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The dynamics of high Reynolds number-dispersed two-phase flow strongly depends on the
wakes generated behind the moving bodies that constitute the dispersed phase. The length
of these wakes is considerably reduced compared with those developing behind isolated
bodies. In this paper, this wake attenuation is studied from several complementary
experimental investigations with the aim of determining how it depends on the body
Reynolds number and the volume fraction a. It is first shown that the wakes inside a
homogeneous swarm of rising bubbles decay exponentially with a characteristic length that
scales as the ratio of the bubble diameter d to the drag coefficient Cd, and surprisingly does
not depend on a for 10K2%a%10K1. The attenuation of the wakes in a fixed array of spheres
randomly distributed in space (aZ2!10K2) is observed to be stronger than that of the
wake of an isolated sphere in a turbulent incident flow, but similar to that of bubbles within
a homogeneous swarm. It thus appears that the wakes in dispersed two-phase flows are
controlled by multi-body interactions, which cause a much faster decay than turbulent
fluctuations having the same energy and integral length scale. Decomposition of
velocity fluctuations into a contribution related to temporal variations and that associated
to the random character of the body positions is proposed as a perspective for studying the
mechanisms responsible for multi-body interactions.

Keywords: wake; dispersed flow; bubbles; solid spheres; random network;
multi-body interactions
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1. Introduction

Dispersed two-phase flows consist of a population of bodies (solid particles, drops
or bubbles) immersed in a fluid. These are often encountered in nature (rains,
breaking waves) and in industrial applications, such as oil transport (pipelines),
energy production (vapour generators, heat exchangers) and chemical engineering
(bubble columns, chemical reactors). Their dynamics are controlled by complex
interactions between continuous and dispersed phases. In particular, a crucial
phenomenon is the flow generation by the motions of the bodies relative to the
uthor for correspondence (frederic.risso@imft.fr).
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continuous phase. Let us consider the simplest situation in which bodies of size d
move at velocity V in a fluid otherwise at rest. In the limit of vanishing volume
fraction of the dispersed phase a, we may expect that body interactions are
negligible so that the flow generated by a single body is relevant to describe the
perturbation generated in the continuous phase. This flow depends on the
Reynolds number ReZVd/n. In the Stokes regime (ReZ0), the flow perturbation
decays as rK1, r being the distance to the body. Owing to this slow decay, the
simple addition of the flows induced by randomly distributed bodies leads to the
divergence of the velocity variance with the size of the container (Calfish & Luke
1985). At finite Reynolds numbers, a wake develops behind the body, which
decays with the downstream distance z as zK1 in the laminar case and zK2/3 in
the turbulent one, leading again to the divergence of the velocity variance
(Parthasarathy & Faeth 1990; Koch 1993). Even if the divergence problem exists
whatever the Reynolds number is, the mechanisms that lead to finite velocity
variance in real situations certainly depend on the Reynolds number.

Some mechanisms have been proposed to prevent the divergence due to the
slow decay of the wake. Parthasarathy & Faeth (1990) investigated solid

particles falling at a very low concentration a!10K4, for 38!Re!800. They
reproduced the experimental variance from the summation of the flows
generated by isolated bodies by considering that the wake vanishes for
zOLZ175d, where it could not maintain its coherence in the ambient
fluctuations generated by the other bodies. This approach may be valid only
when the average distance between the bodies lbZ(p/6a)1/3d is large enough so
that interactions occur in a region where the wake intensity is sufficiently small
and does not contribute significantly to the velocity variance. Since lb is already
close to 4d at aZ10K2, interactions have to be considered in most of the
practical situations.

Koch (1993) proposed a theory for the velocity fluctuations in a sedimenting
suspension where particles have Oseen’s wakes. For 1!Re!10, the velocity
fluctuations are controlled by a screening mechanism due to a deficit of particles
in the wake of a test particle. As a consequence, the velocity disturbance in the
wake was found to be screened for zOLZO(daK1). Experimental evidence of
wake attenuations was found by Cartellier & Rivière (2001) in uniform bubbly
flows for ReZO(10). This attenuation was shown to be related to a deficit of
bubbles in the near wake up to a distance that evolved roughly as aK0.3.

