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a b s t r a c t

The study is focused on modeling of gas and liquid residence time distribution in an aerated liquid system

of an inverse fluidized bed bioreactor. Two opposite strategies are currently available: the use of power

ful complex computational fluid dynamics (CFD) simulation and the phenomenological semiempirical

models. In this work, a specific methodology is proposed, as follows: the reactor is modeled as a reactor

network containing a combination of zones with basic ideal flow patterns such as perfect mixed flow

(PMF) and plug flow (PF). The approach is based on a Mellinmodification of the Laplace transformation

over the relevant equations. The method allows zerotime solutions for identification analysis. The study

shows that the increase of the gas flowrate leads to higher mixing intensity of the gas phase. Decreas

ing the gas velocity, the inverse fluidized bed tends to perform as a plug flow reactor. The liquid phase

performs closer to disperse plug flow.

1. Introduction

The inverse fluidized bed is realized with solid particles having

density lower than the continuous phase liquid which flows down

ward in the reactor downward flow of continuous liquid phase. In

threephase inverse fluidized beds (TPIFB), the gas phase is intro

duced counter currently to the liquid phase. This type of reactor is

gaining popularity in biotechnology and various industrial appli

cations such as ethanol production and wastewater treatment. The

TPIFB shows several advantages, such as high mass transfer, rate

lower solids attrition of the coated microorganisms, efficient con

trol of the biofilm thickness and ease of refluidization [1–3].

It is important to note that the reactor operates with three

phases under anaerobic as well as aerobic conditions. Some works

have been carried out to characterize the hydrodynamic conditions

in the liquid phase [4,5]. These studies show that the dispersed plug

flow model can be reasonably used to describe the phase mixing in

the reactor. Recent results show that the gas velocity influences the

biofilm compositions [6]. The control of the hydrodynamic condi

tions in a biofilm reactor should make possible to obtain a resistant

and active biofilm. However, when the liquid velocity increases, the

abrasion phenomenon increases too. Therefore, it is important to

find the appropriate liquid flowrate, in order to achieve fluidization.
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The present study is focused on modeling of gas and liquid resi

dence time distribution. Two opposite strategies are available now:

the powerful but complex computational fluid dynamics (CFD) sim

ulation and the simple phenomenological structural models. The

CFD in gas–liquid contactors requires description at some complex

phenomena in particular bubbles break up or coalescence [7]. In

view of this, new approach to modeling the liquid and gas phase

behavior in a threephase inverse fluidized bed is proposed. The

method has some advantages, such as easy to use and giving quick

answers. Due to the use of the Mellin transformation, it is not neces

sary to optimize the parameter with a MINLP optimization method

but just with the quadratic programming optimization method. The

objective is to propose a methodology based on the tracer RTD

technique extended by a new system identification approach using

Mellin transformation.

2. Experimental

The configuration of the inverse fluidized bed reactor applied

was based on the pilot scale unit presented in our previous work

[2,8]. Two reactors were used in this study. For the liquid phase

study, the diameter was 0.102 m and the height 1.3 m whereas for

the gas phase study, the diameter was 0.05 m and the height 1.1 m.

Thus, the volume was 10.62 and 2.15 l, respectively.

The production of the carrier was based on a procedure similar to

that one proposed by Nikov et al. [2], which included surface treat

ment of expanded polystyrene beads with polymethylmetacrylate



and powdered activated carbon. Solid particle density was between

350 and 650 kg/m3. Temperature was maintained at 20±1 ◦C.

A Dirac pulse was selected to characterize the liquid RTD. As a

means of detection, a blue dye tracer and a LED and photocell were

used. A tracer dye concentration of 10 ml per liter of the solution

gave sufficient output intensity (i.e. voltage drop as measured by the

voltmeter used) to minimize the measurement error. This choice

was driven by the photocell technology. Besides, the Dirac pulse

gives more information than the step function.

The gas RTD curves were obtained following step change distur

bances in the gas feed (nitrogen into air) [9]. Oxygen concentration

was analyzed continuously by SERVOMEX 4100 analyzer equipped

with a paramagnetic detector. All the experiments were repeated

for reproducibility.

The Dirac pulse input is more difficult to be realized than the

step but in the case of pulse input the experimental residence time

distribution was more informative. The difference between the step

input and the Dirac pulse is fundamental: the step input is the Dirac

pulse integral. So, the step brings less information than the Dirac

pulse but the experimental points obtained by the step are the

surest. In this case, if the pulse is chosen the mathematical model

must be perfectly fitted to the experimental data.

