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Computational fluid dynamic (CFD) models must be thoroughly validated before they can be used with
confidence for designing fluidized bed reactors. In this study, validation data were collected from a
fluidized bed of (Geldart's group B) alumina particles operated at different gas velocities involving two
fluidization hydrodynamic regimes (bubbling and slugging). The bed expansion, height of bed fluctuations
and frequency of fluctuations were measured from videos of the fluidized bed. The Eulerian–Eulerian
two fluid model MFIX was used to simulate the experiments. Two different models for the particle
stresses—Schaeffer [Syamlal, M., Rogers, W., O'Brien, T.J., 1993. MFIX documentation: theory guide. Tech-
nical Report DOE/METC-94/1004 (DE9400087), Morgantown Energy Technology Centre, Morgantown,
West Virginia (can be downloaded from Multiphase Flow with Interphase eXchanges (MFIX) website
〈http://www.mfix.org〉); Schaeffer, D.G., 1987. Instability in the evolution equations describing incompress-
ible granular flow. Journal of Differential Equations 66, 61–74.] and Princeton [Srivastava, A., Sundaresan,
S., 2003. Analysis of a frictional–kinetic model for gas–particle flow. Powder Technology 129(1–3), 72–85.]
models—and different values of the restitution coefficient and internal angle of friction were evaluated.
3-D simulations are required for getting quantitative and qualitative agreement with experimental data.
The results from the Princeton model are in better agreement with data than that from the Schaeffer
model. Both free slip and Johnson–Jackson boundary conditions give nearly identical results. An increase
in coefficient of restitution (e) from 0.8 to 1 leads to larger bed expansions and lower heights of fluctua-
tions in the bubbling regime, whereas it leads to unchanged bed expansion and to a massive reduction in
the height of fluctuations in the slugging regime. The angle of internal friction (�) in the range 10–40◦

does not affect the bed expansion, but its reduction significantly reduces the height of fluctuations.

1. Introduction

Gas–solids fluidization is a technology presently used in chemi-
cal and biochemical processes such as drying, mixing and chemical
reactions (Deen et al., 2007). The efficiency of such systems relies
primarily on their hydrodynamic behavior. Therefore, the prediction
of fluidized bed (FB) dynamics has been an active area of research
for many years (Davidson and Harrison, 1963; Deen et al., 2006;
Enwald et al., 1996). Thanks to the increase in the computational
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speed (Moore's law) and improved numerical algorithms, computa-
tional fluid dynamics (CFD) has become a promising tool for simu-
lating FB dynamics.

Two phase flows can be modeled using two different approaches
(Goldschmidt et al., 2001): the Lagrangian–Eulerian and the
Eulerian–Eulerian models. Both consider the gas phase as a contin-
uous phase. The fundamental difference between these two models
lies in the way the particles are treated. The Lagrangian–Eulerian
models describe the solids phase at the particle level, and the New-
ton's laws are applied to describe the motion of the particles. The
Eulerian–Eulerian approach treats even the particles as a contin-
uum, and the two phases form an interpenetrating continuum. As
pointed out by Weber and Hrenya (2006), the Lagrangian models,
being highly time consuming, are generally used in systems con-
taining less than 100,000 particles in which some instantaneous
interactions between particles (e.g., cohesion) must absolutely be
taken into account. As a consequence, most of the recent works
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using the Lagrangian approach are devoted to the simulation of
Geldart's group A and group C particles (Limtrakul et al., 2007;
Tatemoto et al., 2005; Xu et al., 2002). For systems of larger size,
the Eulerian–Eulerian models are usually preferred especially for the
modeling of Geldart's group B powders (Lettieri et al., 2006; Patil
et al., 2005; Taghipour et al., 2005).

Eulerian–Eulerian models require closure laws for particle inter-
actions, and there is an absence of consensus concerning the stress
terms in the particulate momentum equation. A typical FB includes
dense regionswhere the particles are in enduring contacts (high solid
volume fraction and the frictional or plastic stresses dominate), dilute
regions where particles are in collisional contact (low solid volume
fraction and the kinetic stresses dominate), and transition regions
where the kinetic and the plastic stresses are equally important. The
modeling of the kinetic stress based on the kinetic theory of gran-
ular flow (KTGF) is now generally accepted (Johansson et al., 2006;
Lun et al., 1984; Taghipour et al., 2005; Van Wachem et al., 2001).
By adopting theories mainly arising from the study of soil mechanics
(e.g., Jackson, 1983; Massoudi, 1986; Schaeffer, 1987; Tuzun et al.,
1982), several theories for describing the stresses in the plastic flow
regime have been proposed. However, no theory exists for model-
ing transition regimes other than some way to combine kinetic the-
ory with frictional theories. Thus, as pointed out by Srivastava and
Sundaresan (2003), the “disparate nature of both contributions” leads
to numerous questions about the way they should be combined. One
of the first attempts was provided by Johnson and Jackson (1987)
who proposed a model to describe shearing granular flows, com-
bining both theories by simply adding the two formulas. Syamlal
et al. (1993) proposed to consider the frictional stresses only at high
solid volume fraction (i.e., for values higher than the solid fraction
at minimum fluidization �s-mf ) and used Schaeffer (1987) model for
frictional stresses. This model is referred to in MFIX documentation
as the Schaeffer model. In that model, the transition between the
kinetic and the plastic regimes is thus rather abrupt and could lead,
according to Makkawi et al. (2006), to inaccurate predictions of bub-
ble shape and bed expansion in some specific cases (intermediate
to high gas velocities). Another model proposed by Srivastava and
Sundaresan (2003) is often called the Princeton model (Benyahia
et al., 2006). Although the assumptions at the roots of this model
are similar to those of Schaeffer (1987), the Princeton model also
accounts for the strain rate fluctuations. In contrast to the model of
Schaeffer (1987), frictional stresses in the model of Srivastava and
Sundaresan (2003) influence the flow behavior even in the transition
regions. They showed that the way the frictional stress is modeled
considerably influences the shape of the bubble and also the bed
dynamics.