A non-uniform spatial distribution of the bodies is however not the only
mechanism that can lead to wake attenuation. Hunt & Eames (2002)
investigated theoretically the effect exerted on a wake by a large-scale external
strain. In particular, the effects of a sequence of positive and negative strains,
which can be observed in complex flow, cause diffusion and cancellation of
vorticity and consequently an attenuation of the wake defect. Another
mechanism is the intermingling between the wakes generated by neighbour
bodies—by mixing vorticity components of opposite sign, interacting wakes can
make themselves disappear rapidly. White & Nepf (2003) and Eames et al.
(2004) have modelled this mechanism for a random array of bodies in a uniform
flow. The conditionally averaged velocity field around a test body is governed
by a momentum equation with a distributed sink term associated with the
drag forces exerted by the other particles. This results in the exponential extra



attenuation exp(Kz/L) of the velocity defect behind the test body compared
with an isolated body. The attenuation length L scales as the ratio of the size of
the body to its drag coefficient Cd, and as the reciprocal of the volume fraction;
for an array of spheres, it can be written as LZ2d/3aCd.

The dynamics of dispersed two-phase flows at non-zero Reynolds numbers
therefore depends on the modification of individual wakes due to multi-body
interactions. Experimental investigations of wakes behind bodies belonging to a
dispersed phase are required to discriminate between the possible mechanisms
that may cause wake attenuation. In particular, it would be useful to determine
how the attenuation length L evolves with the body Reynolds number and the
volume fraction. This paper presents some results of various experimental
investigations at the large Reynolds number (100!Re!1000) of complementary
situations involving either bubbles or rigid spheres, fixed or moving bodies,
isotropic turbulence or wake-induced agitation. In §2, the flow field induced by a
test bubble within a homogeneous rising swarm of bubbles is compared with that
induced by an isolated rising bubble. Quantitative measurements of the
attenuation length in bubbly flows are provided and discussed in §3. Then, the
evolution of the wake of a rigid sphere in an ambient turbulent flow is
investigated in §4 and compared with that of a sphere in a random array of
identical spheres in §5. Finally, new perspectives concerning wake interactions
are discussed in §6.
2. Liquid flow induced by rising bubbles

Before discussing the attenuation of wakes due to multi-body interactions, it is
useful to describe the flow generated by a single body. Ellingsen & Risso (2001)
investigated the case of a bubble of a 2.5 mm equivalent diameter rising in water
at a velocity VZ309 mm sK1. The flow regime was dominated by inertia with
large Reynolds and Weber numbers: ReZ8!102 and WeZrV 2d/sZ3.6 (r being
the density and s the surface tension of water). The rising bubble approximately
adopted a constant spheroidal shape with an aspect ratio of two and performed
path oscillations. Combining laser Doppler anemometry (LDA) and high-speed
imaging (HSI), the maximal velocity perturbation induced in the liquid was
determined as a function of the vertical distance z to the bubble. The thin line in
figure 1a shows the vertical perturbation—in front of the bubble (z!0) the flow
is potential and a long wake develops behind (still 5% of V at zZ70d ). The flow
in the wake includes two contributions due to a quasi-steady wake that spreads
around the bubble trajectory and wake vortices generated at the rear. However,
the latter contribution is only significant close to the bubble and the wake decay
is predicted well by the steady axisymmetric wake around a rectilinear rising
bubble, provided the local orientation of the wake is taken parallel to the bubble
trajectory (figures 15 and 20 in Ellingsen & Risso 2001).

Risso & Ellingsen (2002) investigated a homogeneous swarm of bubbles of
the same size rising in water otherwise at rest at dilute gas volume fractions