3. Mathematical model

For solving the problem, different approaches are possible: the

simplest way is to use an axial plug flow model [4], another way is

to use a reactor network model [10,11]. The model was formulated

as a network of discrete ideal flow components: plug flow reactor

(PFR) and perfect mixing reactor (PMR) combined. Each branch was

characterized by specific parameters (flowrate branch, PFR volume,

PMR in serial number (n) and the PMR volume). The n and N val

ues were integers and determined the model superstructure. The N

values represented the branch number. The model adjustment was

carried out by comparison of the simulated model response to a

stimulus, and the experiments’ response. The following flow chart

represented the model network (Fig. 1):

Generally, to solve this kind of a problem, a superstructure has

to be used to represent as adequately as possible the reactor. In this

case, it would be necessary to use a mixed integer no linear pro

gramming program. Consequently, the solving strategy was based

on a master program (e.g. is a stochastic method to reduce the

number of iterations) that proposes network structures to a slave

program for the optimization of the continuous variables (such as

flowrates and volumes) corresponding to each cell arrangement

(such as by quadratic programming (QP) or sequential quadratic

programming method (SQP)). Yet, this strategy requires a test pro

cedure for detecting the infeasibility of some structures proposed

by the stochastic method.

In order to determine the fluid RTD, a specific approach based on

a mathematical model describing the concentration timecourse in

the Laplace domain was used.

Fig. 1. Model network representation.

The equation describing the PFR is

cout(t) = cin(t − �PFR) (1)

In the Laplace domain, the Eq. (1) is

Cout(p) = Cin exp(−p�PFR) (2)

With p the Laplace variable.

For the PMR, the specific equation is

cout(t) = cin(t) ∗
1

�PMR
exp

(

−
t

�PMR

)

(3)

With * representing the convolution product characterizes by:

cout(t) = cin(t) ∗ h(t) =

∫ t

0

cin(t − u)h(u) du (4)

In the Laplace domain, the Eq. (3) is

Cout(p) = Cin(p)

(

1

p+ (1/�PMR)

)

1

�PMR
(5)

The equation for one branch composed by PFR and n PMR in the

Laplace domain is as follows:

Cout(p) = Cin(p)

((

1

p+ (1/�PMR)

)

1

�PMR

)n

exp(−�PFRp) (6)

So for the global system in Fig. 1, the model in the Laplace domain

is

Cout(p) = Cin(p)

N
∑

i=1

�ka
n
i

(p+ ai)
n exp(−Tip) (7)

With ai = (1/�PMR), Ti = �PFR, �i represents the reduced partial

flowrate and n∈N+.

The model included the transfer function with ki = �ia
n
i
:

H(p) =
Cout(p)

Cin(p)
=

N
∑

i=1

ke−Ti p

(p+ ai)
n i

(8)

So, Ti�iQg = (Tiki/a
ni
i

)Qg represents the plug flow reactor volume

ni is equal to the number of perfect stirred reactor in serial and

(Qg�i/ai) = (kiQg/anii ai) represents the perfect stirred reactor vol

ume. In Eq. (8), ni value is a continuous value.

The use of Mellin transformation allowed determination of the

parameter values by a SQP method because all parameters are con

tinuous. If this transformation was not used, it would be necessary

to use a MINLP optimization method. In this case, it would be more

difficult to determine the parameter values. The Eq. (8) was written

using the Mellin transformation.

The equivalence between the Mellin transformation makes it

possible to obtain the relations connecting the parameters of the

two equations Hr(p) and H(p) (see Appendix 1).

Hr(p) =
k e−Tp

(a+ p)n
≡ H(p) =

k′ e−T
′p

(a′ + p)n
′

(9)

With T = T′ + T′′.

Theses parameters are characterized by

k′

a′n
′
=
k

an
(10)

n′

a′
=
n

a
+ T ′′ (11)

n′

a′2
=
n

a2
(12)



By imposing n with as condition 0 < n < n′, the parameters are

defined by

1

a
=

1

a′

√

n′

n
(13)

T ′′ =
n′

a′
−
n

a
(14)

when n = 0, T′′ = (n′/a′).

In order to determine the number of the series that represent

the network, the second derivative of the response curve was deter

mined numerically in the case of an experimental step. For the

experimental Dirac pulse, it is necessary to derivate just one time

the experimental curve because the step represented the Dirac

pulse integral. Thus, the slope changes corresponding to the sepa

rate effects (phenomena) could be evaluated. Correspondingly, the

slope changes represented the series of the relevant model network.