In these closure laws, some physical parameters that characterize
the particles are required, namely the coefficient of restitution (e)
that reflects the energy dissipation due to particle–particle collisions
and the internal angle of friction (�) related to dissipation in the
dense regime with enduring contacts. The significant sensitivity of
both dense and dilute FB hydrodynamics to the value of e has been
reported by numerous authors: experimentally by Chang and Louge
(1992) and numerically by Chandrasekaran (2005), Goldschmidt
et al. (2001), Hoomans et al. (1996), Lindborg et al. (2007), Pita
and Sundaresan (1991) and Wang and Ge (2006). Goldschmidt
et al. (2001) analyzed the influence of e by detailing all the terms
of the pseudo-thermal energy equation (granular energy equation
or conservation equation for the fluctuation energy of particles).
They showed that the decrease of the restitution coefficient leads
to a smaller number of elastic collisions resulting in an increase of
the kinetic energy fluctuations generated by the particle pressure
and the viscous shear, but that this energy is almost completely
dissipated in inelastic collisions, resulting finally in a decrease of
the granular temperature. These results have been confirmed by

the recent work of Lindborg et al. (2007) and Wang and Ge (2006).
As the restitution coefficient decreases, some regions of the bed be-
come highly packed leading to sharper void fraction gradients and
to large bubbles with a vigorous bubbling (Lu et al., 2005). Another
direct consequence is that when more energy is dissipated, the gas
pressure fluctuations across the bed increase. Using the commercial
CFD code FLUENT, Taghipour et al. (2005) confirm that the hydrody-
namic regime and bubble activity are closely linked to e, particularly
for gas velocities beyond the minimum fluidization. They report
that by decreasing the restitution coefficient, the bed expansion
decreases. At last, they suggest that high values for e (e.g., 0.99)
are required to simulate the dynamics of the FB for gas velocities
above the minimum fluidization. It seems that the influence of � on
simulation results has been studied only by Chandrasekaran et al.
(2005), who found that a decrease of the internal angle of friction
resulted in smaller bubble sizes.

This paper reports a study about the influence of models for the
solid phase stress and of the associated parameters on the dynamics
of gas–solids FBs. Experimental measurements of the hydrodynam-
ics of an FB composed of Geldart's group B alumina particles will
be first presented. The numerical code and the two frictional stress
models used (Schaeffer and Princeton), will be then described. The
simulation results will be reported and compared with the exper-
imental data, to highlight the influences of the use of 2-D or 3-D
geometries, the frictional stress model, the coefficient of restitution,
and the internal angle of friction.

2. Experimental investigations

2.1. Process description and operating conditions

Experiments were conducted in a cylindrical glass column of 1m
height and 5 cm internal diameter. Fluidization was performed with
air at ambient temperature. The air flow rate was controlled by a
ball flow meter (Brooks GT1355) associated with a manometer. At
the bottom of the column, an inconel distributor of 40% of porosity
provided a homogeneous gas distribution. A differential pressure
gauge (Druck LPX5480) connected to an online monitoring system
allowed measuring the pressure drop across the bed. A ruler has
been placed along the glass column to determine the location of the
bed surface.

Two alumina powders of different sizes were used. Their diame-
ter distribution has been measured by a laser size analyzer (Master-
sizer2000): the particle mean Sauter diameters (D32) measured for
the finest and for the coarsest powders were of 221 and 329�m, re-
spectively, and standard deviations of their volume size distributions
were 58 and 77�m, respectively. The alumina particles revealed to
be non-porous, therefore their bulk density was equal to the density
of alumina (i.e., 3900kg/m3). The two powders belonged clearly to
the Geldart's group B and were easy to fluidize.

The mass of powders introduced in the columnwas fixed at 800g,
corresponding to a ratio of the bed height at packing to the column
diameter of about 4. Several air flow rates were used in the range of
0.14–2.82m3/h STP, corresponding to superficial gas velocities Ug in
the range of 0.02–0.4m/s.

2.2. Experimental procedure

For all the processing conditions studied, the fluctuating bed was
recorded using a tri-CCD camera (Panasonic NV-GS400) at a frame
rate of 25 pictures per second. Then, consecutive frames of the
videos corresponding to several cycles of bed fluctuations were ana-
lyzed. The bed surface was always well defined at the bed minimum,
during the expansion, and at the bed maximum, allowing accurate
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Fig. 1. Bed expansion ratio � measured vs. relative gas velocity Ug/Umf for fine and
coarse powders.

measurements of the minimum and maximum bed heights. Note
that the bed surface became diffuse only during the collapse because
of the formation of a trail of few isolated particles falling down at
a relatively slow speed. The analysis of 10 fluctuation cycles was
sufficient to determine mean minimum and maximum bed heights
Hmin and Hmax with an error margin of ±2%.