(5!10K3%a%10K2). Concerning the bubbles, dual optical probe (DOP)
measurements showed that their positions were randomly distributed (no
clustering) and that their fluctuating velocity remained controlled by the path
oscillations—bubble interactions had thus negligible effects. Using combined
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Figure 1. Liquid flow induced by rising bubbles. (a) Vertical velocity against the distance to the
bubble for a single rising bubble and a bubble in a swarm (thin line, isolated bubble (aZ0); thick
line, aZ0.5%); (b) PDF of the vertical velocity in the vicinity of a bubble (thin line, aZ0.64%;
dashed line, aZ1.05%; thick line, aZ0); (c) unconditioned probability density function of the
vertical velocity in a swarm (a0Z10K2).
DOP and LDA measurements, the maximal liquid velocity perturbation at a
given vertical distance from a test bubble was determined. Figure 1a compares
the liquid vertical velocity perturbation induced by the bubble in the swarm for
aZ5!10K3 (thick line) with the reference case of the isolated bubble (thin line).
We note the existence of three regions: (i) close to the test bubble (K2.5!z/d!
2.5), the flow is similar to that induced by a single rising bubble, (ii) further
behind the bubble (2.5%z/d%5), interactions between individual wakes become
significant and the liquid velocity decreases much faster than behind a single
bubble, (iii) for larger distances (z/dO5), the velocity fluctuations finally reach an
asymptotic state independent of the distance from the test bubble. As expected
the probability density function (PDF) of the vertical liquid velocity in region (1),
which is presented in figure 1b, is almost independent of a; its contribution to
the total fluctuation is consequently proportional to a and remains small for dilute



dispersions. On the other hand, the unconditioned liquid velocity is found to scale
as V0a

0:4, where V0 is the mean rise velocity for a/0. Provided the velocity is

normalized by V0a
0:4, the PDF of the velocity fluctuations becomes independent of

the volume fraction (figure 1c). It is worth noticing that this self-similar behaviour
is incompatible with a linear summation of individual wakes which would provide
a PDF with all centred moments proportional to a. In particular, the fact that the
variance of the measured PDF increases as a0.8, i.e. with a power less than one,
indicates that wake interactions are responsible for an increase of the dissipation.
The validity of this self-similar behaviour has been recently confirmed
experimentally for bubbles of diameters from 1.6 to 2.5 mm and volume fractions
up to 14% (Riboux 2007; Riboux et al. 2007; Roig 2007).

Experimental investigations in high Reynolds number dilute bubbly flows
have provided evidence of strong wake attenuation due to multi-body
interactions. They also suggest that wakes play a major role in the dynamics
of the liquid fluctuations, while the flow field generated close to each bubble is
secondary. Risso & Legendre (2003) and Riboux et al. (2007) tested this idea by
performing numerical simulations of wake interactions. Each bubble is modelled
by a source of momentum added in the Navier–Stokes equations that are solved
on a coarse grid, the spacing of which is close to the bubble diameter. The
bubbles are fixed and placed in a uniform downward flow. For a single bubble, it
was found that the wake was well reproduced for zR5d. A large number of
identical bubbles were inserted in the computational domain to model the bubble
swarm. The results of the simulations are in good agreement with the
measurements, confirming that neither the motions of the bubbles relative to
each other nor the description of the flow close to each bubble were necessary to
reproduce the statistics of the liquid fluctuations. The understanding of wake
interactions is thus crucial for the understanding of dispersed two-phase flow.
3. Wake attenuation in homogeneous bubble swarms

In this section, we present quantitative measurements of the wake attenuation
length L in air–water bubbly flows by two different methods: (i) conditional
averaging of the velocity perturbation behind a test bubble inside a swarm and
(ii) analysis of the decay of the fluctuating energy behind a swarm. Both cases
consider bubble diameters in the range 1.6–2.5 mm and volume fractions in the
range 3!10K3 to 10K1. As pointed out by the wake intermingling model, the
relevant length scale corresponding to the strength of the wakes is d/Cd. For
these experimental conditions, Riboux (2007) showed that d/Cd(a) is a
decreasing function of a but does not depend on d. In the following, the
experimental results will be normalized by the value corresponding to the lowest
investigated volume fraction (d/Cd0Z8.6 mm for aZ3!10K3) in order to focus
on the evolution of L with a.