Prior to the analysis, the output was filtered and the high frequency

noise was eliminated.

A spectral decomposition is used (see Eq. (15)):

X (l fo) =
1

T0

∫ T0

0

s(t) exp(−2� i l fo t) (15)

With s(t) periodic signal with T0 period, l is the ray number

fo = (1/T0) and i2 =−1.

Using the spectral decomposition, low filter is applied for

rebuilding the initial signal without the noise (see Eq. (16)):

s(t) =

L
∑

n=0

X(l fo) exp(2� i l f0 t) (16)

The aim to use the filter was to determine the minimal number

of branch in the superstructure with keep the maximum physical

phenomena without noise.

Parameters Hr(p) corresponding to the separate network

branches can be determined by optimization using the least squares

criterion applied to the difference between the output Cout(t)

and the experimental data (see Eq. (17)). Regarding the operation

regimes subject to validation, the following constraints have to be

considered:

J = min
∑

(cexp − cout)
2 (17)

The sum of flowrate is equal to 1.

∑ ki
an
i

= 1 (18)

The sum of the volume is lower than the total reactor volume.

∑

Ti
ki
ani
i

Qg +

∑

ni

[

ki
ani
i

Qg

ai

]

≤ Vreactor (19)

The number of the perfect serials reactor transformation in

integer value is described in the following paragraph. To conform

reality, the ni value is transformed into an integer value n′
i
. Fig. 2

summarizes the modeling methodology.

4. Results and discussion

4.1. Example model evaluation of the liquid phase residence time

distribution of TPIFB

Firstly, a spectral decomposition was realized according to Eq.

(15). The signal was obtained during 64 s with a sampling period

equal to 1s. The X(lfo) modulus was obtain for l value comprised

between 0 and 32 using Eq. (15) in discretetime. In Fig. 3, several

Fig. 2. Modeling methodology.

minimum were observed according different values l. The l selected

values was 7, 11, 16 and 20. For each l value, the first derivative of the

signal was filtered and the slope change number was determined,

this number corresponds to the N branch number in the model (8)

(N value was an integer values).

To study the filter influence according to the l values (id. cut

frequency), the N branch number was determined in Table 1. When

the cut frequency was high, the N value was also elevated. Whereas

with a low cut frequency, the oscillatory phenomena in the high

frequency was equal to the phenomena in the low frequency (See

Fig. 4).

The real parameters obtained by QP optimization are shown in

Table 2. According to the method described (Eqs. (10)–(14)), the

serial reactor number should be changed to an integer value (see

Table 1

Filter frequency influence on the N branch number

l values 7 11 15 20

Cut frequency (Hz) 0.11 0.17 0.25 0.31

N branch number 5 7 15 19

Fig. 3. Spectral decomposition.



Fig. 4. First derivative of experimental points.

Table 2

Real parameters

T′ i(s) a′ i(1/s) n′ i k′ i

4.99 1.1 3.97 9.20×10−3

8.87 0.42 5.68 6.54×10−3

26.97 0.73 3.95 9.95×10−3

34.42 0.96 2.99 11.42×10−3

35.46 0.92 3.98 6.03×10−3

37.48 0.61 3.98 2.77×10−3

44.05 0.24 3.14 0.17×10−3

Table 3). The outlet concentration according time was represented

in Fig. 5. The first peak occurring before 10 is due to a by pass in the

inverse fluidized bed. Normally, the aim in the reactor is to reduce

this phenomenon, in this experiments this phenomena represented

less than 1% of the total phenomena. So it is interesting to modeling

this peak in order to analyze the influence on the RTD. The second

peak represented 90% in the RTD. The liquid mixing may be rep

resented in our system by the axial dispersed plugflow regime. In

fact in Fig. 5, the modeling curve is the same as the experimental

curve.

In Table 4, the various parameters are transformed in physical

values (e.g. perfect mixed reactor volume, plug flow volume and

stagnant volume. The result obtained show that the liquid phase

behavior is near to a dispersed plug flow regime. The portion of

stagnant volume in the reactor was high in comparison of the plug

flow volume. It can be seen from this table that the axial dispersion

increases according to the liquid velocity because the portion of the

Table 3

Real and integer parameters

Ti(s) ai(1/s) ni ki Gain =
ki
an
i

5.46 0.96 3.00 5.51 0.0063

9.71 0.39 5.00 8.58 0.9027

27.67 0.64 3.00 8.88 0.0345

34.99 0.79 2.00 7.95 0.0129

36.03 0.80 3.00 4.28 0.0084

38.34 0.53 3.00 2.94 0.0198

44.34 0.23 3.00 0.20 0.0153

Fig. 5. Example of results: gas velocity (0.2 cm/s) and liquid velocity (6.7 cm/s).