2.3. Experimental results

The minimum fluidization velocity (Umf ) of the fine powder was
0.05m/s, corresponding to a bed height (Hmf ) of 0.201m and a void
fraction (�mf ) of 0.48. The plateau in the bed pressure drop was about
4000Pa, very close to the theoretical value 3997Pa. Decreasing the
gas velocity to zero, the bed stabilized at a height of 0.198m, which
gives a void fraction at packing �0 of 0.472.

For the coarse powder, the measured minimum fluidization ve-
locity (Umf ) was 0.125m/s with a bed height (Hmf ) of 0.227m and
a void fraction (�mf ) of 0.54. The measured pressure drop was also
very close to the theoretical value of 3997Pa. At packing, the bed
height was 0.212m and �0 was 0.507.

Three superficial gas velocities Ug were specifically studied for
the fine powder: 0.09, 0.12 and 0.16m/s, corresponding to Ug/Umf
ratios of 1.8, 2.4 and 3.2, respectively. Three other gas velocities
were investigated for the coarse powder: 0.18, 0.25 and 0.3m/s,
corresponding to Ug/Umf ratios of 1.44, 2 and 2.4.

Measurements of bed heights as a function of gas velocity for the
two powders are reported in Fig. 1 using the following expression
for the ratio of bed expansion:

�(H) =
H − Hmf

Hmf
. (1)

We define the mean bed expansion ratio by

� = �

(
Hmax + Hmin

2

)
(2)

and the relative height of fluctuations by

�� = �(Hmax) − �(Hmin), (3)

where H is the mean expanded bed height.
For the two powders, as can be seen in Fig. 1, � and �� in-

crease with gas velocity. For Ug/Umf equal to 2.4, values of � and ��

measured for the fine powder are of 15.7% and 7.5%, respectively,
whereas for the coarse powder, they are of 33% and 40%, respec-
tively. It can be also deduced from these measurements that, for a
given expansion ratio, the bed of coarse powder undergoes larger
fluctuations than the bed of fine powder (about 2 times).

These results can be explained by the observation from the videos
that the bed of fine powder remained in the bubbling regime for
all the conditions tested, whereas the bed of coarse powder passed
from the bubbling regime to the slugging regime at a value of Ug/Umf
around 2 (i.e., Ug = 0.25m/s).

3. Numerical model

Open source simulation software MFIX (http://www.mfix.org)
has been used for this study. As mentioned before, the interpene-
trating continuum model is used to simulate the current gas–solid
system with one phase representing the gas and the other phase
representing the solid. The summary of the governing equations and
the granular stress models employed are given below and the de-
tails can be obtained from MFIX documentation (Benyahia et al.,
2006; Syamlal et al., 1993). The numerical method employed for time
discretization is implicit backward Euler method and for the con-
vective terms discretization is superbee or first-order upwind. The
set of non-linear equations is linearized using a modified version of
the SIMPLE (Patankar, 1980) algorithm using void fraction and gas
pressure correction equations. The resulting system of sparse, non-
symmetric linear equations for each of the equations is solved using
BiCGStab method (Barrett et al., 2006) algorithm. More details are
available in the MFIX numerical guide (Syamlal, 1998).

3.1. Governing equations

The governing equations solved for the current gas–solid system
are:

Continuity for phase k (k = g for gas or m for solids):

�
�t

(�k�k) + �
�xi

(�k�kuki) = 0. (4)

Momentum conservation for phase k:

[
�
�t

(�k�kuki) + �
�xj

(�k�kukjuki)

]

= −�k
�Pg
�xi

+
��kij
�xj

+
∑

k′=g,m
k′�k

Ik′ki + �k�kgi + �kgfgi. (5)

Here, � stands for volume fraction, � stands for density, u for velocity,
P for pressure and g for gravitational acceleration. Beyond the single-
phase Navier–Stokes equation, the momentum equation (5) for solid
phase m has two additional terms that need to be closed. The first
term is the interfacial drag term (Igmi) and the second one is for the
solid phase stresses (�mij). The drag formula used in this paper is that
postulated by Syamlal and O'Brien (2003) (Benyahia et al., 2006). It is
given by product of the drag interaction term and relative velocity:

Igmi = �gm(ugi − umi), (6)

where the drag interaction term is defined as

�gm = 3�m�g�g

4V2
rmdp

(0.63 + 4.8
√
Vrm/Rem)2|ug − um|, (7)

where dp stands for the particle diameter, Re stands for the particle
Reynolds number (Rem=dp|ug−um|�g/�g) and the non-dimensional
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parameter Vrm is given as

Vrm = 0.5(A − 0.06Rem +
√
(0.06Rem)2 + 0.12Rem(2B − A) + A2),

(8)

where A and B are given as

A = �4.14g , (9)

B =
{
c�1.28g if �g �0.85,

�dg if �g >0.85.
(10)

The drag constants c and d were determined from the physical prop-
erties of the carrier gas, powder properties (density, Sauter diame-
ter), experimentally measured minimum fluidization velocity (Umf ),
and the mean void fraction at Umf (Syamlal and O'Brien, 2003).
Once c and d are fixed, they are not varied for changes in operating
parameters like gas velocity.

