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Abstract: This article presents a Verification and Validation approach which is used
here in order to complete the classical tool box the industrial user may utilize in
Enterprise Modeling and Integration domain. This approach, which has been defined
independently from any application domain is based on several formal concepts and
tools presented in this paper. These concepts are property concepts, property reference
matrix, properties graphs, enterprise modeling domain ontology, conceptual graphs and
formal reasoning mechanisms.
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1. Introduction

Enterprise Modeling and Integration is now considered as an important research and application domain by
industrial users. They dispose of several approaches (AMICE 1993, Loucopoulos 1995, Vernadat 1997, Crestani
1997, Bernus 1998, Sheer 1998, Menzel 1998, GERAM 1999, Tissot 1999, Vernadat 1999, Chen 2001, Chorafas
2002, Revelle 2002, Chen 2002) consisting of modeling languages, norms, architecture reference models and
derivative tools allowing them to describe their processes, their information systems, their knowledge and know-

how, to better understand and to test the organization behavior by using for example simulation mechanisms, to
communicate more efficiently in the enterprise, to exchange information and data without loss of sense with each
other partners, to decide several system and organization improvements and so on.

Nevertheless, the user can doubt of the amount of confidence he can have in the different built models such as
processes models or human resources ability models for example. Indeed, before considering a model is well
suited to be use, this one must be bound by some phases during which it has to be verified («is the model
correctly built ? ») and to be validated (« is the model corresponds accurately to the reality ? is it the good one
taking into account the needs and the context ? ») summarized Figure 1. Results of this global step of verification
/ validation (V&V) depends on two causes. First, the previous modeling step induces several problems on
account of loss quality of the model which have to be taken into account during verification and validation:

« The user may not be clear in one’s mind and his point of view may evolve during modeling process,

« Modeling hypothesis (temporal, behavioral rules and so on) limit model’'s expressiveness and accuracy. They
are caused by system typology, system complexity level, by modeling concepts or formalisms which may be
restricted to particular kinds of systems,

- The verification and validation need to highlight a user’s defined analysis perspective (performance, temporal
independence, functionalities, reliability and so on). The model may be unsuitable to respond correctly to
some of the possible analysis perspectives,

- It stay often difficult to take into account the modeled system environment, its own dynamics, the different
interaction between components and possible unforeseen events which may be the origin of some emerging
and unexpected phenomena,

- Furthermore, the lack of knowledge and the oversight about particular characteristics, data and information
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from the system itself or from its environment mirsit again the model V&V process.

What comes out of these causes is that a parteoktiowledge needed for assuming the quality and the
relevance of a model (from a static point of viemaifirst way then taking into account dynamic etioh rules)
remains informal and misunderstands during modgiiogess.

- Modeling languages
- Concepts and constructs
-Norms

Modelling

- Experiments
Model
Model Improvement  ——
Static Basic errors A
Results/Errors | analysis (syntactic, semantic)
Dynamic Behavioural errors
Results/Errors analysis
——v——
Formal Properties Verification
Results/Errors analysis 7
Validation

Identify Causes

Find other
Problems 2

Verified
Validated
Model

J

Model must be used for
decision process, system
improvement,
communicating process, ...

Figure 1 : A model life cycle vision highlighting verificatioand validation phases

Decision/Use

This lack of knowledge may be justified by takimgoi account the user’s behavior during modeling.gtke can
objectively rule out some information, data andresdecause of their nature, the time needed witeshem,
their relevance considering his own point of viemdao on. He can also forgot them because ofritged
vision of the system or the different situationsahich this system must evolve. It may be thenrggtng to
develop some mechanisms allowing us to show the theerelevance of some of these information artd da
because of their possible interaction with the rimfation and data gathered in the model it self rideo to
complete and/or to improve this model.

Second, each V&V phases shown Figure 1 set to woricepts and tools allowing syntactic checking (not
considered here), semantic checking and behavaallysis which use mainly simulation, emulationmian
expertise of model execution results in particutaenterprise modeling and integration domain. @halysis
results must be altogether questionable consides@wgral points such as formalization and detaglke of the
model for example. The way consisting on develogome other kind of tools allowing us to employnfiai
properties proof mechanisms seems to be interegtinge in this domain such as proposed in (VanAgdst
2000, Lemboley 2001, Coves 2001).

