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Abstract

This work deals with the multicriteria cost-environment design of multiproduct batch plants, where the design variables are the
equipment item sizes as well as the operating conditions. The case study is a multiproduct batch plant for the production of four
recombinant proteins. Given the important combinatorial aspect of the problem, the approach used consists in coupling a stochastic
algorithm, indeed a Genetic Algorithm (GA) with a Discrete Event Simulator (DES). To take into account the conflicting situations
that may be encountered at the earliest stage of batch plant design, i.e. compromise situations between cost and environmental
considerations, a Multicriteria Genetic Algorithm (MUGA) was developed with a Pareto optimal ranking method. The results
show how the methodology can be used to find a range of trade-off solutions for optimizing batch plant design.
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1. Introduction

The design of multiproduct and multipurpose batch plants is a key problem in chemical engineering. The problem
formulation generally involves mathematical programming methods such as MINLP (Mixed-Integer Non-Linear
Programming). The main limitation of such methodologies is the difficulty, even impossibility, to describe with a
high degree of sophistication, the real constraints that may be encountered (various storage policies for instance
. . . ). Moreover, the number of equations to take as constraints often renders the problem impossible to solve. An
alternative proposed in [1] consists in coupling a Discrete Event Simulator (DES) in order to evaluate the feasibility
of the production at medium term scheduling, with a master optimization procedure based on a Genetic Algorithm
(GA). The optimization variables take only discrete values and the problem exhibits a marked combinatorial feature
(the equipment sizes are considered as discrete values). This approach was then generalized in [2] to consider
multicriteria design and retrofitting. The choice of a hybrid method GA/DES was then all the more justified as
several criteria were simultaneously taken into account: a trade-off between investment cost, equipment number and
a flexibility index based on the number of campaigns necessary to reach a steady state regime was thus investigated.
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Fig. 1. General methodology for optimal batch plant design.

The Multicriteria Genetic Algorithm (MUGA) developed was based on the combination of a Monocriterion Genetic
Algorithm (MOGA) and a Pareto Sort (PS) procedure.

This work is thus motivated by the need to take into account the capital cost as well as the environmental impact
from the earliest design stage. A simplest version of the previously developed DES model has been implemented to
model multiproduct batch plant features.

The originality of the global model is that it takes into account computed values for operating times deduced from
embedded local models for unit operations. Let us recall that the constant time and size factor model [3] is the most
widespread to design multiproduct batch processes. These models are used to optimize the plant design by proper
selection of batch sizes of each product, the operating times of semi-continuous units and the structure of the plant.
Only the works presented in [4–7] include process performance models to compute time and size factors and select
process variables as optimization variables.

In this perspective, the approach proposed in this work is to offer a general methodology for ecological and
economic assessment for batch plant design problems.

This paper is organized as follows: Section 2 presents the basic principles of the general framework. Section 3
discusses some key points of the implementation. Section 4 displays and discusses some significant results obtained
for a case study, i.e., the design of a batch plant dedicated to the production of proteins. In the final section, the
conclusion is presented and the guidelines established.

2. Methodology

The framework for batch plant design proposed in this study (see Fig. 1) integrates simple unit operation models
into the batch plant wide model, which is then embedded in an outer optimization loop. The approach adopted in
this work [8] consists in coupling a stochastic algorithm, indeed a Multicriteria Genetic Algorithm (MUGA) with
a Discrete Event Simulator (DES). The DES was developed using the C++ object-oriented language, keeping the
approach proposed in [1]. In their works, a four layer framework was proposed, resulting in the development of a
standard library for the simulator classes that are general to any case, thus minimizing the task of treating different
study cases or the variants of a given one (i.e. design or scheduling objectives). In this approach, at the lowest level,
the common engine can be found. Most of the events at the next level are common to all batch plant simulations, but
some case studies could need the definition of a particular event. Only few equipment items are common to all batch
plants (i.e. storage vessels) whereas most of them are particular to each problem and must be defined. The upper layer
is the supervisor, which must be generally adapted to each study case.

The objective of the master GA involved is to propose several good and even optimal solutions, whereas the DES
checks the feasibility of the proposed configuration and evaluates different criteria with both economic and ecological
targets.