The first experimental configuration was described inRoig&Larue de Tournemine
(2007); it consists of a homogeneous injection of bubbles in a vertical channel flow,
whose turbulent intensity in the absence of the bubbles is less than 2%. The average
vertical velocity perturbation conditioned by the distance to the bubble has been
measured by means of a hot film anemometer (HFA). Figure 2a shows the mean
velocity defect DU normalized by the mean relative velocity between the two phases
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Figure 2. Wake attenuation in a homogeneous bubble swarm. (a) Liquid velocity perturbation
against the normalized distance z�ZzCd0=d to the test bubble for various volume fractions
(0.3!10K2%a%13!10K2). (b) Attenuation length L�ZLCd0=d and integral length scale
L�ZLCd0=d against the volume fraction (diamond, L�; square, L�).
as a function of the dimensionless distance z�ZzCd0=d to the bubble. An exponential
decay is observed up to the distance L where the velocity perturbation has already
decreased by 95%, L�z0.6. Then, a sharp cut-off is observed and the wake totally
disappears. (The curves, which are not labelled for the sake of clarity, seem to indicate
that this cut-off becomes stronger as a is increased; however, the accuracy is not
sufficient to conclude definitively on this point.) Surprisingly, this exponential decay is
observed to be independent of a in the range investigated. A root-mean-square fitting
by an exponential law has also been used to compute L for each value of a. The
values of L� are plotted in figure 2b together with the normalized integral length
scale L� of the liquid fluctuations, which was determined from temporal series of the
vertical velocity by Larue de Tournemine (2001). For a larger than 10K2, L� is
independent of a and close to L�.
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Figure 3. Evolution of the vertical velocity variance in the wake of the whole swarm as a function of
time for various volume fractions.
In the second experiment, a steady homogeneous swarm of rising bubbles is
first produced by continuous injection of air from the bottom of a tank. The gas
injection is then suddenly interrupted so that a frontier between a two-phase
mixture and a region where there is no bubble is observed to propagate upward
at velocity V (for details see Riboux 2007). The liquid velocity is measured by
high-speed particle image velocimetry (Hi-PIV) in a fixed vertical window located
in the middle of the tank and 400 mm above the injection, where the bubbly
flow no longer depends on the elevation. Figure 3 shows the temporal evolution of

the variance of the velocity fluctuations u 02 as the frontier goes up over the
measurement window for volume fractions between 5!10K3 and 5.3!10K2. The
first part of the signals, which shows a plateau, corresponds to measurements
inside the bubble swarm where the variance is constant. After the passage of the
frontier, we observe a first regime where the variance decays as exp(Kt/T ),
followed by another regime where it decays as exp(Kt/T2) with T 2OT. Provided

the variance has been normalized by its value u 02
0 at a given instant, say tZ0, the

results match for all a and give TZ0.2 s. We have no way to compare T with L.
However, the main point is that the attenuation of the wake of the whole bubble
swarm is exponential and independent of a.

The present results show that multi-body interactions are responsible for
exponential decay of the wakes. The characteristic length of attenuation L scales
as d/Cd0 as it can be expected from the wake intermingling mechanism. However,
this length has been observed to be independent of a in the range 10K2%a%10K1,
whereas the average distance between the bubbles lb varies from 3.7d to 1.7d. It is
worth noting that the wake attenuation saturates, while the overall energy of
the liquid fluctuations induced by the bubble motions still increases with a.
The physical mechanism responsible for this saturation is still not understood.



It probably remains unchanged for larger volume fractions as long as the spatial
distribution of the bubble remains homogeneous, and also for other bubble
diameters provided the Reynolds number is sufficiently large for the wakes to
remain predominant. However, it can be influenced by the properties of the
ambient flow since the saturation is observed to occur from a slightly smaller
volume fraction in the case of bubbles rising in a fluid at rest (aZ5!10K3) than
in the case of bubbles rising in a turbulent channel flow (aZ10K2).
4. Wake of a sphere in an ambient turbulent flow

It is known that the wake of a fixed sphere immersed in a uniform incident turbulent
flow is attenuated compared with that of a sphere in a uniform laminar flow (Wu &
Faeth 1994a,b). The scope of this section is to check whether themechanism of wake
attenuation caused by shear-induced turbulence is the same as that caused bymulti-
body interactions. To answer this question it is useful to investigate the wake of a

body in an ambient turbulence, whose length scale L and intensity

ffiffiffiffiffiffiffi
u 02

q
=V are

close to those of fluctuations induced by bodymotions. For a large Reynolds number