So, the research results presented in this papartito cover the V&V step by using a formal vexdfiion and
validation approach allowing to improve user’s kiedge about its model and to manage it in ordestablish

the relevance and the suitability of a model. Thedeling and model/system improvements steps are not
considered in this article.

2. Verification / Validation step approach

The proposed approach is based on several corsefaited in the following. These concepts have lidimed
independently from a given application domain aasl,we intent to show in the example at the enchisf t
article, they have been specialized and putteddaterete form in Enterprise modeling domain. Theleenents
shown in Figure 2 are:

- The property model is the base of a formal modelargguage allowing the user to specify a particular
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knowledge he wants to prove on the model in omleetify and to validate it.

« A domain ontology (Uschold 1996, Fox 1994) desaibegiven whole application domain by defining the
different concepts and relations between theseegtgsevhich are necessary.

- This ontology is then translated by using formééstnto two lattices needed for the V&V chosenl tmsed
on conceptual graphs by splitting up concepts aladions.

- In same time, this ontology allows us to defin@tao$ generic properties associated to the choseraih and
are gathered into a data base named Referencex.n¥digse properties cannot be proved directly @n th
model. Their goal is to guide the user, to remenhii@rsome crucial information which may be forgotte
misunderstand and to help him to specify complethyy relevant and useful properties the model must
respect.

- These generic properties will be interpreted, m#tted or translated respecting the model and béll
gathered in the Property Graph. This one represdlritee properties which have to be proven omtbeel.

- Some reasoning mechanisms have been developed tatinaccount Conceptual Graphs theory in order to
prove the proposed properties on the model and @kenemerging when it is possible some additional

knowledge.
EnV/'ronmenT/_\LJ’\
Domain ‘*» /
__ System #=>—— )
- Modelling languages }g//ﬁ
i -Concepts and e ~
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v knowledge as
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reference matrix (formal rules)
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P grap (formal rules)

Conceptual
> Graphs

To reason, o
e

Reasoning || g L
Mechanisms

To improve
\
1

A

To use

Figure 2 : Global approach and components

3. Property model

A property may be defined in the literature witlvessal points of view (Feliot 2000, Meinadier, 19981ome,
1993, Manna 1982, Henzinger 1994, Manna 1982, Ma®80). We will consider in the following the
definition given by (Lamine 2001 property translates an expectation, a requiren{behavioral, functional,
structural or organic, dependent or not of time) am objective (performance, safety, reliability asd on)
which have to be respected, strictly or with aable level being enough by a madel

3.1. Informal model property
The proposed model property we will use in thedfelhg is based on @ausal relationnamed R between two
sets named C (the set cduse} and E (the set aéffecty. Each of these sets is composed by a collectfon o

objects calledactsissued directly from the model. As proposed bya(P2000, Pearl 1999, Sowa 2000), the
causal relation R indicates how occurrence of etgémef E depends on the occurrence or on the tttera
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between elements of C. The property may be verifiedomputing in which casescanditionon the causes and
theresulton the effects are true by respecting temporabthgsis and causal relation typology between causes
and effects. Before presenting the formal modés, itecessary to define two particular conceptsatdfactsand
granularity.

3.2. Facts

Facts come from several origins:

- From themodeling language concepfentities of modeling such as process, activiiesesources) and
relations between these entities (such as the link betwetinitees and resources for example) as the
modeling language evolution laws and rules. Theycatledhandle functionsFor example, the stateOf(A,t)
handling function allows to define what is the stat the Activity A in time t.

- From themodeled systerontextandapplication domainThis needs to define a domain ontology allowing
us to define the existing concepts, relations argsiple situations in the domain which are not detafy or
already described into the model. All this addedwedge is then translated into new facts allowisgto
merge it with the information coming from the mad€hey are callednodeling variablesand modeling
parameterslt may represent for example the external tempegaif the modeled system which is an input of
the model but which has been forgotten during rioglestep. It may also represent some externaltsven
from the environment or internal events such aa eablution.