Indeed, engineering design problems are usually characterized by the presence of many conflicting objectives
that the design has to fulfill. Therefore, it is natural to look at the engineering design problem as a multiobjective
optimization problem (MOOP). References to multiobjective optimization could be found in [9–11]. As most
optimization problems are multiobjective by nature, there are many methods available to tackle these kinds of
problems. Lately there has been a large development of different types of multiobjective genetic algorithms, which is
also reflected in the literature. The big advantage of genetic algorithms over other methods is that a GA manipulates



a population of individuals. It is therefore tempting to develop a strategy in which the population captures the whole
Pareto front in one single optimization run. This approach was adopted in this study.

The MUGA developed in this study involves different procedures:

(1) A method for encoding solutions in strings of digits (or chromosomes); here, a chromosome represents a workshop
configuration and the corresponding operating conditions. The encoding procedure will be presented in detail in
what follows.

(2) An initial population has to be randomly generated.

(3) An evaluation function which takes a string as input and returns different fitness values which measure the quality
of the solution that the chromosome represents relative to each criterion. Since this work is related to minimization
cases (investment cost, limitation of pollution), the individual fitness Fi is calculated by:

Fi = Cmax − Ci

where Ci is one of the objective function value for individual i , Cmax is the maximum objective function value
computed on the current population for the corresponding criterion.

(4) An adaptive plan involving evolution and mutation, based on string crossover and mutation operators.

The cycle {Evaluation, Selection, Crossover and Mutation} is repeated until a stop criterion is reached. After this
cycle, the Pareto sort is applied. Concerning selection and multicriteria aspects involved, it must be emphasized that
for a given survival rate, the selection process is achieved via a classical Goldberg biased roulette wheel [12], relative
to each criterion. For this purpose, the initial population is randomly partitioned into sub-populations (the number of
sub-populations corresponds to the number of criteria considered simultaneously). A same number of individuals is
chosen for each sub-population.

The genetic algorithm includes the following steps (see Fig. 2):
Step 1: an initial population is generated randomly, this procedure guarantees a diversified initial population

covering the complete space search.
The following steps are performed in order to pass from the actual population (k) to the next one (k + 1). First an

intermediate population is generated in Steps 2–4.
Step 2: an elitism procedure selects the best individual for each criterion, which is saved in an intermediate place.
Step 3: an equal number of individuals is chosen for each criterion using Goldberg’s biased roulette.
Step 4: the intermediate population is completed with individuals generated by the cross-over procedure. Let us

note that the individuals to whom this procedure is applied are chosen randomly from the population k. The simplest
cross-over procedure is used with only one cutting point.

Step 5: the mutation procedure is applied to a fixed number of randomly chosen individuals. Only one point of the
chromosome is modified, changing its value from 0 to 1 or the inverse.

Step 6: the new population becomes the current one and the Steps 2–5 are repeated until reaching the final
generation.

Step 7: a Pareto sort procedure is carried out over all the individuals evaluated over generations.
At the end of the algorithm, the set of Pareto non dominated solutions is obtained.
The optimization problem may involve either continuous (i.e. the operating conditions) or discrete (parallel

equipment number, equipment size) variables.
A binary system was chosen for encoding, as it simplifies the genetic operators, i.e., crossover and mutation. The

encoding method presented was developed for the cases where the equipment items are identical at a given stage. The
continuous variables were discretized and encoded in a binary way by a variable change (Fig. 3), using the same bit
number (i.e., eight bits). Fig. 4 shows a code section used for operating stage encoding. For each stage, the equipment
item number is encoded in a binary way (part A in Fig. 4). The number of bits reserved to this variable sets the
maximum equipment item at the stage. For equipment size (L for large, M for medium, S for small), a number of bits
equal to the available sizes for the equipment items was reserved (part B in Fig. 4): the chosen size takes a positive
value whereas zero is allocated to the other places. When equipment items are composed of several parts, the same
approach is repeated for each component (part B and B’ in Fig. 4).



Fig. 2. MultiObjective Genetic Algorithm (MUGA).

Fig. 3. Continuous variables encoding.

Fig. 4. Operating stage encoding method.

3. Implementation

3.1. Presentation of the illustrative example

The previous methodology was applied to a batch plant for the production of proteins taken from the literature [5].
This is a multiproduct batch plant, with four products to be manufactured by fermentation and eight treatment

stages. This example is used as a test bench since short-cut models describing the unit operations involved in the
process are available. The batch plant involves eight stages for producing four recombinant proteins, on one hand two
therapeutic proteins, Human insulin (I) and Vaccine for Hepatitis B (V) and, on the other hand, a food grade protein,
Chymosin (C) and a detergent enzyme, cryophilic protease (P). The methodology is generic for any plant producing
recombinant proteins from yeast.