(100%Re%1000) and moderate volume fractions (10K2%a%10K1),

ffiffiffiffiffiffiffi
u 02

q
=V is

quite large, typically 0.2–0.4, and L is of the same order as d.
A few works have studied the wake of a sphere in an incident turbulent flow for

Reynolds numbers in this range. Wu & Faeth (1994a,b) experimentally

investigated rather low turbulence intensities (0:01%

ffiffiffiffiffiffiffi
u 02

q
=V%0:07) and large

turbulent scales (10%L/d%60). Bagchi & Balachandar (2004) made direct nume-

rical simulations for adequate turbulent intensities (0:1%

ffiffiffiffiffiffiffi
u 02

q
%0:25) but for

even larger turbulent scales (50%L/d%300). Legendre et al. (2006) performed

large eddy simulations for

ffiffiffiffiffiffiffi
u 02

q
Z0:04 and L/dZ8. All of them observed that

the velocity defect DU decreases as zK1 in the region just behind the sphere and
its closed wake. Legendre et al. (2006) also found that DU decreases as zK2 in a
second part of the wake where it becomes smaller than the incident fluctuationffiffiffiffiffiffiffi
u 02

q
. However, none of these studies considered a turbulence with properties

similar to those of dispersed two-phase flows, i.e. with a fluctuating velocity at
the scale of the sphere of the same order of the velocity defect in the near wake.
We have thus decided to carry out a new experimental investigation specially
devoted to this problem.

A 2 cm diameter sphere is placed on the centreline of a vertical square water
channel of width bZ0.22 m. The Reynolds number Re based on the sphere
diameter is varied from 100 to 1000, the channel Reynolds number being 10 times
larger. This range of Re covers contrasted regimes for a sphere in a laminar
uniform flow from steady to turbulent wakes, with vortex shedding starting
around ReZ270. The incident flow was previously characterized by LDA in the
absence of the sphere—the mean flow is uniform and the turbulence is almost
homogeneous and isotropic; the integral length scale L is approximately 3d for all
Reynolds numbers, a value that is common for a turbulent channel flow. The

vertical

ffiffiffiffiffiffiffi
u 02

z

q
=V and horizontal

ffiffiffiffiffiffiffi
u 02

x

q
=V turbulent intensities decrease from 0.26
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Figure 4. Velocity defect against the distance from a sphere in either an incident turbulence
(ReZasterisk 110, filled diamond 230, filled square 670, filled circle 1090) or in a random array of
spheres (ReZopen diamond 235, open square 700, open circle 1120).
to 0.12 when the Reynolds number increases from 100 to 400 and then remain
constant for larger Re. The velocity defect DU/V on the axis is plotted against
the vertical distance to the sphere z/d in figure 4. In the near wake (z/d%1.5),
the only visible effect of the incident turbulence is to slightly shorten the length
of the recirculation region, which varies a little with the Reynolds number up to
ReZ670, where it becomes independent of Re. However, the main feature is that
the wake decays as zK2 just downstream from the recirculating zone for all
investigated Reynolds numbers. The reason is that the intensity of the external
imposed turbulence at the scale of the wake is already comparable to the velocity
defect from the beginning of the open wake.

Even if the turbulence properties were chosen as close as possible to those of the
bubble-induced fluctuations, the wake decay was observed to follow a zK2 power law
instead of the exponential law observed in bubbly flows. Shear-induced turbulence
thus seems less efficient to attenuate wakes thanmulti-body interactions, suggesting
that the involved mechanisms are different. However, one could say that there are
many differences between freely rising bubbles and fixed rigid spheres, which
weaken this conclusion. We shall propose a more relevant comparison by
considering a random array of fixed spheres in §5.
5. Wake of a sphere in a random array of spheres

We use the same experimental set-up as for the study of the isolated sphere in an
incident turbulence, but insert 200 identical spheres in order to obtain a volume
fraction aZ2.16!10K2. The 2 cm spheres are randomly distributed over the
channel. They are maintained by 97 steel rods that have a negligible influence on
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the flow since their diameter is less than 2 mm and their total volume is less than
one-tenth that of the spheres. Reynolds numbers in the range 235–1120 were
investigated.