3.2. Granular stress models

The solid stresses in Eq. (5) are given by

�mij =
(

−Pm + 	�b
�umi
�xi

)
�ij + 2�mSmij, (11)

where

Smij = 1
2

(
�umi
�xj

+
�umj

�xi

)
− 1

3
�umi
�xj

, (12)

the solids pressure,

Pm = �m�m
m[1 + 4	�mg0] (13)

and solids viscosity,

�m =
(
2 + �
3

)[
�∗
m

g0	(2 − 	)

(
1 + 8

5
	�mg0

)

×
(
1 + 8

5
	(3	 − 2)�mg0

)
+ 3

5
	�b

]
, (14)

where

�∗
m = �m�mg0
m�′

�m�mg0
m + (2��′/�m�m)
, (15)

�′ = 5
96

�mdp
√

�
m (16)

and

�b = 256
5�

�′�2mg0. (17)

Here, g0 is the radial function and 
 is the granular temperature.
Granular energy transport equation of the following form is used to
solve for 
:

3
2
�m�m

[
�
m
�t

+ umj
�
m
�xj

]
= �

�xi

(
m

�
m
�xi

)

+ �mij
�umi
�xj

+ �m − �m�mJm, (18)

where the solid conductivity of granular energy m is given by

m =
(

∗
m
g0

)[(
1 + 12

5
	�mg0

)(
1 + 12

5
	2(4	 − 3)�mg0

)

+ 64
25�

(41 − 33	)	2(�mg0)
2
]
, (19)

where

∗
m = �m�mg0
m

�m�mg0
m +
(
6�gm
5�m�m

) (20)

and

 = 75�mdp
√

�
m

48	(41 − 33	)
, (21)

collisional dissipation is given by

Jm = 48√
�

	(1 − 	)
�mg0
dp


3/2
m , (22)

	 = 1 + e
2

, (23)

and exchange terms are given by

�m = −3�gm
m +
81�m�2

g |ug − um|2
g0d

3
p�m

√
�
m

. (24)

The above model is used in the dilute regime of the particle flow
while the following two options are exercised as the particles ap-
proach the packing limit and frictional stresses are generated.

3.2.1. Schaeffer model
In this model (Schaeffer, 1987; Syamlal et al., 1993), at the critical

state when the solid volume fraction exceeds the maximum packing
limit, the following relations are used to calculate the solid pressure
and viscosity:

Pc =
{
1025(�∗g − �g)10, �g < �∗g ,
0, �g ��∗g ,

(25)

�f =
⎧⎨
⎩min

(
Pc sin(�)√

4I2D
,�max

m

)
, �g < �∗g ,

0, �g ��∗g ,
(26)

where �max
m = 1000P,

I2D = 1
6 [(Dm,11 − Dm,22)

2 + (Dm,22 − Dm,33)
2 + (Dm,33 − Dm,11)

2]

+ D2
m,12 + D2

m,23 + D2
m,31 (27)

and

Dm,ij = 1
2

(
�um,i
�xj

+
�um,j
�xi

)
. (28)

With this model, we have assumed (as typically approximated) that
the critical void fraction �∗g below which pure frictional stress occurs
is equal to �mf .

3.2.2. Princeton model
This model (Srivastava and Sundaresan, 2003) is a modification

of the Savage (1998) model that accounts for strain rate fluctuations.
This frictional stress model influences the flow behavior at solid
volume fractions below maximum packing:

Pc =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1025(�∗g − �g)10, �g < �∗g ,

Fr
((1 − �g) − �min

sf )r

(�g − �∗g)s
, �∗g ��g < (1 − �min

sf ),

0, �g � (1 − �min
sf ),

(29)

where Fr = 0.5, r = 2, s = 5.



The solid pressure is given as

Pf
Pc

=
⎛
⎝1 − ∇ · um

n
√
2 sin(�)

√
S : S + 
m/d2p

⎞
⎠
n−1

, (30)

and the viscosity is

�f =
√
2Pf sin(�)√

S : S + 
m/d2p

⎧⎨
⎩n − (n − 1)

(
Pf
Pc

)1/(n−1)
⎫⎬
⎭ . (31)

Here, the coefficient n is set differently depending on whether the
granular assembly is undergoing a dilatation or compaction:

n =
⎧⎨
⎩

√
3

2 sin(�)
, ∇ · um�0,

1.03, ∇ · um <0
(32)

and the bulk viscosity is set by the following relation:

�bulk
f = − 2

3�f . (33)

With the Princeton model, it is typical to assume that the critical
void fraction (�∗g) belowwhich pure frictional stress occurs is equal to
the void fraction at packing (�0) and that the high limit void fraction
above which frictional stresses no longer play a role (i.e., 1 − �min

sf )

equals �mf .

3.3. Johnson and Jackson wall boundary conditions

Johnson and Jackson (1987) boundary conditions account for par-
tial slip of the solids at the walls. Tangential solids velocity and the
granular energy at the walls are given by

�m
�um
�x

= −�p��m�mg0
√


m

2
√
3�max

m
um, (34)

m
�
m
�x

= �p�u2m�m�mg0
√


m

2
√
3�max

m

−
√
3��m�mg0(1 − e2w)

√

m

4�max
m


m. (35)

4. Simulation

4.1. Input parameters and data processing

All the experimental parameters used for the simulations are
given in Table 1. Using the Schaeffer (1987) model (Syamlal et al.,
1993) and the Princeton model (Srivastava and Sundaresan, 2003)
to calculate solid stresses in the frictional regime, 2-D axisymmet-
ric, 2-D Cartesian and 3-D MFIX simulations were performed for the
three gas velocities studied as detailed in Section 4.3.1. The coeffi-
cients of the Syamlal–O'Brien (2003) drag correlation c and d were
determined from the physical properties of the carrier gas, powder
properties, experimentally measured minimum fluidization velocity