Fig. 5 shows the flowsheet of the multiproduct batch plant considered in this study. All the proteins are produced
as cells grow in the fermenter (Fer).

Vaccine and protease are considered as being intracellular, hence, for these two products, the first microfilter (Mf1)
is used to concentrate the cell suspension, which is then sent to the homogenizer (Hom) for cell disruption to liberate
the intracellular proteins. The second microfilter (Mf2) is used to remove the cell debris from the solution proteins.



Fig. 5. Multiproduct batch plant for proteins.

The ultrafiltration (Uf1), prior to extraction, is designed to concentrate the solution in order to minimize the
extractor volume. In the liquid–liquid extractor (Ext), salt concentration (NaCl) is used to first drive the product
to a poly-ethylene-glycol (PEG) phase and again into an aqueous saline solution in the back extraction.

Ultrafiltration (Uf2) is used again to concentrate the solution. The last stage is finally chromatography (Chr), during
which selective binding is used to better separate the product of interest from the other proteins.

Insulin and chymosin are extracellular products. Proteins are separated from the cells in the first microfilter (Mf1),
where cells and some of the supernatant liquid stay behind. To reduce the amount of valuable products lost in the
retentate, extra water is added to the cell suspension.

The homogenizer (Hom) and microfilter (Mf2) for cell debris removal are not used when the product is
extracellular. Nevertheless, the ultrafilter (Uf1) is necessary to concentrate the dilute solution prior to extraction.
The final step of extraction (Ext), ultrafiltration (Uf2) and chromatography (Chr) are common to both the extracellular
and intracellular products.

3.2. Environmental impact evaluation

Considering environmental impact (EI), let us recall that several methodologies are available in the literature. The
most important concept refers perhaps to the Life Cycle Assessment (LCA) [13] considering all the wastes generated
in order to produce the different products in the upstream stages (i.e., raw material production, energy generation,
etc.), in the study stage (i.e. solvents, non-valuable by-products, etc.) and in the downstream steps (i.e. recycling,
incineration, etc.). The aim of LCA is to consider the wide chain in order to prevent pollution generation and to
compare the different alternatives to produce a product. Another concept used the Pollution Balance (PB) principle to
carry out a pollution balance [14] equivalent to the balance made for mass or energy. This means that a process can
not only pollute but also consume a polluting product and will be a benign process.

Finally, the Pollution Vector (PV) methodology [15] consists in evaluating the environmental impact by means
of an impact vector over different environments (i.e. water, air, etc.) defined as the mass emitted on an environment
divided by the standard limit value in this environment.

Given the production recipes for the different products and the general flow-sheet, the first step consists in applying
the LCA methodology to determine all the products contributing to the environmental impact (Fig. 6). For information
availability reasons, the study was reduced to the process being studied, which is of course a limited application of
LCA. Products (i.e. vaccine) and raw materials (glucose, NH3) were considered not having an environmental impact.
After that, a PB is applied, using the PV to quantify the environmental impact. In this case, an adapted definition of
the pollution vector was introduced, because the standard limit values for the polluting product were not found in the
literature. This vector has two components; the former is the total biomass quantity released and the latter concerns the
PEG volume used. Even if the solvent can be recycled, it cannot be carried out at 100%, so the environmental impact
is considered to be proportional to this quantity. The pollution indexes were thus defined as the emitted quantities
divided by the mass of the manufactured products. Let us remark that environmental impact minimization can be
viewed as a multicriteria problem in itself.



Fig. 6. Environmental impact evaluation.

The global index of each environmental impact criterion is defined as a weighted sum respect to the production of
each product index (Eq. (1)).

Ik =
I ins
k · Pins + I v

k · Pvac + I chy
k · Pchy + I pro

k · Ppro

Pins + Pvac + Pchy + Ppro
(1)

where Ik is the pollution global index, I i
k is the k pollution index of i product defined as the kilograms of the pollutant

k by kilograms of manufactured product i and Pi is the total production of the i product.
The cost criterion considered in this study is classically based on investment minimization because there was not

enough information to evaluate the operational cost of the batch plant (raw material cost, utilities cost . . . ) and to
embed it in a net present worth computation.

