed-loop transfer matrices T(s) and S(s) 

are no longer diagonal. Each diagonal element ( )sTii  and ( )sSii could be interpreted as 

closed-loop transfer functions coming from a scalar open-loop transfer function 

)(sβii  called equivalent open-loop transfer function: 
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For each nominal open-loop β0i(s), many generalized templates can border the 

same required contour in the Nichols plane. The optimal one minimizes the 

robustness cost function: 
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where 
rM is the resonant peak and ε  the damping factor, while respecting the 

following set of inequalities for ω∈R and i, j∈N: 
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where G is the set of all perturbed plants. 

As the uncertainties are taken into account by the least conservative method, a 

non-linear optimization method must be used to find the optimal values of the 

independent parameters of the fractional open-loop transfer function. 

4.4. Extension to resonant plants 

Let G0 be the nominal plant transfer matrix such that G0(s)=[ )(sgij ]i,j∈N with 

)()()( 0 shsgsg ijij ij
⋅=  and )(shij  the transfer including the resonant modes of the 

plant. 

Let P0 be the inverse of  G0 such that P0(s)=[ )(spij ]i,j∈N  with 

)()()( 0 smspsp ijij ij
⋅=  and )(smij

 the transfer including the resonant modes of the 

inverse of the plants. 



The aim of this section is to show that the resonant modes of the plant and of the 

inverse of the plant must be included in the open-loop transfer function β0i to ensure 

that all closed-loop transfer functions are damped enough (Nelson Gruel  et al., 

2007). 

The first transfer matrix to be considered is the input-disturbance sensitivity, 

T0C
1
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that is to say if )(sd i  contains the resonant modes )(shij , )(ˆ sd i  being then the part 

of the denominator )(sd i without the resonant modes .  
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where the transfer functions Hi(s) have in common the lightly damped modes of the 

i
th

 row of G0. 

 

The second transfer matrix to be considered is input sensitivity CS. Using: 













+

⋅⋅
== −

)()(

)()()(01
00

snsd

snsmsp
TGSC

jj

jijij
 [31] 

this transfer function is resonant-free if: 

Ni
sm

sn
sn

ij

j

j ∈∀=   
)(

)(ˆ
)(  [32] 



that is to say if )(sn j  contains the resonant modes )(smij , )(ˆ sn j  being then the 

part of the numerator )(sn j without the resonant modes .  

The numerator of the i
th

 open-loop transfer function must satisfy all the following 

equations: 
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and therefore: 
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where the transfer functions Mj(s) have in common some lightly damped modes of 

the j
th

 column of G0
-1

. 

 

Adding some lightly damped modes on the open-loop transfer functions causes 

resonant frequencies to appear on sensitivity and complementary sensitivity transfer 

functions. To attenuate their effect, notch or peak transfer function Qj(s) is included 

in β0i(s) around each resonant frequency such that: 














++




























++














= 12/12)(

'

'

2

'

2

jjjj

j

ssss
sQ

ω
ε

ωω
ε

ω
  [35] 

where jω  and '

jω  
are frequencies close to the resonant frequency and ε and ε’

 are 

the damping factors. 

5. Robust control of a lightly damped plant with isodamping property 

5.1. Description of the plant 

The plant under study is an aircraft wing model (see figure 5). It is made of a 

beam and a tank. This structure has the same resonant frequencies as a real air wing. 

The problem is to control the vibrations which depend on the levels of filling of the 

tank. Two sets of piezoelectric ceramics, bonded at the clamp of the beam, are used 

as actuators to fight against bending and twisting vibrations. Two others 

piezoelectric ceramics, co-localised with the actuators, are used as sensors to 

measure the vibrations. 

The characteristics of the plant are given in table 2. 

 



Table 2. Plant characteristics 
 

 Beam Actuator x 2  Tank 

Length (mm) 1360 140 Ext. Diameter (mm) 110 

Width (mm) 160 75 Int. Diameter (mm) 105 

Thickness (mm) 5 0.5 Length (mm) 700 

Density (kg/m3) 2970 7800 x-location (mm) 1280 

Young Modulus (Gpa) 75 67 Plastic Density (kg/m3) 1180 

Piezoelectric Const. 

(pm/V) 
- -210 Young Modulus (Gpa) 4.5 

 

 

1360mm 

beam 

‘tank’ 

Two actuators 
(voltage uh and ul) 

Two sensors 
 (signals yh and yl) 

 

 

Figure 5. Model of the structure (beam with the tank) 

5.2. Modelling and identification of the plant 

5.2.2. MIMO Model 

The plant is described by a 2x2 MIMO model. The two inputs are the two 

actuators voltages (called ul and uh) and the two outputs are the sensors voltages 

(called yl and yh). The plant is described by the matrix of transfer functions given by: 


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
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1211

sGsG
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sG   [36] 

and the transfer functions will be identified thanks to the relation: 
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A preliminary study using finite elements has shown that it is necessary to take 

into account the first three modes of resonance of the aircraft wing model. These 

modes are the first two modes of flexion and the first mode of twisting which are too 

close to allow neglecting one of them. The representation of the deformations of the 

first three modes can be used to establish the form of the model and in particular the 

contribution of each mode in each transfer function. If you note: 