Table 1
Experimental and simulation parameters

� (kg/m3) D32 (�m) mp (kg) H0–�0 (m, dimen-
sionless)

Umf–Hmf–�mf

(m/s, m, dimen-
sionless)

Ug tested (m/s) c − d (dimen-
sionless)

e − � tested
(dimensionless-deg)

Fine powder 3900 221 0.8 0.198–0.472 0.05–0.201–0.48 0.09–0.12–0.16 0.137–13.51 0.8–10◦ , 0.8–30◦ ,
0.8–40◦ ,

Coarse powder 3900 329 0.8 0.212–0.507 0.125–0.227–0.54 0.18–0.25–0.30 0.165–12.38 0.9–40◦ , 0.99–40◦ ,
1–40◦

(Umf ), and the mean void fraction at Umf . Their values for the two
powders are given in Table 1. Since we did not find any data in the
literature for the restitution coefficient for the collisions of alumina
particles, the default value of 0.8 was used, and then higher values
were tested as explained in Section 4.3.2. In all the simulations, the
coefficient of restitution for particle–wall collisions (ew) was set to
1. The internal angle of friction was first fixed to 40◦, which is the
experimentally determined angle of repose of the two powders. In-
deed, for non-cohesive powders, these two parameters are identical
(Terzaghi, 1942). Then, values of 30◦ and 10◦ were tested and the
effects on the results are discussed in Section 4.3.3. Regarding wall
boundary conditions (BCs), no slip for gas and Johnson and Jackson
(J & J) partial slip for solids were used. Also free slip for solids was
tested, as discussed below.

Particular care was taken for the analysis of the simulation re-
sults. First, a void fraction of 0.95 was shown to define the bed sur-
face with reasonable accuracy. Taking a value of 0.9 or 0.99 did not
change the results very significantly (this point will be discussed
later) at the bed minimum, during the expansion stage and at the
bed maximum, meaning that the bed surface was well defined just
as in the experiments (formation of a trail observed during the col-
lapse was also reproduced by the calculations). Then, the void frac-
tion values near the wall (for comparison with experimental data)
were extracted and averaged in the azimuthal direction. From the
axial profile of the void fraction, the height of the bed surface was
determined for every 0.01 s. A moving-average filter (with a width of
2-time steps) was then applied to these temporal evolutions of bed
heights to remove point-to-point fluctuations. A routine was used
to extract minimum and maximum bed heights and their tempo-
ral positions. Since small secondary peaks appeared randomly along
the main fluctuations, specific tests had to be implemented in this
routine to determine the true minima and maxima. Average bed
heights Hmin and Hmax were finally determined from a minimum
of 10 fluctuations (typically 6 s) similar to the analysis of the exper-
imental data. The initial transient fluctuations were ignored for the
data analysis because the bed hydrodynamics is dependent on the
initial conditions for the first few seconds (from 1 to 3 s depending
on Ug).

4.2. Discretization scheme and grid refinement

A preliminary study was initially conducted to aid the choice of
the suitable discretization schemes as well as grid resolution for the
current validation exercise. Both first- and second-order schemes for
different grid resolutions were employed and their influence on bed
height and magnitudes of fluctuations were used as the criteria for
selecting the optimal scheme and grid resolution.

These simulationswere performedwith a consistent set of param-
eters for two extreme operating conditions: fine powder—Ug/Umf =
1.8/coarse powder—Ug/Umf = 2.4. For both these operating condi-
tions, very similar effects of the discretization scheme and the grid
resolution on bed expansion and height of fluctuation were found.
The results for the operating condition “coarse powder—Ug/Umf =
2.4” are presented in Fig. 2: irrespective of the discretization scheme,
the grid resolution of 15 × 300 × 6 (i.e., 27,000 cells, 15 cells along
the radial direction for the half diameter, 300 cells along the axial



direction for a height of 0.6m—or in other words almost square cells
of about 2mm, around 10 times the particles diameters—and six
cells in the circumferential direction) seemed sufficient to obtain bed
expansion and height of fluctuation that are independent of the grid
resolution. The use of very coarse grids leads to underestimation of
heights of fluctuation and typically, simulations performed with the
second-order discretization scheme for a given grid resolution leads
to more accurate results and for a given accuracy leads to 100 times
shorter computational times compared with simulations performed
with the first-order upwind discretization scheme.

Therefore, we choose the second-order scheme and the grid res-
olution of 15×300(×6) for the subsequent 2-D and 3-D simulations.
The grid size of the order of a few particle diameters used in this
study is usually adequate for resolving the meso-scale structures of
gas–solid flows (Agrawal et al., 2001).