- From themodelitself. This needs to extract all the informaticontained in the model as nawodeling
variablesandmodeling parameterdt may be for example a modeling parameter coimgithe maximum
level of water in a tank or a modeling variable te@ming a computerized data such as productiors @t¢he
input model vector state at each moment.

« From other existing properties in which the usem tast at a given moment: these properties are the
considered by new facts gsoperties This may be for example a property specifying wikathe speed
limitation taking into account some constrainteath moment.

At last, fact may be valued quantitatively or gtalvely (a property is true, a data is set to t30to ‘good’).
Most formally, the set of facts is defined as follows:

F=MVOMPOHFOP
whereMV, MP, PR andP gather four kinds of facts :
- MVis the set of facts named modeling variablesh eaes evolves within the modeled system:
MV={var / var = < namé typ€, value, Det >}
«  MPis the set of facts named modeling parameteesy:described data which have constant values:
MP={par / par = <name, type, value>}

+ HF is the set of facts namédndle functionsThey allow to manipulate all the facts and theharacterize
the model or the environment dynamic and structeme example, if the model is a transition modelsas a
Petri Net, it exists function allowing to describet structure (before(place), follow(place), wefgit),
tempo(transition) and so on), to describe markir@wgion (mark(net,t), fire(transition,t) and so)on

HF={hf / hf = < name, paramatérdype >}
« Pisthe set of user-defined properties
3.3. Granularity
The property concerns a given and unique mod@.dh interpretation of some user’s requests anst beithen

proven only on this model However, establishingpenplex system model need often to define a hieyaoth
description by using decomposition or substitutiaes. User may then define system’s model(s) then

! name is a tag defining each fact on an unique Brann
2 type is the fact’s typd\l, P, Boolean, Character or structured type
3 def is the fact’s definition domain (DEf Type)

4 parameters is a set of facts
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sub(system(s) model(s) and so on in order to manage efficiently the system complexity. In an athand,
in user's minds there exist some properties whiely bre assignable to only one detail level of tlabagl system
description but the interaction between these ptigseof a given level could be at the origin of @ppearance
(that is to say the emergence) of some new pragseofi a lower level. Thgranularity G is then defined in order
either to allow the user to respect the differentad levels which are necessary to manage theemsyst
description, whether to allow this user to choogadicular sets of own detail levels. A granula® is then the
resulting set of chosen detail levels, calliegjrees.

The example presented Figure 3 shows a granukiawing us to define four levels of decision fratnategic
one to execution one. Strategic level is the nesd¢adf activities and processes allowing to definéo better
understand enterprise finality and its objectiviesctic level has to take into account some stratdgcision and

to define piloting orders and planning allowing tbeyanization to reach these objectives. Operdtiand
execution levels have then to schedule differemddpetion processes, to define stocks size, to manag
production resources and so on. A temporal dinoensiay be associated to each level in order to thelpuser
when we will define a property of a given level.

’ Granularity : ‘Decision organization’ ‘

—{ Degree 1 : ‘Strategic (three months)ﬁ
—— £

Commands Reports
|
—{ Degree 2 : ‘Tactic (two Weeks)‘

4
Orders Reports

~— ‘

—{ Degree 3 : ‘Operational (two days)“
—— T

Execution plan Reports
" |
—{ Degree 4 : ‘Execution (hour)"

Figure 3 : Granularity and degrees

At the Execution level, there are lot of exchangésflows and several humans skills needed during th
production process execution based on the resowamseration. In case of a long enough strike given
machine (a given property is then not verifiedyvil be then possible that operational level intetd define a
scheduling order which cannot be applied in thecetien level.

3.4. Formal Property Model

A propertyPr is defined by a 5-tuple:
Pr=<nameC,,R,, E, D,>

Where :

+ C,={cause/causg F} / card(C,)=0 (set of causes may be empty)

« E,={effect/effectd F } / card(E,)>0 (a tangible effect must always exist) &ych E, =0

+ Dy=<Type, G > is the degree®f in a given granularity G

+ R, is the relation defining the causal link betweanses and effects. Type qgf iRay be of:

- Logical: it describes implication and equivalence (a nexfiy between cause and effect) relations.

- Temporal : it describes temporal links such as antecedenaéich the cause must be prior to, or at
least simultaneous with the effects.