The optimization criterion involving investment cost for equipment and storage vessels ICost is calculated by (Eq.
(1)):

ICost =

NOP∑
i=1

NEQ∑
j=1

(
Ai + Bi V Ci

i j

)
+

NSK∑
k=1

(
Ak + Bk V Cki

sk

)
(2)

where NOP is the number of operations, NEQi is the number of equipment items (for operation i), NSV is the number
of storage vessels, Ai , Bi and Ci are the cost coefficients for operation i , As , Bs and Cs are the cost coefficients for
storage vessels, Vi j is the volume of equipment i j and Vsk is the volume of storage vessel k.

The models representing the operation units involved in the global process are presented in detail in [16] and will
not be recalled here.

The optimization problem considered can be formulated as follows:

min f1(y)

min f2(x)

s.t. g(x, y) ≤ H

where, f1 represents the investment cost and f2 the environmental impact. The x vector, x = [x1, x2, . . . , xn]

represents the operating conditions and y = [y1, y2, . . . , yn] refers to batch plant configuration.
The optimization problem involves 44 variables, which may be either continuous (i.e. the operating conditions) or

discrete (parallel equipment number, equipment size).
In Tables 1 and 2, all the optimization variables and their corresponding type (discrete or continuous) are listed.
A set of data must be fixed by the user concerning the optimization problem definition before the implementation

of the design methodology. These data are presented in Tables 3–5:
In Table 3, the annual demand for each product is presented.
Table 4 presents the available range in terms of size for each equipment type. Three sizes are available for each

equipment item: large (L), medium (M) and small (S). Table 5 presents the classical expressions used for computing
the investment cost of the equipment items, following a classical scaling law. Of course, a thorough economic study



Table 1
Continuous optimization variables: operating conditions

Continuous variables

Name Description (operating conditions)

Ci,fer Insulin final concentration at the fermentation stage
Cv,fer Vaccine final concentration at the fermentation stage
Cc,fer Chymosin final concentration at the fermentation stage
C p,fer Protease final concentration at the fermentation stage
Ci,mf1 Insulin final concentration at the first microfiltration stage
Cv,mf1 Vaccine final concentration at the first microfiltration stage
Cc,mf1 Chymosin final concentration at the first microfiltration stage
C p,mf1 Protease final concentration at the first microfiltration stage
Wi,mf1 Water added at the first microfiltration stage (insulin)
Wc,mf1 Water added at the first microfiltration stage (chymosin)
Wv,mf2 Water added at the second microfiltration stage (vaccine)
Wp,mf2 Water added at the second microfiltration stage (protease)
Ri,ext Phase ratio at the liquid–liquid extraction for insulin
Rv,ext Phase ratio at the liquid–liquid extraction for vaccine
Rc,ext Phase ratio at the liquid–liquid extraction for chymosin
Rp,ext Phase ratio at the liquid–liquid extraction for protease

Table 2
Discrete optimization variables: equipment item number and size

Discrete variables

Name Description (equipment items number and size)

Nsto Storage vessel number
Nfer Equipment items number at the fermentation stage
Nmf1 Equipment items number at the first microfiltration stage
Nhom Equipment items number at the homogenization stage
Nmf2 Equipment items number at the second microfiltration stage
Nuf1 Equipment items number at the first ultrafiltration stage
Next Equipment items number at the liquid–liquid extraction stage
Nuf2 Equipment items number at the second ultrafiltration stage
Nchr Equipment items number at the chromatographic separation stage
N Pv,hom Vaccine pass number through the homogenization stage
N Pp,hom Protease pass number through the homogenization stage
Vsto Storage vessel volume
Vfer Fermenter volume
Vmf1,ret First microfilter retentate vessel volume
Smf1,fil First microfilter filtration surface
Vmf1,per First microfilter permeate vessel volume
Shom Homogenizer size
Caphom Homogenizer capacity
Vmf2,ret Second microfilter retentate vessel volume
Smf2,fil Second microfilter filtration surface
Vmf2,per Second microfilter permeate vessel volume
Vuf1 First ultrafilter retentate vessel volume
Suf1,fil First ultrafilter filtration surface
Vext Liquid–liquid extractor volume
Vuf2 Second ultrafilter retentate vessel volume
Suf2,fil Second ultrafilter filtration surface
Schr Storage vessel volume
Schr,col Chromatographic column volume

would also include the operating cost estimation and analysis of profitability. Since this kind of analysis only requires
reliable economic data for a real process and does not induce additional difficulties in the chosen resolution strategy, a