Single-point LDA velocity measurements were performed to determine the
integral length scales L and velocity variances hu 02i. Note that here the variance
is obtained by spatial averaging of the square of the fluctuation u 0ðx; tÞ, which is
the difference between the local instantaneous velocity u(x, t) and the local
time-averaged velocity �uðxÞ, in order to provide a quantity relevant for the
statistical description of the turbulence inside the network. The values of L
increase from 2d to 3d as Re increases from 235 to 1120. The vertical and
horizontal turbulent intensities,

ffiffiffiffiffiffiffiffiffiffi
hu 02

z i
p

=V and
ffiffiffiffiffiffiffiffiffiffi
hu 02

x i
p

=V , are plotted against Re
in figure 5. The fluctuating energy in the network flow is close to that in the
channel flow and evolves similarly with Re. Both the turbulence integral length
scale and energy are thus apparently not drastically changed by the presence of

the network, but a significant anisotropy is now observed,
ffiffiffiffiffiffiffiffiffiffi
hu 02

z i
p

being larger

than
ffiffiffiffiffiffiffiffiffiffi
hu 02

x i
p

.
In figure 4, the velocity defect behind a sphere belonging to the network is

plotted for ReZ235, 700 and 1120. For all Reynolds numbers, a much stronger
attenuation than that for the isolated sphere takes place. We cannot formally
conclude whether it is an exponential decay due to the narrow range of
z available; it is however undoubtedly of a different nature unlike the decay
behind the isolated sphere (which follows a zK2 law) and looks like the decay
observed in bubbly flows. Note that the velocity defect presented in figure 4
corresponds to a unique sphere; consequently accurate quantitative determina-
tion of the attenuation length is not possible. However, the same qualitative



behaviour has been observed for several other spheres and the present result
does, therefore, not correspond to a singular event. This work is still currently in
progress and ensemble averages are not available at the present time. A crude
estimate of the attenuation length can nevertheless be obtained from figure 4:
Lz2.5d. Estimating the drag coefficient from the Schiller and Nauman
correlation (Clift et al. 1978) for a sphere in a laminar flow, one finds that
d/Cd ranges from 1.3d to 2.4d for 235%Re%1120, which is close to the measured
value of L.

The results obtained for a sphere in a network suggest that the mechanism of
wake attenuation is the same for fixed solid spheres and moving bubbles, which
can be expected from the fact that large-scale simulations of the flow in a
network of fixed momentum sources are capable of reproducing the statistics of
the fluctuations measured in a swarm of rising bubbles (Risso & Legendre 2003;
Riboux et al. 2007). Moreover, the present results also confirm that wake attenu-
ations in homogeneous shear-induced turbulence are different from those caused by
multi-body interactions. In §6 we discuss the reasons for this difference.
6. Perspectives

Why are multi-body interactions so efficient at enhancing wake spreading? A
way to address this question is to find out the properties of the fluctuations
induced by moving bodies, which make them different from shear-induced
turbulence. Let us consider first a particular realization of an isotropic and
homogeneous turbulent flow. The velocity fluctuations are due to many eddies of
different sizes which are created, die, move and exchange energy, their dynamics
being described by the classic Kolmogorov cascade. All the statistical moments
of the velocity fluctuation can be determined by considering a single instant and
averaging in a given spatial direction over a length sufficiently large compared
with the integral length scale L. It can also be determined by time averaging at a
given point. The flow is said to be ergodic in both time and space. Now, let us
consider a single realization of a homogeneous swarm of bubbles rising at
velocity V. Again, spatial averaging converges towards ensemble averaging,
provided the spatial domain contains a sufficiently large number of sub-domains
of size larger than L to constitute a representative sample of all possible spatial
bubble distributions. Time averaging at a given point leads to the same result
because all possible spatial bubble distributions will be encountered at the
considered point as the bubbles rise. In the laboratory frame, a homogeneous
bubble swarm thus also appears to be ergodic in both space and time. Two
differences from classic turbulence have however been noted. First, the
fluctuations are not isotropic in two respects: (i) the variance of the vertical
fluctuations is larger than that of the horizontal ones and (ii) the PDF of
vertical fluctuations is asymmetric—large upward fluctuations being more
probable than large downward ones (figure 1c). Point (ii) constitutes a major
difference since classic turbulence is unlikely to be able to maintain vertical
homogeneity when upside-down symmetry is broken, non-zero dissymmetry
coefficients being usually associated with a turbulence gradient (Risso & Fabre
1997). A second difference is that the spectral signature of bubble-induced
turbulence differs from the classic K5/3 power law (Lance & Bataille 1991),



indicating that the dynamics of the fluctuating eddies is different. The bubble-
induced turbulence is commonly considered as a turbulence in which energy is
injected at an intermediate scale close to the bubble diameter instead of being
supplied by the largest scales of the flow. The difference in nature between classic
turbulence and bubble-induced turbulence is, however, more profound.