- Influence : the knowledge about some cause modifies the opaiont the verification of the effect
(Pearl 2000). It allows then to describe how caumed effects must be linked respecting some
particular events or situation. A sense of varmi® associated to each influence relation. Itlean
interpreted as beneficial or at the opposite hakinfluence on the effect.

- Emergence: Each modeled system can be described by sonraatéastics which are not directly
deductible from the own characteristics of its comgnts but which result from relations between
these components. The explanation of this kindroperty needs then to take into account all the
interactions and the feedback which connect thereet with its environment or with its context.
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The relation Ris defined by the 4-tuple:
R, =< Type , 6,8, d > where:

- The Boolean function8c describes in which conditions (by interpretatidicauses), the property is verifieit.
is defined as follows :

- B¢ : C - {true, false} ; If there is an empty cause tien= true

- The Boolean function8e describes with which results (by release of &jethe property is verifiede is
defined as follows :

- Be : E - {true, false}
3.5. Short examples

In a manufacturing process, an activity tfansforms one or several of its inputs in orderfurnish one or
several outputs taking into account constrainigsrand mechanisms as shown in Figure 2.

Control flows
(rules and knowledge)

Input flows o Output flows
(needs) Activity 4; 2 (objective)
Attributes Resources flows

(abilities and know-how)
Figure 4 : Activity seen as a transformation scheme

This activity induces then modifications in the ¢inin the form or in the space of some of theseatgpttributes
which corresponds then to one several of the ositptitibutes (Mayer 1995, Feliot 1997). This impleome
relation between the inputs and the outputs. Famgte, if the output is of energy type, this induteat one of
the input may be of material or of energy typehi@a $ame time. This kind of property may be wrotéolsws:
[ LActivity. Inputinformation / Inputinformation.OperahalDomain = Energy]
implication =)
[ LActivity.Outputinformation, ( Outputinformation.@jationalDomain = Material’/
Outputinformation.OperationalDomain = Energy) |

Last, the following property may allow the userdtgtect an error in the model. The property is tlieWing: ‘a
transport link ensures continuity of parts flow imanufacturing system between two sub-systeRigure 5
shows the model which may respect this propertghtiws a manufacturing process composed of andyilli
activity and a polishing activity. If the drill gtan is not near the polisher station or if the tfumctions (to
polish and to drill) are not assumed by the samehina, the user forgets some transportation agtiaitd
support as shown in Figure 15.

Technical data ~ Manufacturing Technical data  Manufacturing
order order
- Monitorin
0 manufacture part Machined Part

Part " Operators ~ Machines

" Operators Machines

Raw ) ) t» Monitoring P Part
m To Drill i To Polish | 1y Machined ) ) .
Drilled Part Drill station Polisher
Drill station Polisher fc
onveyor
Figure 5 : A part of a process model to check Figure 6 : Modified process model

The modeling language for the property specificatias been defined and integrated into the LUSR)liage
support tool (French acronym of Properties Speatifici Unified Language) used for specifying, manggand
formally proving a property (Chapurlat 2000).
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4. Domain ontology

Before representing knowledge as properties,nesessary to determine an ontology (Uschold 198d)jcdted
to what we need to represent in a given applicatmmain. Thus, the formalism chosen here was adapteake
into account the systemic concepts (Mayer 1995Moggne 1999, CEA 1998, Braesch 1995) and the other
concepts dedicated for Enterprise Modeling domédchlenoff 1996, Tissot 1999, ISO 2002) by the
construction of an object class model by usinguh#ied Modeling Language (UML). This formalism hlasen

used taking into account its readability, the opyity to represent concepts and relation and tloeigtrial
recognition of this modeling language.

Thus constituted, the obtained set of conceptgaations can represent a common base of a modaligyage
allowing the user to describe each enterprise dzgtan part. This point allows the authors to lenkd to justify
the presented work concerning V&V approach withdhtual work in progress on Unified Enterprise Modg
Language (UEML) (Vernadat 2002, Vallespir 2003, alse www.UEML.org) which aims on the definition af
common enterprise modeling language. Figure 7 steosimplified version of this concept lattice corspd by

a pre-defined set of concepts. It is divided irdarfparts: abstract types, behavioral types, moddipes and
the entity types.