Table 3
Product demands

Product Production (kg/year)

Insulin 1500
Vaccine 1000
Chymosin 3000
Protease 6000

Table 4
Available equipment item sizes

Equipment item size Large Medium Small

Fermenter (m3) 6 3 1
First micro filter-retentate vessel (m3) 6 3 1
First micro filter-filtration surface (m2) 5 2.5 1
First micro filter-permeate vessel (m3) 6 3 1
Homogenizer-holding vessel (m3) 6 3 1
Homogenizer-capacity (m3/h) 0.5 0.25 0.1
Second micro filter-retentate vessel (m3) 6 3 1
Second micro filter-filtration surface (m2) 5 2.5 1
Second micro filter-permeate vessel (m3) 6 3 1
First ultra filter-filtration surface (m2) 50 25 10
First ultra filter-permeate vessel (m3) 6 3 1
Liquid–liquid extractor 6 3 1
Second ultra filter-permeate vessel (m3) 6 3 1
Second ultra filter-filtration surface (m2) 5 2.5 1
Chromatographic separation-holding vessel 6 3 1
Chromatographic separation-column 1 0.5 0.25
Storage vessel 6 3 1

Table 5
Cost coefficients

Unit Size Cost

Fermenter V j (m3) 63 400 · V0.6

Micro- and ultrafilter Vretentate (m3) 5750 · V0.6

Vpermeate (m3) 5750 · V0.6

Afilter (m2) 2900 · A0.85

Homogenizer Vholding (m3) 5750 · V0.6

Cap (m3/h) 12 100 · cap0.75

Extractor Vextr (m3) 23 100 · V0.65

Vholding (m3) 5750 · V0.6

Chromatography column Vchrom (m3) 360 000 · V0.995

Storage vessel Vsto 5750 · V0.6

capital cost-based study was finally adopted for the preliminary economic evaluation of the project for manufacturing
biological products.

Table 6 presents the lower and upper variable bounds.
Table 7 displays the parameters of the genetic algorithm used for multicriteria batch plant design. In this work, the

generation number was fixed as twice the population size. The global survival rate is relatively low as compared to
standard values for optimization of test mathematical functions [2]. Moreover, a high mutation rate was set. Although
a systematic study was not carried out to find these values, they were chosen from several preliminary tests and
agree with previous works [2] where similar problems were treated. Elitism was used in order to avoid losing the
best solution for each criterion. Considering the stochastic aspect of GAs, several optimization runs were carried out



Table 6
Variable bounds

Variable Lower bound Upper bound

Ci,fer, Cv,fer, Cc,fer, C p,fer (kg/m3) 35 55
Ci,mf1, Cv,mf1, Cc,mf1, C p,mf1 (kg/m3) 150 250
Wi,mf1, Wc,mf1 (m3/m3) 0.5 3.0
N Pv,hom, N Pp,hom 1 3
Wv,mf2, Wp,mf2 (m3/m3) 1 3
Ri,ext, Rv,ext, Rc,ext, Rp,ext (m3/m3) 0.05 1.5
Nsto 0 7
Nfer, Nmf1, Nuf1, Next, Nuf2, Nchr 1 8
Nhom, Nmf2 1 4

Table 7
Genetic algorithm parameters

Bicriteria Bicriteria Bicriteria Tricriteria
solvent-biomass cost–solvent cost–biomass cost-EI

Population size 300 450 450 600
Generation number 600 900 900 1200
Survival rate 0.5 0.5 0.5 0.5
Mutation rate 0.4 0.4 0.4 0.4
Elitism by criterion 1 1 1 1

for each multicriteria optimization. Given that solutions obtained in one optimization run could be dominated by the
solution of another one, a Pareto sort procedure is applied to the set of solutions obtained at each optimization run,
and the non-dominated solutions are those proposed by the methodology.

4. Results and discussion

Two strategies were tested either monoproduct or multiproduct campaigns with a batch of each product to be
produced. In the latter case, the starting order of the different batches was fixed altering intracellular and extracellular
products.