Table 4

Volume (%) of each reactor type for a gas velocity (0.2 cm/s)

Liquid velocity

(cm/s)

Plug flow Perfect mixed

reactor

Stagnant

volume

4 80.5 2.1 17.4

6.7 63.5 5.0 31.5

stagnant and the perfect mixed volume increases in comparison

the plug flow behavior. The axial dispersion coefficient increases

with the liquid velocity what is typical for the classical liquid/solid

fluidized bed [1,12].

4.2. Example model evaluation of gas phase residence time

distribution in TPIFB

During this experiment, a step input of tracer was used for dif

ferent reasons. Firstly, it was difficult to insure that a Dirac pulse

was homogenous in the totality of the column section in particular

in the gas phase. Moreover, the oxygen analyser could not detect

this variation when the Dirac pulse (air/N2) was used. In Fig. 7, the

outlet concentration with a Dirac pulse was modeling. The behavior

of the liquid flow in the reactor is affected by the gas flowrate.

Four gas flowrates were analyzed. To model the experiments

points, we used the same methodology described in the previous

paragraph. A typical example of the response curves to step change

disturbances in the gas feed is shown in Fig. 6. The reduced outlet

concentration was referred to the inlet concentration.

The various experiments were corresponded to different gas

velocities. When gas velocity increased, the residence time

decreased. Firstly, when the gas flowrate increased in coalescence

regime the gas holdup increased also. Essadki et al. [12] devel

oped some correlations in coalescence regime or breakup regime.

Moreover, the size of the bubble was linked with the gas holdup.

So, when the gas flowrate increased, the gas holdup increased and

the bubble size increased, and the bubble velocity increased so the

residence time decreased.

The comparisons between experimental and model results are

illustrated in Fig. 6.

Table 5

Volume (%) of each reactor type for different gas velocity

Ug (cm/s) Plug flow reactor volume (%) Perfect mixed reactor volume (%) Stagnant volume (%)

2.12 17.7 82.3 0.0

1.41 43.7 54.4 1.9

0.7 44.6 52.5 2.9

0.35 55.8 44.2 0.0



Table 6

Parameters value obtained after optimization method

T′ i(s) a′ i(1/s) n′ i
k′
i

a′
i

n′
=

ki
ai
n ai ni Ti(s)

Ug = 0.35 cm/s

1.18E+02 1.53E−01 6.62E+00 2.01E−01 1.46E−01 6.00E+00 1.20E+02

1.68E+02 1.05E−02 1.43E+00 6.74E−01 8.76E−03 1.00E+00 1.91E+02

2.15E+02 9.51E−03 3.37E+00 1.25E−01 8.97E−03 3.00E+00 2.35E+02

Ug = 0.7 cm/s

5.94E+01 1.90E−02 1.40E+00 8.77E−01 1.61E−02 1.00E+00 7.07E+01

1.43E+02 1.25E−02 1.95E+00 1.20E−01 8.91E−03 1.00E+00 1.87E+02

6.99E+01 2.23E−02 1.33E+01 3.42E−03 2.21E−02 1.30E+01 7.60E+01

Ug = 1.41 cm/s

5.22E−01 9.59E−04 4.18E+00 4.13E−04 9.38E−04 4.00E+00 9.50E+01

1.78E+00 5.64E−02 3.01E+00 7.88E−01 5.64E−02 3.00E+00 1.84E+00

3.27E−01 4.29E−02 6.52E+00 2.11E−01 4.11E−02 6.00E+00 6.56E+00

Ug = 2.12 cm/s

9.05E+00 2.70E−02 1.16E+00 9.87E−01 2.51E−02 1.00E+00 1.20E+01

5.00E−02 7.17E−01 1.83E+01 7.20E−04 7.10E−01 1.80E+01 2.80E−01

1.54E+01 1.60E−01 4.30E+00 1.24E−02 1.54E−01 4.00E+00 1.63E+01

Fig. 6. Comparison between experimental and modeling points.