Couping OppositeTo
‘TechnologicRessourceFro)'n \ML/ N
\ = \\
"777777‘77 7777777777777777777 \'\\\
“ — Processor ‘
| = }
| /\J | ‘r
/ “
| - |
‘Environme”{ ‘SyStem‘ |
|
i
/1 Process Function
/1

| /1 ik
\ /o ‘ |
\ / “ \ ‘ \
\\ / \‘ \\\ ‘ ‘ \\

| \ \
‘ TechnicalResourcé ‘ Enterprise‘ ‘ Equipme;w ‘AtomiCACtiVityPSI‘ ‘ \\ ‘XorPSL(\
‘PosetActivityPSLL\ | ComplexPosetActivityPSL

Software Hardware ‘ NonDeterministicChoiceActivityPSiL

N
Machine
Figure 7 : Extract from one of the object diagrams showingah®wlogy

5. Properties reference matrix

As shown before, specifying a property needs toaekill the facts from the model and to add some facts
extracted from its environment by using the dormmitology. However, the specification work remaiifiiclilt

for a non specialist user taking into account fdromacepts such as those presented in (Van Lamde/&800)
and the model presented before.

First it is necessary to fix some idea about thal @b the V&V step which has to be done. There tettisee

possible perspectives of analysis (CEA 1998) wkih be used independently from the other ones @hvdan
be combined:

- Stability which aims on the ability of the system to maimtés viability all along its life (that is to sap
maintain a sufficient relation between its struetand its coherence).

+ Reliability which aims on the ability of the system to redslobjective (that is to say to ensure its function
with a high level of compliance).

- Integrity which aims on the ability of the system to stalgerent and to be able to ensure its function.

Second, the goal is then to develop a propertits lolzse called Properties reference matrix (Chap@02). It
gathers usual knowledge describe by using propedglel considering a given application domain, &giget
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of modeling language and taking into account aesyit vision of the pointed out system and/or madel
analyze. These properties cannot be proved onengivwdel because of these generic nature. They Imeust
instantiated(the user create an occurrence of the genericeptypy filling in its causes, effects and relaj)iam

to be simplyinterpreted(the user can be inspired by this generic property

The property reference matrix uses a property bgolhich has been inspired from a literature azmbarch
works analysis such as (Paynter 1961, Lamport 1BBhna and al. 1990, Manna and al. 1992, Berry 1993
Sahraoui, 1994, Feliot 1997, CEA 1998, Lamboley1d0This typology, summarized in Figure 8, discettmse
kinds of properties :

« System properties: These properties express the constraints anfditiséonal or not functional requirements
in which each system of a given application donmifor will be) subjected and its assigned objestivi hey
are properties of functioning (temporal or not), safcurity, of volume, describing needed performance
(productivity, availability, reliability and so on)

« Modeling Language properties: These properties describe the model structyrel€fining and representing
the modeling language construction rules and thesiple existing constructs proposed in the modeling
language), the behavioral laws (by defining executules effects on the model (Chapurlat 1999)) thed
possible properties of liveliness, completeneskemnce, of reinitializing, describing the presencehe
absence of parallelism, of synchronization mecmagji®f sequence, of temporary or definitive blogkamd
so on. For example, considering Petri Nets moddtinguage, the Model Properties describe structutes
concerning places and transitions placement, mgnkattor evolution, temporal hypothesis of synckmon
or parallelism and so on.

- Axiomatic properties: They permit to describe basic knowledge, thatoissay a set of information
collectively and unanimously recognized and acakpteh as laws of nature, norms, standards andaise
existing property which is already verified for theer. Thus, they are indisputable and the userahegse
them as facts for describing and proving other grigs.

T
Nl
System
(Anti system)

Modeling language|

e~
M~

Axiomatic

C———

Figure 8 : Property reference matrix classification

6. Properties graph

The properties reference matrix help the user tosé and to specify the relevant properties he ssanprove.
The results of this specification phase is a giapkhich:

- each nodes represents the different sets of fantdered as causes or as effects of a given pypper
- each arc represents a typed relation between theses and these effects .