– F1ij(s) the transfer function of the first mode of flexion relative to the actuator i 

and the sensor j, 

– F2ij(s) the transfer function of the second mode of flexion relative to the 

actuator i and the sensor j, 

– T1ij(s) the transfer function of the first mode of bending relative to the actuator i 

and the sensor j, 

– Rij the static term relative to the actuator i and the sensor j  (Rubin, 1975), 

the [2x2] matrix of the aircraft wing model that takes into account the first three 

modes is written : 
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As sensors and actuators are co-localised, the contributions of each mode are 

summed for the diagonal terms and the contribution of the twisting mode is 

subtracted for the non diagonal terms.  

5.2.3. Model identification 

Measurements are necessary to establish the model since the finite elements 

analysis has made it possible to determine the modes of resonance of the model but 

not the values of the damping coefficients. The four transfer functions are identified 

so that their Bode diagrams correspond to the measures. They are all of the form: 
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  [39] 

with i and j between 1 and 2 and the numerical data of the tables 6 to 9 . 

 

 

Table 3. Values for G11(s) 
 

  Empty tank Half-full tank Full tank 

k111 0,015 0,006 0,01 

ω111 (rad/s) 7,22 5,1 4,59 

 

1° mode of flexion 

ε111 0,0061 0,0062 0,0045 

k112 0,01 0,002 0,005 

ω112 (rad/s) 53,78 41,2 34,84 

 

2° mode of flexion 

ε112 0,012 0,046 0,006 

k113 0,01 0,005 0,001 

ω113 (rad/s) 134,5 96,6 21,6 

 

1° mode of 

twisting ε113 0,012 0,01 0,015 

static term R11 0,12 0,14 0,085 

 



The figure 6 gives the Bode diagrams of these four transfer functions and shows 

that the model is very lightly damped and uncertain because of the variations of the 

filling of the tank. The curves with the lower frequency resonance correspond to the 

full tank and the curves with the higher frequency resonance correspond to the empty 

tank. 
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Figure 6. Bode diagrams of the four terms of the plant matrix 

 

 

 

Table 4. Values for G12(s) 
 

  Empty tank Half-full tank Full tank 

k121 0,032 0,004 0,015 

ω121 (rad/s) 7,22 5,1 4,59 

 

1° mode of 

flexion ε121 0,0087 0,0039 0,0041 

k122 0,008 0,002 0,004 

ω122 (rad/s) 53,78 41,2 34,84 

 

2° mode of 

flexion ε122 0,01 0,0046 0,006 

k123 -0,004 -0,0012 -0,001 

ω123 (rad/s) 134,5 96,6 21,6 

 

1° mode of 

twisting ε123 0,011 0,0032 0,007 

static term R12 0,02 0,018 0,02 

 

 

 



Table 5. Values for G21(s) 
 

  Empty tank Half-full tank Full tank 

k211 0,014 0,005 0,03 

ω211 (rad/s) 7,22 5,1 4,59 

 

1° mode of flexion 

ε211 0,0061 0,0039 0,0068 

k212 0,0065 0,002 0,004 

ω212 (rad/s) 53,78 41,2 34,84 

 

2° mode of flexion 

ε212 0,012 0,0046 0,0069 

k213 -0,004 -0,001 0 

ω213 (rad/s) 134,5 96,6 21,6 

 

1° mode of twisting 

ε213 0,012 0,0039 x 

static term R21 0,015 0,012 0,085 

 

 

Table 6. Values for G22(s) 
 

  Empty tank Half-full tank Full tank 

k221 0,02 0,004 0,007 

ω221 (rad/s) 7,22 5,1 4,59 

 

1° mode of flexion 

ε221 0,0087 0,0052 0,0034 

k222 0,009 0,0022 0,005 

ω222 (rad/s) 53,78 41,2 34,84 

 

2° mode of  flexion 

ε222 0,0129 0,0046 0,0056 

k223 0,006 0,0011 0,03 

ω223 (rad/s) 134,5 96,6 21,6 

 

1° mode of twisting 

ε223 0,0126 0,0026 0,067 

static term R22 0,1 0,1 0,085 

 

5.3. CRONE control 

The plant being a 2x2 MIMO system, the open-loop transfer function matrix is 

written as: 

01

02

( ) 0
( )

0 ( )

s
s

s

β
β

β
 

=  
 

  [40] 

whose two diagonal terms are defined by CRONE open-loop transfer functions of 

third generation (equ. [8]). 