Let us consider now the homogeneous swarm of rising bubbles in a frame that
moves at velocity V. If we neglect the motion of the bubbles relative to each
other, we are left with a uniform mean flow V across a fixed array of bubbles.
Although spatial averaging still converges towards ensemble averaging, time
averaging no longer does so. For instance, it is clear that the time-averaged
velocity U ðxÞ at a point x located just downstream of a bubble is lower than V,
whereas it is larger beside a bubble. A simple Galilean change of frame is thus
sufficient to break down time ergodicity. Denoting time averaging by an overbar,
we decompose the instantaneous velocity u(x, t)ZU(x, t)KV at each point x in
time-averaged and fluctuating contributions,

uðx; tÞZ u ðxÞCu 0ðx; tÞ: ð6:1Þ

Denoting the spatial averaging by brackets, the total variance of the velocity can
be decomposed into two contributions

hu2iZ hu 2iChu 02i: ð6:2Þ

The first contribution hu 2i is related to the spatial variations of the time-
averaged velocity, the random character of them being due to the random
character of the spatial distribution of the bubbles. Imagine a situation in which
both the perturbation generated by each body is steady and the multi-body
interactions do not destabilize the flow; in the frame that moves at velocity V the
flow is laminar and steady, however hu 2i is different from zero. The spatial
contribution hu 2i has, therefore, nothing to do with turbulence. On the other
hand, the second contribution hu 02i is related to temporal fluctuations and
measures the turbulence intensity in large Reynolds number flows. (Note that if
we considered the motions of the bubbles relative to each other, a third
contribution should be taken into account.)

Since the spatial and temporal contributions correspond to different physical
mechanisms, an important step towards the understanding of high Reynolds
number-dispersed two-phase flows lies in the decomposition of the fluctuations in
their spatial and temporal contributions. Currently, there is a lack of suitable
diagnostic tools that can be appropriately applied to decompose the temporal and
spatial contributions to the flow froma swarmofmovingbodies.However, this is easy
to do in an array of fixed bodies. Figure 5 shows the evolutions against the Reynolds

number of the total intensity of the fluctuations
ffiffiffiffiffiffiffiffiffi
hu2i

p
=V as well as those of the

temporal
ffiffiffiffiffiffiffiffiffiffi
hu 02i

p
=V and the spatial

ffiffiffiffiffiffiffiffiffi
hu 2i

p
=V contributions. The spatial

contribution is larger than the temporal one in the vertical direction, whereas it is
the opposite in the horizontal direction. This is made possible by the strong
predominance of the vertical fluctuations in the spatial contribution,ffiffiffiffiffiffiffiffiffiffiffi
huz 2i

p
z4

ffiffiffiffiffiffiffiffiffiffiffi
hux 2i

p
, which is probably related to the quasi-parallel structure of

the wakes.



Comparing the magnitude of the temporal and spatial contributions is
nevertheless insufficient since there is no reason to assume that their roles in the
enhancement of the wake spreading are similar. If the role of the temporal
contribution can probably be analysed with classic turbulence tools, the spatial
one probably requires new concepts. From the present results, it seems
reasonable to think that the spatial contribution is mainly responsible for the
enhancement of the wake decay since, as has already been noted in §5, the
temporal contribution is of the same order as the turbulent intensity measured in
the channel in the absence of the network of spheres.

In the future, an extensive investigation of the properties of the velocity
fluctuations within a network of spheres and comparisons with those of
homogeneous bubbly flows should lead to a better understanding of the
mechanisms of momentum diffusion in dispersed two-phase flows.

The authors would like to thank the FERMaT research group in Toulouse for supporting
this project.
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