This graph takes into account simultaneously thewkedge about the model, the modeled system and its
environment. All this knowledge is described byngsithe unique property model (and then the modeling
language LUSP). That allows to take into accouhttlib knowledge simultaneously and with the same
mechanisms of analysis. In order to structure ser’'si work a properties graph may be representedthsd
axes area in which:

« The first axe calletargetallows to separate into three level of detail vdratthe different objects (systems or
models of these systems) which represents thettafghe V&V step or which interact with this tatgend
can influence then the V&V results. These objeotschiosen by the user by respecting the selectagsis
perspective (stability, integrity, reliability or @mbination of them). The central level callecereft level
highlight the pointed out system which has beeneteaaiand the resulting model representing the V&¥lg
The upper level called upper referent allows tades the pointed system’s environment regardieguer’s
point of view. For example if the user has chodahikty perspective the upper referent may represéher
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all the encountered process in the company whétleeprocess’s customer inputs/outputs. For eachenef
level it may then possible to define several uppé&rent. The lower level is composed of other cigjésub
systems, sub models) which compose an interactatgyank either corresponding to the decomposition
whether having the same global behavior from theablbelonging to the referent level. Each of thissee
levels is connected with the above respecting rilleese ones depends on decomposition rules impysad
given modeling language if the referent level obigs@ model or user decomposition point of view i§ the
system.

The second dimension callégbology permits to separate system and model properta@se&ch ones, it is
then necessary to clarify the properties whichcarenected to the structural aspect, to the bera\dspect or
to the functional aspect expected from the objech@sen considering the target axe. Systems prepenay
be interpreted or instantiated taking into accdbet properties reference matrix. They representtteal
state of the system or the needs at which the mystast respond in term or performance and consirain
Model properties are issued from the translatiomodleling language properties.

The third axe is calletime Past, present and future of an object O musakentinto account in order to
manage the possible evolution of the propertigd.df allows the user to reuse part of existingperties and
to complete them during life cycle evolution of theget.

Figure 9 summarizes these three axes and eachmzgsbe considered as a property graph. Figure G@shn
example of these different object. The referentliés then defined by a given process to improwt the user
wants first to verify its model. Doing this needsdefine what is the environment of this process what the
possible sub systems. In the same idea it mayseg@ne model describing this environment or eacthede
sub systems. The information gathered into thesemedels must be then employed for the V&V phase.

Target 4

Target 4 System Model -

Time &

Other
Rt D B interacting
................... Super Referent Super Relf:\;zlm enterprise Process 1
level processes model
Properties graph of
the Upper system i
needed in the i | | The pointed ou The process
future Referent i Referen Process to model to be
level i level improve analysed
Actual properties |
"""" graph of the model '
A sub s
Upper Referent Upper Referent | pro u -
level level | L—_| An ACtl\élt);
Typology Activity mode Typology
_i"Past Past System -~ Model -~
_i-"Now Now Sl Socadl
_________ ~Future Fut‘u(r/
Time

Figure 9 : Property graph represented as a third

dimensions area Figure 10 : Property graph objects example

7. Conceptual graphs

It is necessary to dispose of a set of mechanidmsiag us:

To manage all the previous highlighted knowledgeM&V steps. As shown before, this knowledge occurs
from user’s specified properties which are gathémémlthe properties graph. However additional kieolge
depending directly from the system or from its eowiment but which may be absent and not alreadpetef
into the property graph have to be added again.

To prove formally the proposed properties. Thissghaay use different kinds of concepts and toalsiiRy
1995). It may be based on some theorem prover asicteves (dedicated only for the Z modeling (Barden
1994) language which is more appropriate for prgpuvine structure coherence and adequacy of a given
modeling language even a model than propertiesopoped below). It may also use model checkers asich
PVS (Owre 1999), Stanford Temporal Prover STeP r(jp 2001), SMV (see http://www-
2.cs.cmu.edu/~modelcheck/smv.html), SPIN (Holzm2é83) and other. All these tools are formal proof
tools based mainly on state diagrams or transitimalels properties verification and data analyskeiT
utilization, very limited in Enterprise Modeling ohain, can then make easier proof of behavioral gn@s if

the modeling language uses the same conceptstef sansition and temporal hypothesis. Last, fiiase
may use simulation or emulation tools allowing tiser to execute the model by taking into accoumteso
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pre-defined scenarios. This kind of solution is rewvell known one in the industry but the problesmes

first from the scenarios, second from the executi@ehanisms used. Scenarios may be subjectivejgtien

or wrong defined (for example, some particular egldvant events or system'’s situations may be &gjor
Execution mechanisms i.e. the set of evolutionsrale not sufficiently formally defined (Petit 19%anetto
2001) in an indisputable way. So, the simulatioly gige some questionable results.