4.3. Results and comparisons

4.3.1. 2-D/3-D simulations and Schaeffer/Princeton solid stress models
All calculations presented in this section were performed with

e of 0.8 and � of 40◦. Unless otherwise specified, the wall BC used
for solids is Johnson and Jackson partial slip BC and no slip for gas.
Expansion ratios (�) and relative heights of fluctuation calculated
for the fine powder are reported in Figs. 3a and b, respectively. The
same quantities calculated for the coarse powder are reported in
Figs. 4a and b, respectively. Irrespective of the powder and the solid
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stress model used, it appears that all calculations overestimate � and
��. But the 3-D simulation results are much closer to experimen-
tal data than the 2-D simulation results. For instance, at the high-
est gas velocity for the fine powder, the � and �� calculated with
the Schaeffer model are around 2.2 and 2.7 times larger than the
respective experimental values in the 2-D axisymmetric simulation,
whereas they are only around 1.1 and 1.3 times larger than the re-
spective experimental values in the 3-D simulation. 2-D axisymmet-
ric calculations using the Princeton model give better results than
those performed with the Schaeffer model but discrepancies are still
very large. 2-D Cartesian calculations (performed with the Princeton
model) are closer to experiments and the 3-D calculations than 2-
D axisymmetric calculations, but still overestimate significantly the
bed expansions and heights of fluctuation.

In terms of bed expansion, 3-D calculations give almost identi-
cal results for both the frictional stress models (see Figs. 3a and 4a)
and reproduce very well the experiments for the fine powder (see
Fig. 3a). In terms of bed fluctuations, 3-D calculations using the
Princeton model yield always significantly better results than 3-D
calculations using the Schaeffer model (see Figs. 3b and 4b). The ex-
perimental bed expansion curve for coarse powder (Fig. 4a) is qual-
itatively different from that for the fine powder (Fig. 3a), whereas
the simulated bed expansion curves look similar. Overall, 3-D calcu-
lations with the Princeton model give consistently better results.

Another difference between 2-D axisymmetric and 3-D calcula-
tions is that they predict significantly different radial profiles of void
fraction as shown in Fig. 5. In this figure, the void fractions presented
correspond to radial profiles of void fraction averaged over the axial
direction between 0.1 and 0.2m, over the azimuthal direction, and
over 6 s of time. 3-D calculations result in void fractions steadily in-
creasing, except near the walls, from the column wall to the column
center, whereas 2-D calculations lead to a maximum in void fraction
at half-radius of the column and overestimate the solid fractions at
the column center. This 2-D effect is always present, but the magni-
tude of the effect depends on the gas velocity and the axial position
in the column. This has been also illustrated in Cadoret et al. (2007)
and had been highlighted previously by Guenther et al. (2001) and
Xie et al. (2008a,b). This is due to the numerical artifact that the
solids cannot cross the centerline boundary and are artificially re-
flected from this boundary.

This numerical artifact also explains why 2-D axisymmetric cal-
culations overpredict bed expansion and heights of fluctuation. The
2-D Cartesian calculations differ because the third direction for re-
laxation is absent and some of the additional terms in the circum-
ferential direction start playing a role in the dynamics (Xie et al.,
2008a,b).

Moreover, in the 3-D calculations the Princeton model predicts a
small decrease in the void fraction near the wall compared with the
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Schaeffer model. Note that the 3-D representation was used for all
the following simulations.

Note that instead of J&J partial slip BC, free slip BC was tested for
solids with the Princeton model for both powders. The bed expan-
sions calculated were nearly identical, whereas the free slip wall BC
tends to decrease the fluctuations as shown in Fig. 6. Nevertheless,
the difference becomes really important only for the coarse powder
with Ug/Umf = 2.4 (i.e., in a strong slugging regime) since the value
of �� is 33% greater with J&J partial slip as compared to the free slip
wall BC. However, from this study it cannot be concluded which of
these two wall BCs are a better representation of the experiments;
it can be just deduced that free slip wall BC tends to underestimate
the heights of fluctuations at high gas velocities, whereas J&J wall
BC tends to overestimate them.

For the fine powder with Ug/Umf =3.2 and for the coarse powder
with Ug/Umf = 2.4, Figs. 7a and b show photographs extracted from
the experimental videos and instantaneous void fractions extracted
from the calculations with the Princeton model. Photographs of the
real bed are views through the wall while the simulation fields are
slices through the bed axis. They have been chosen such that the
beds are at their maximum expansion state. One can see that sizes
and typical forms of bubbles calculated are qualitatively in good
agreement with the experiments. In addition, one can compare the
forms of bubbles and slugs obtained with J&J wall BC (Fig. 7b1) and

0

0.1

0.2

0.3

0.4

0.5

1
Ug/Umf

Δδ

1.5 2 2.5 3

Free slip walls BC 

Coarse powder: 

Free slip walls BC  
J&J  walls BC
Experiments

J&J  walls BC
Experiments

Fine powder: 

Fig. 6. Relative height of fluctuation �� calculated vs. relative gas velocity Ug/Umf ,
free sleep/Johnson and Jackson wall BC for solids, fine and coarse powders.

free slip wall BC for solids (Fig. 7b2): an annular secondary bubble in
contact with the walls and surrounding the lower part of the main
slug is seen with J&J BC. This phenomenon is clearly perceptible only
for the coarse powder at high velocities but also occurs for the fine
powders as indicated in Fig. 5.

Moreover, these views show that bed surfaces are very well de-
fined. This visual impression is confirmed by data processing since
taking 0.99 instead of 0.95 as a value of void fraction for defining
the bed surface, bed heights would increase only by 2% in average
and the amplitude of fluctuations would decrease by 3%.