The nominal plant corresponds to the empty tank. The objectives are to increase 

the damping factor of the closed-loop system to get a value of 0.1 after control, 

whatever the filling of the tank. So the iso-damping contour that each open-loop 

transfer function should tangent is of value 0.1. For each of the open-loop transfer 

function, the following configuration has been chosen: 

– gain cross-over frequency equal to 3 rad/s, 

– order nl=-1 in order to limit the gain of the controllers at low frequency and 

order nh = 4 in order to limit the amplification of the noise at high frequency, 



– minimum of the complementary sensibility function T equal to -5dB (for the 

frequencies below the gain-cross over frequency)  to bound the controller effect at 

low frequency, 

– maximum of the function CS equal to  50dB to bound the controller amplitude 

at high frequency,  

– maximum of the sensibility function S equal to 20dB  to bound the controller 

effect at high frequency. 

This configuration has also been chosen in order to get - after optimization – the 

terms of the matrix of the controller with a high gain on a large band of frequencies 

so that the control of vibrations is efficient and in order to position the uncertainties 

domains so that they do not penetrate the performance contour. 

Let’s now take into account the lightly damped modes of the plant. There are no 

lightly damped modes on the rows of the plant matrix but there are three lightly 

damped modes in the columns of the inverse matrix of the plant coming from the 

determinant of the matrix since: 
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0
G

G
sG =−   [41] 

Therefore, it is necessary to introduce in the open-loop transfer functions β01(s) 

and β02(s) the resonances of the modes at 7,09 rad/s, 8,12 rad/s and 57,11 rad/s. 

Finally, a filter has been added in the open-loop transfer functions. It aims at 

shaping the open-loop Nichols locus by decreasing the gain and increasing the phase 

locally around the first resonance so that the uncertainties domains do not overlap 

the contours. The expression of the filter is the same for the two open-loop transfer 

functions and is written: 
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Results have been obtained thanks to a constrained nonlinear optimization. Initial 

values of parameters are well-chosen to avoid the stabilization of the optimization on 

bad local minima. The results of the optimization lead to the following optimal 

parameters: 

– for β01(s): a=0.0037, b’=3.05 ; q’= 5 ; ωl=1.4 rad/s ; ωh=3.3  rad/s ; Yt = 0.4dB 

(open-loop gain for the tangency point between the contour and the open-loop 

Nichols locus), 

– for β02(s): a=2.99, b’=1.81 ; q’= 5 ; ωl=1.3 rad/s ; ωh=3.3  rad/s ; Yt = 0.71dB. 

The Nichols loci with the uncertainty domains are given in the Figure 7 for the 

two open-loop transfer functions β01(s) and β02(s). 
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Figure 7. Nichols loci for β01(s) and β02(s) 
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Figure 8. Bode diagrams of the terms of the complementary sensibility functions 

matrix 

The Figure 8 gives the four terms of the complementary sensibility functions 

matrix. It shows that the matrix is diagonal for the nominal state and that the 

controller is thus decoupling. It also shows that the closed-loop transfer functions are 

less resonant than the plant transfer functions. 

The matrix of the controller is computed from the relation:  

11 121

0

21 22

( ) ( )
( ) ( ) ( )

( ) ( )

C s C s
C s G s s

C s C s
β−  

= =  
 

  [43] 



The four terms of this matrix are synthesized by identification in the frequency 

domain and the Bode diagrams are given in the Figure 9. 
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Figure 9. Bode diagrams of the terms of the controller matrix 

5.4. Results 
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Figure 10. Response to a disturbance without control 

The figure 9 shows the free response to a disturbance (the wing model is pushed 

back from its equilibrium with a movement of flexion and of twisting and then 

released) in three cases (empty tank, half-full tank and full tank). This disturbance 

could be interpreted as an air bump for a real aircraft wing. Several tests have been 

achieved but the figure 10 only shows the results for one test. The figure gives the 

signal from the two sensors. It shows that it takes more than 200s to go back to 

balance. 



The Figure 11 shows the response to the same disturbance as previously with the 

CRONE controller. This figure gives the signal from the two sensors and the voltage 

of the two actuators. Several observations can be drawn from this figure: 

1) the voltages of the actuators are on their maximum level, even in saturation for 

the first oscillations since the D-Space card will limit the values of uh and ub at 1V 

(which corresponds to 130V on the actuator). 

2)  it takes now less than 25s to go back to balance. 

3) the CRONE controller guarantees the robustness of the damping factor of the 

response. The Table 7 gives the value of this ratio for the three cases and the two 

sensors.  

Table 7. Values of the damping factor for the 3 configurations of the tank with the 

CRONE controller 

 Sensor yh Sensor yb 

Empty tank 0,11 0,11 

Half-full tank 0,1 0,1 

Full tank 0,12 0,12 
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Figure 11. Response to a disturbance with the CRONE control 

6. Conclusion 

This article presents fractional robust control with isodamping property. The 

plant under study is an aircraft wing model with a water tank. It is a multivariable 

plant with lighted damped modes. The proposed methodology is CRONE control. 

Results show that the vibrations are better damped with the CRONE control and that 

the time to go back to balance is divided by a factor 10. The tests on the plant with 

various levels of filling of the tank made it possible to highlight the properties of 

robustness of the damping factor. The use of multivariable CRONE methodology 

and of isodamping contours to carry out the control of a flexible structure with iso-

damping property is thus clearly relevant. 
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