The MUGA presented in this work was first used to demonstrate that the two EI criteria considered, that are
respectively the total biomass quantity and the PEG volume, present antagonist goals (Fig. 7). Very similar results
were obtained at each optimization run, so only the results after the final Pareto sort procedure are presented in
Fig. 7. Moreover, it must be noted that slight differences are obtained between both production policies because the
environmental impact depends only on the mass balance that is a function of the continuous variables.

This antagonist behavior can be explained at the liquid–liquid extraction stage. The more solvent is used, the more
efficient the stage becomes and, consequently, the fewer products are lost, reducing the environmental impact index
computed as Kg of biomass released by Kg of final product.

The same approach was also applied to the cost–environment criteria. First, the amount of solvent used and the
investment cost were considered.

For illustration purposes, Fig. 8 shows the results obtained at each optimization run for the monoproduct production
policy, performed with an identical parameter set to guarantee the stochastic nature of the GA. In this case, the results
are not superposed as it was the case for the bicriteria optimization biomass-solvent, which show the need of carrying
out several optimization runs for the same problem.

In Fig. 8, it can be seen that each optimization run is oriented to a section of the search region. The first optimization
comes up with the better solution for the cost criterion, the second for the environmental criterion and the third is a
compromise between both. The final Pareto sort procedure is carried out over these solutions. The final results for
both production policies are presented in Fig. 9. Let us note that the Pareto zone is constituted of sparse points, since
the adaptation function related to the investment cost takes discrete values.



Fig. 7. Pareto’s optimal solutions for biomass released — solvent amount criteria (bicriteria case).

Fig. 8. Pareto’s optimal solutions for the bicriteria case (solvent used–investment cost) under monoproduct policy.

Fig. 9. Pareto’s optimal solutions for the bicriteria case (solvent used–investment cost) under mono- and multiproduct policies.



Table 8
Bicriteria cost–solvent optimization results.

Monoproduct Multiproduct

Cost Solvent (103) Solutions Cost Solvent (103) Solutions

Run 1 1 221 890 4.445 32 1 303 730 5.070 21
Run 2 1 290 490 4.779 23 1 211 100 5.006 28
Run 3 1 238 050 4.415 23 1 257 200 4.406 23

Best 1 140 990 4.386 – 1 139 100 4.386 –

Table 9
Values range for the not considered criterion

Biomass for cost–solvent Solvent for cost–biomass
Minimum Maximum Minimum Maximum

Monoproduct 14.393 20.3691 36.0292 × 10−3 40.581 × 10−3

Multiproduct 14.261 22.889 34.9659 × 10−3 41.877 × 10−3

Table 10
Bicriteria cost–biomass optimization results

Monoproduct Multiproduct
Cost Biomass Solutions Cost Biomass Solutions

Run 1 1 143 080 13.303 10 1 252 280 13.307 15
Run 2 1 235 340 13.300 10 1 289 530 13.303 13
Run 3 1 129 290 13.305 15 1 116 950 13.302 22

Best 1 140 990 13.299 – 1 139 100 13.305 –

Slight differences were found between both production policies. The antagonist behavior between these two
criteria, investment cost — amount of solvent used, can be explained by a compromise between the solvent yield
and the process global yield. When process yield is penalized, a bigger, and consequently more expensive, batch plant
is required.

In order to evaluate the search performance of the GA, Table 8 presents the best solution obtained at each
optimization run for each criterion considered as well as the best solution obtained with a monocriterion approach.
Even though the methodology was not able to find the best solution, the values are relatively near (around 5% more
expensive for the investment cost criterion). It must be noted that in the monocriterion optimization (not presented
here), the best value was obtained only once and, in the other cases, the solutions were around 2%–3% more expensive,
which justifies the results when several criteria are taken into account simultaneously. The number of solutions
obtained in each optimization run was around 25. It is important to note that in each case, the solutions are uniformly
distributed in the search space; this means that there is no preferential search region in the multicriteria search as
shown in Fig. 8.

It is also interesting to see where the results are placed with respect to the criterion not considered here, in this case
the amount of biomass released. Table 9 presents the range of values for this criterion for both production policies.

They have the same order of magnitude for both policies. Moreover, the minimal value of the range is close to
the best value obtained in monocriterion optimization (see Table 10), which allows one to predict less antagonism
between investment cost and biomass released criteria.