For the fine powder with Ug/Umf =3.2 and for the coarse powder
with Ug/Umf = 2.4, Figs. 8a and b show the temporal evolutions of
measured and calculated bed heights. Both simulations have been
performed using the Princeton model and J&J BC. Concerning the cal-
culated bed heights, as previously mentioned, small secondary peaks
sometimes appear (see for example around 3.8 s in Fig. 8a): these
peaks result from parts of the main bubbles that are not completely
coalesced. As mentioned before, the data processing ignored these
small secondary peaks and considered only true minima and max-
ima. The same procedure was applied to extract manually true min-
ima and maxima from the experimental videos. The important point
is that the same consistent criteria for detecting minima and max-
ima (such as a minimum periodicity between two minima and/or
maxima) were applied for processing experimental and simulation
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data. The similarity of these experimental and calculated transient
curves confirms that the model predicts the bed dynamics for the
cases tested with reasonable accuracy.

Except for the coarse powder at a Ug/Umf ratio of 1.44, all fluc-
tuation frequencies are overpredicted by 3-D simulations as shown
by Fig. 9. With the Princeton model, the overestimations are roughly
of 0.4 fluctuations per second. With the Schaeffer model, results are
better, particularly for the fine powder. Nevertheless, discrepancies
stay moderate, even with the Princeton model.

Overall, it can be concluded that the bed expansion ratio, the
height of fluctuations, and the fluctuation frequencies can be satisfac-
torily reproduced using the Princeton model implemented in MFIX.

4.3.2. Influence of the restitution coefficient
Let us recall that the real value of e for our alumina particles being

unknown, the default value of 0.8 was used for the previous calcula-
tions. Actually, the restitution coefficient varies with both properties
of the colliding particles (material, surface shape, roughness, etc.)

and their relative velocities (Ding et al., 2001; Gorham and Kharaz,
2000; Helland et al., 2005). In practice, using a value of 0.8 is often
a reasonable choice. But alumina being a very hard material under-
going minimal plastic strain, a higher value could be presumed. This
led us to redo all 3-D calculations with the value of 1 for pure elastic
collisions.

For the fine powder, increasing the value of e from 0.8 to 1 leads
to greater bed expansions, as reported in Fig. 10a. It is particularly
true with the Princeton model, which predicts � correctly using a
value of e of 0.8 but overestimates � by a factor around 1.4 when the
value of e is 1. As shown in Fig. 10b, the other effect is to decrease
the heights of fluctuation. This is very significant with the Princeton
model at Ug/Umf = 3.2 because increasing the value of e from 0.8 to
1 reduces �� by a factor of 3. Another consequence is that heights
of fluctuation calculated with the Schaeffer model becomes closer to
experiment when e is increased to 1.

However, for the coarse powder when e is increased to 1,
no significant increase of bed expansion is obtained with the
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Princeton model (see Fig. 11a). But the Schaeffer model predicts de-
creased bed expansion, in contrast to the behavior obtained with the
fine powder. This means that in the bubbling regime, an increase of e
induces higher bed expansions, whereas in the slugging regime, the
effect becomes insignificant or opposite. There is no simple physical
explanation for these results as these dynamics seem to evolve from
a complex interaction between the energy dissipated in the dilute
kinetic regions of the bed and in the dense frictional regions of
the bed.

The heights of fluctuations still decrease when e is increased to 1
(Fig. 11b). At high velocities (Ug/Umf =2.4), the value of �� dramat-
ically decreases to about 10% of its value at e = 0.8 (which is close
to experimental data).

Additional simulationswere also performedwith particle–particle
restitution coefficient of 0.9 and 0.99 for the coarse powder with
the Princeton model. The noteworthy results are presented in
Fig. 12 showing a logarithmic dependence of the bed height fluctu-
ations on (1.01 − e).
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These results agree with those of many other authors
(Chandrasekaran, 2005; Chang and Louge, 1992; Goldschmidt et al.,
2001; Hoomans et al., 1996; Lindborg et al., 2007; Lu et al., 2005; Pita
and Sundaresan, 1991; Taghipour et al., 2005; Wang and Ge, 2006)
on the fact that bed dynamics is quite sensitive to the restitution
coefficient and that a decrease of its value leads to the formation of
larger bubbles (i.e., larger fluctuations) (Goldschmidt et al., 2004).
But this study seems to be the first one in which the influence of e
is studied systematically for a wide range of processing parameters,
highlighting different effects on bed expansion and fluctuations
depending on the fluidization regime, which cannot be determined
based on intuition.

From Figs. 8–10, it appears that the restitution coefficient value
of 0.8 is more physically realistic than other values.

4.3.3. Influence of the internal angle of friction
For this study, 3-D calculationswere donewith value of e set to 0.8

but varying the value of the internal angle of friction �. Regardless of
the particle diameter and the solid stress model chosen, the effects
of � were the following:

• decreasing � from 40◦ to 30◦ or 10◦, bed expansions calculated
did not change significantly (variations in � are less than ±10%),

• decreasing � from 40◦ to 30◦, the heights of fluctuation decreased
by about 20% on an average over the bed cycles and over all the
simulations and

• decreasing � from 40◦ to 10◦, the heights of fluctuation decreased
by about 53% on an average over the bed cycles and over all the
simulations.

Note that the decreases in the height of fluctuations were always
concomitant with increases in fluctuation frequencies.

From these observations, we can conclude that the heights of
fluctuation linearly increases with the internal angle of friction in the
range of the operating conditions studied, whereas the bed expansion
does not change. This means that a bed of irregular particles with a
rough surface tends to be more fluctuating than a bed of spherical
particles with a smooth surface. This could be explained by the fact
that a higher value of � implies more friction between the particles,
which could promote the formation of larger heterogeneities in the
granular flow. To the best of our knowledge, no other study in the
literature has reported the above effect of �.