In the case of gas velocity being equal to 0.35 cm/s, the exper

imental points revealed some slope modifications. The results are

illustrated in Fig. 5. This phenomenon shows the model limit in

particular for the model application, it is not possible to repre

sent a negative slope in the pulse response. For representing these

experimental points, the model needs some branch in recircula

tion. So, it is necessary to complete the network (cf. Fig. 1), but

to simply the model, we propose not to change the model. More

over, this new branch would change the solving of the differential

Fig. 7. Modeling Dirac pulse response with different flowrate.

equation because it is necessary to add to mass balances equation

so the problem became an algebradifferential system. This phys

ical observed phenomenon in an inverse fluidized bed allows the

increasing of the mass transfer. In the top of the TPIFB, the bub

ble stay during a long time, so the reactor became a mixed reactor.

This hydrodynamics conditions present several advantages to use

this reactor, in particular to have a high mass transfer and a weak

abrasion.

In Table 5, the different volume is determined for each type of

reactor. So, when the gas velocity decreases, the inverse fluidized

bed became more and more a plug flow reactor. But, it is impor

tant to note that the dead volume is near to zero. When the gas

flowrate increases the reactor hydrodynamics become a perfect

mixing reactor.

With the value obtained in Table 6, the Dirac impulse response

was modeled. In Fig. 7, the response directly read in analyzer appa

ratus was modeled. So, this response shows that the Dirac pulse

experiments are impossible due to the gas analyzer apparatus in

particular a very good calibration. When the Dirac pulse is used, it

is very important to have the same signal in the section.

5. Conclusion and perspectives

A modeling technique intended for RTD simulations is proposed.

The technique includes, the following reactor is presented as a reac

tor network involving a combination of zones representing basic

ideal flow patterns (perfect mixed flow (PMF) and plug flow (PF)).

The approach is based on the Mellinmodification of the Laplace

transformation over the relevant equation that allows zerotime

solutions for identification analysis.

The technique is applied of TPIFB. The gas and liquid phase RTDs

were simulated. It is found that the increasing of the gas flowrate

causes a trend of gas behavior to back mixed flow regimes. A gas

velocity fall causes the inversed fluidized bed to perform largely

in plug flow. The liquid phase was found to perform closer to the

dispersed plug flow regime.

Appendix A

Mellin transformation of the f(t) function is follow:

M(f (t), s) =

∫ ∞

0
ts−1f (t) dt

 (s)

With s the Mellin variable (real or complex).



The different parameters were determined in the aim to obtain

the Eq. (A):

H(p) =
k e−Tp

(a+ p)n
∼= H′(p) =

k′ e−T
′p

(a′ + p)n
′

(A)

with T = T′ + T′ ′.

The Eq. (A) was transformed into

G(p) =
ke−T

′ ′p

(a+ p)n
∼= G′(p) =

k′

(a′ + p)n
′

(B)

Each function G(p) and G′(p) was studied in the Mellin domain.

A.1. Mellin transform of G′(p)

In this domain, the inverse Laplace transform was

g′(t) =
k′

 (n′)
tn
′−1e−a

′t (C)

The Mellin transform of g′(t) was

M(g′(t), s) =
k′

 (n′) (s)

∫ ∞

0

ts−1e−a
′tdt (D)

M(g′(t), s) =
k′

a′s+n
′−1

 (s+ n′ − 1)

 (n′) (s)
(E)

with Re(s) > 1−˛ et � > 0.

Same the method was employed for the G(p) function.

A.2. Mellin transform of G(p)

In this domain, the inverse Laplace transform was

g(t) =
k

 (n)
tn−1 exp(−a(t − T ′′)) (F)

The Mellin transform of g(t) was

M(h(t), s) =
k

 (n) (s)

∫ ∞

0

ts−1e−a(t−T ′′) dt (G)

M(h, s) =
kea T

′′

as+n−1

 (s+ n− 1, a T ′′)

 (n)
(H)

With the incomplete gamma function (I):

 (u, x) =

∫ ∞

x

e−ttu−1 dt = xu−1e−x + (u− 1) (u− 1, x) (I)

The equality of the Mellin equation M(g(t),s) and M(g′(t),s) allows

to determine the G(p) parameter versus to the G′(p) parameter. For

s = 1, 2, 3 the following relations could be determined:

k′

a′n
′
=
k

an
(J)

n′

a′
=
n

a
+ T ′′ (K)

n′

a′2
=
n

a2
(L)

In case of s was superior to 3, the equality between M(g(t),s) and

M(g′(t),s) could not deduce some relation between the different

parameter.
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