The last bicriteria optimization considers the investment cost and biomass released. As for the previous case, three
optimization runs were carried out for each production policy. The results obtained after the final Pareto sort procedure
are presented in Fig. 10 and are similar for both production policies as was shown for the cost–solvent criteria.

Table 10 presents the best solution obtained at each optimization run for each considered criterion as well as the
best solution obtained with a monocriterion approach. As for the criterion related to the amount of biomass released,
the best value is obtained at each optimization run, as was the case for the amount of solvent in the previous bicriteria



Fig. 10. Pareto’s optimal solutions for biomass released – investment cost (bicriteria case).

Table 11
Multicriteria cost-environmental impact results

Monoproduct Multiproduct

Cost Solvent (103) Biomass Cost Solvent (103) Biomass

Run 1 1 232 630 4.43776 13.303 1 130 860 4.39352 13.3003
Run 2 1 207 900 4.42136 13.3038 1 265 100 4.44696 13.3034
Run 3 1 279 110 4.39088 13.3043 1 124 630 4.45884 13.3014

optimization. The number of solutions is slightly inferior to the previous results. This can be explained by the lower
antagonism between the biomass and the cost criteria. As for the investment cost, for both production policies, a better
solution than the one of the MOGA was found (not presented here). Even these solutions are only 2% better than the
previous. This shows the drawback of the stochastic optimization methods because they can not guarantee the solution
optimality. Besides, it must be noted that the GA parameters were not the same. In the case of the MUGA, a larger
population was used, but at the same time it must be noted that the fact that several criteria were taken into account is
not penalizing in the GA. The environmental impact criteria guide the search of batch plants with several equipment
items diversifying the search paths.

Table 9 presents also the range of values for the criterion not considered, the amount of solvent used. These values
are distant from the best values, which recalls the antagonism of this criterion with respect to the others considered as
objective functions.

The results obtained show the typical compromise between cost and each environmental index. Since the conflicting
behavior between each pair of criteria (investment cost, solvent used and biomass released) was demonstrated, the final
multicriteria cost–environment batch plant design was carried out, keeping the two environmental criteria independent:
this simply means that the same survival rate was considered for each criterion.

As for the previous optimizations, three optimization runs were carried out for each production policy. Given the
similarity of the results with both production policies (see Table 11), only the results obtained with a multiproduct
production policy are presented (Fig. 11).

To facilitate result interpretation, a projection over the plane of interest (relative to two given criteria) was carried
out (Figs. 13, 15 and 16). It can be observed that most solutions referring to the previous bi-criteria optimization are
found again. In all three cases, the points are more concentrated near the compromise zone, which is interesting for
final decision. In order to evaluate the methodology, Figs. 12 and 14 show the results projected for each optimization
run. In this case, we observe that several optimization runs are necessary, given the complexity of considering a third
criterion; the results are not systematically superposed as for the bicriteria case study. Two options could be considered
for improvement, larger population and generation number and some extra optimization runs.

Table 11 presents the best solution for each criterion for both production policies. As was above mentioned, there
are only slight differences between both production policies. This also shows that the monocriterion search is not



Fig. 11. Pareto’s optimal solutions cost–IE (tricriteria case).

Fig. 12. Pareto’s optimal solutions cost–biomass (tricriteria case).

Fig. 13. Pareto’s optimal solutions cost–biomass (different optimization runs).



Fig. 14. Pareto’s optimal solutions cost–solvent (tricriteria case).

Fig. 15. Pareto’s optimal solutions cost–solvent (tricriteria case).

Fig. 16. Pareto’s optimal solutions cost–solvent (tricriteria case).

penalized by the multicriteria one. In other words, the same GA is able to carry out both policies, even when several
antagonist objective functions are considered.



5. Conclusions

A methodology was proposed for batch plant design, considering both investment cost and environmental impact
minimization. An optimization scheme has been implemented using a multiobjective genetic algorithm with a Pareto
optimal ranking method. This technique is ideally suited to this type of problem, where a number of conflicting
considerations must be taken into account. The use of MUGA makes possible a robust optimization technique,
across a non-linear search space (the objective functions are computed by the use of a discrete event simulator (DES)
integrating shortcut unit operations models) linking multiple variables and objectives. The paper clearly shows that
opportunities for process optimization and environmental impact minimization must be considered at the early stages
of process development before the process is frozen due to regulatory reasons.
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