Finally, it was observed that using free slip BC instead of J&J BC
for solids did not change the trends observed for the influence of the
restitution coefficient and the internal angle of friction.

5. Conclusion

This study has been performed to better understand the influence
of closure models for the granular stresses and of their associated
parameters on the simulation of gas–solid fluidized beds. The bed
expansion and height of fluctuations were experimentally measured
in a fluidized bed of alumina (Geldart's group B) particles of two
mean diameters for different superficial gas velocities Ug . For the fine
particles, the regime was always bubbling, whereas for the coarse
particles both bubbling and slugging regimes appeared depending
on Ug . Numerical simulations were performed using the MFIX code.
A specific data processing protocol was developed to extract from
the simulation results the values of the mean bed expansion ratio
� and the relative height of fluctuations ��. Numerous simulations
were performed using 2-D and 3-D geometries, two different particle
stress models (the Schaeffer and Princeton models) with different
values of the restitution coefficient (e) and of the internal angle of
friction (�) and two kinds of wall boundary conditions for solids,
free slip and Johnson and Jackson partial slip.

The results first show that 3-D simulations are necessary for cor-
rectly reproducing the experimental bed expansions and heights
of fluctuation; the 2-D simulations widely overestimated both the
quantities.

The simulations also demonstrate the great importance of the
particle stress model for the simulation of bubbling and slugging
fluidized bed. Predictions with the Princeton model agreed sat-
isfactorily with experimental data for average and dynamic bed
characteristics, although fluctuation frequencies were moderately
overpredicted. The Schaeffer model calculated beds with larger
heights of fluctuations as compared to the Princeton model.

The Princeton model was then used to study the influence of wall
boundary conditions for solids on the predicted bed expansion. The
difference in the bed expansion ratios predicted with free slip and
Johnson and Jackson boundary conditions was very small, except
for one data point (coarse powder at the highest velocity tested).
So both the boundary conditions appear to be equally good for the
simulation conditions investigated in this paper.

The effect of the restitution coefficient (e) seems to depend on the
fluidization regime: in the bubbling regime, an increase in e leads
to larger bed expansions and lower heights of fluctuations, whereas
it leads to unchanged or lower bed expansions and to a massive
reduction in the heights of fluctuations in the slugging regime.

The angle of internal friction (�) has minimal influence on the
bed expansion, but a reduction in � leads to a significant reduction
in the height of fluctuations.

Notation

c drag constant for Eq. (10),dimensionless
d drag constant for Eq. (10),dimensionless
dp particle mean diameter,m
Ds,ij rate of strain tensor,solid phase,s−1

e restitution coefficient,dimensionless
ew particle–wall restitution

coefficient,dimensionless
fgi fluid flow resistance due to porous

media,N/m3

gi acceleration due to gravity,m/s2

g0 radial distribution function at
contact,dimensionless



H expanded bed height,m
H mean expanded bed height,m
Hmax maximum expanded bed height,m
Hmf expanded bed height at minimum

fluidization,m
Hmin minimum expanded bed height,m
I2D second invariant of the deviator of the strain

rate tensor for solid phase,s−2

Igmi momentum transfer from fluid phase to solid
phase,N/m3

Ik′ki momentum transfer from phase k′ to phase
k,N/m3

Jm collisional dissipation,m2/s3

P pressure,Pa
Pc critical pressure in solid phase given by

Eq. (29),Pa
Pf frictional pressure in solids phase,Pa
Rem solids phase particle Reynold number,

dimensionless
Smij solids phase stress, Pa
S solids phase stress tensor, Pa
t time, s
u velocity vector, m/s
uki velocity of phase k, m/s
um tangential velocity of solids, m/s
Ug superficial gas velocity, m/s
Umf superficial gas velocity at minimum

fluidization, m/s
Vrm the ratio of the terminal velocity of a group

of particles to that of an isolated particle,
dimensionless

x coordinate, m

Greek letters

� a constant with value of 1.6, dimensionless
�gm coefficient for the interphase force between

the fluid phase and the solids phase, kg/m3 s
� mean bed expansion ratio, dimensionless
�(H) ratio of bed expansion defined by Eq. (1),

dimensionless
�ij Kronecker symbol, dimensionless
�� relative mean height of fluctuations, dimen-

sionless
� volume fraction, dimensionless
�∗g critical void fraction, dimensionless
�0 void fraction at packing, dimensionless
�mf void fraction at minimum fluidization

conditions, dimensionless
�s-mf solid fraction at minimum fluidization

conditions, dimensionless
�max
s solid fraction at critical void fraction

(=1 − �∗g),dimensionless
�min
sf solid volume fraction at maximum packing

limit, dimensionless
	 function of restitution coefficient defined by

Eq. (23), dimensionless

 granular temperature, m2/s2

m solids conductivity of granular energy, W/mK
� viscosity, kg/ms
�f solids frictional viscosity, kg/ms
�m granular temperature exchange term, kg/ms3

� miscroscopic (material) density, kg/m3

�kij stress tensor of phase k, Pa
� internal angle of friction, deg

�p specularity coefficient (chosen as 0.6), dimen-
sionless

Subscripts and superscripts

g gas
i, j indices to identify vector and tensor compo-

nents
k phase k (fluid or solids)
m solids phase
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