- To make emerge new knowledge allowing the useomoptete again and again its system’s representation

This research work intents to ameliorate and temxthe existing V&V concepts in Enterprise Modglin
domain. So, the Conceptual Graphs have been chostre followings reasons (Kamsu-Foguem 2003)stFit
allows to conceptualize the pre-defined domain logip as a formal vocabulary. Second, it disposes afnge
of formal reasoning mechanisms (rules, projectinst order logic isomorphism and other) permittiimgverify
facts and to complete (or to make emerging) a neawkedge by combination of existing knowledge.

The goal now consists to define the adapted voeapund to translate the model and the propertiaphy
obtained before in order to use the reasoning m&dsciated to conceptual graphs.

7.1. Formalism Presentation

A simple conceptual graph is a finite, connectacbatied, and bipartite graph composed of two kiofinodes
calledconceptsandconceptual relationsA conceptis composed of a type and a marker:

[<type>: <markep]
In which:

- typerepresents the concept typology which is necedsatgscribe a given domain. They are groupedanto
hierarchical structure called concept lattice @senplified version of it in Figure 12).

- markerspecifies the meaning of a concept by specifyimgacurrence of the type of concept. They can be of
various natures, in particular individual or geaeri

For example Process Customer needs definitibmeans thaCustomer needs definitias one the numerous
processes of the enterprise. Its represents thenamrence of thBrocessconcept into the modeled domain.

A conceptuatelation binds two or many concepts according to the falhmwdiagram:
[C1] - (relation) — [C2] (means "C1 interact with C2 loglation")

For example, Activity: To specify needs list (usage — [Actor. Specialist means that Mister Jones who is an
Actor uses the computer2. Each relation is charizei by asignaturewhich fixes its arity and gives the types
of concepts which are in relation. A relation ledtiis established (see a simplified version ohiFigure 13)
allowing to organize all the needed relations.

The pre-defined ontology is then translated inte thvo needed lattices allowing to separate concapts
relations. The translation rules used are the fioligs:

UML Treillis
Class Concept
Inheritance Concept hierarchy
Encapsulation Nested concepts
Method Relation
Relation Relation
Attribute Relation

Figure 11 : Object Diagram / Lattice translation rules
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I

‘MathematicalRelation‘ ‘ CausalRelation ‘ ‘ UsualRelation ‘

—{ SetRelation ‘ —{ Influence ‘ Agent ‘ \ \ [ |
‘ AbstractConcept ‘ BehavioralConcept ‘ ModelingConcepts ‘ ‘ EntityConcepts ‘
—{ Emergence ‘ Actor ‘
BelongTo
—{ Immergence ‘ ObjectOf ‘
Includedin <‘ Attribute ‘ # Event ‘ # ProcessModel ‘ PhysicalEntity ‘
—‘ TemporalRelation
{ Situation ‘ { State ‘ { PropertyModel (CREDI) ‘ SetOfEntities ‘
{ Verh ‘ # Transition ‘ # ModelingVariable ‘ LogicalEntity ‘
omoansol { Data ‘ { Behavioral Rule ‘ { ModelingParameter ‘
{ Knowledge ‘ # Action ‘ # ModelingFunction ‘
—
Time
Life cycle st
—‘ LogicalRelation
Figure 12: Extract from Concepts lattice Figure 13 : Extract from Relations lattice

The Figure 14 illustrates how a given model is themslated by using these two lattices into a epheal
graph. Due to the text size, the translation rakesnot presented here. The same rules are thdrtas@nslate
each of the graph properties into several littl@osptual graphs allowing the user to use now thiendd
mechanisms associated to the conceptual graphdén  prove each of these property.

Concept lattice Relation lattice
Relation(T,T)

Nature(2,T,Type) \
ype Activity
Transform(2,Activity,Fact)

AN
In(2,Fact,Activity)

Concept
(Generic) Relation

\
\

Activity: Al

Instance of CNature>
concept
issued from

Type: Material
model I Type: Transportation l I Type: Energy l

Figure 14 : Use of lattices for model translation into a cortaapgraph

\
\

\

\
h |

Output: 02

7.2. Reasoning concepts and mechanisms: First order logic isomorphism and canonical formation rules

(Sowa 1984) has established the existence of anoigzthism between the Conceptual Graphs and fidror
Logic. For that, an operatdp has been defined in order to translate concepfitzgdhs into a set of first-order
formulas manipulating predicate and logical relagio

- Eachconceptual relatiobetween two concepts is translated into an n-eeglipate
- Eachconceptds transformed into an unary predicate
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- Each individual marker becomes a constant
- Each generic marker becomes a quantified variable.

Thus, this operator provides a formal semantidheéoconceptual graphs. In the following example, sbntence
"James, the employee drills a part" which is repmésd by the conceptual graph G will have, as anvabpnt
logical formula®(G) :

G : [Employee : James]. (agent) - [Machine : drill] — (object) ~[Part : *]
®(G) : [, (Employee(James)] Machine(drill) O Part(x)J Agent (James, drill)] Object(x, drill))

In addition, Sowa defined four elementary operation the conceptual graphs, calashonical formation rules
which allows to handle them easily and to deriveorecally from other graphgopy, restriction, simplification
andjoint. These basic operations allows to handle and tsfivam graphs containing one information into other
graphs that may contain a new unexpected informatiovhich appeared not very interesting to the elerd a
new property can then emerge from the graph otiegiproperties and be thus proposed to this modele

7.3. Reasoning concepts and mechanisms : Projection

The handling operation callggrojection is the basic operation of a reasoning processoitaptual graphs.
Projection corresponds to a graph morphism. Thggtion search of a graph G in a graph H can be asd¢he

inclusion search of the information representedzbiy H. This leads to calculate a specializatiotwieen two

graphs.

7.4. Reasoning concepts and mechanisms: Graph Rules

The conceptual graptules (Salvat 1996) permit to represent knowledge infthien of inference rules of kind
"If information H is in a graph, information C cée added to this graph". H and C are expressedrasptual
graphs related by co-reference links between soomeept nodes. In other words a rule is composednof
hypothesis and a conclusion, and is used in tHewialg classical way: given a simple graph, if thgothesis

of the rule projects to the graph, then the infdfamacontained into the conclusion is added todtaph. In this
way, we define static rules to express some imnheitdbmain laws and dynamic rules to model the world
evolutions with the change conditions of states :

Dynamic-rule (Transport)

State:cause

Event CreceiveD
Become e
o @5

State:effect

[Trraporet }-»Cagai—»{ersele— o+ e

Figure 15 : Example of dynamic rule

7.5. Reasoning concepts and mechanisms: Constraints

A constraintdefines conditions for simple graph to be validslcomposed of aonditionpart and anandatory
part. The condition must be a simple graph. Inipaar, a condition can be ampty graph Roughly said, a
graph satisfies a constraint if for every projectif its condition part, its mandatory part alsojpcts to the
graph. We consider positive and negative consgaifit positive constraint expresses a property aghf
information A is present, then information B mulsibabe present’A negative constraint expresses a property
such asif information A is present, then information B inios abserit

Hence, constraints are used to check validity ofldvd-or example, leG be a simple graph. The grag
satisfies a positive constrait if every projection of the condition &fc into G can be extended to a projection
of Pcas a whole. The grap@ satisfies a negative constraMc¢ if no projection of the condition dfic into G
can be extended to a projectionMd as a whole. It allows to verify the graph G valydibat is to say all the
properties modeled as constraints are satisfied.
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7.6. Application example

This way, conceptual graphs provides inference iaugisins for proving properties by using projectiones
and constraints. These demonstrative abilities nvakdation knowledge possible. For example, if semsider
an enterprise hierarchy (departments, workshopes)yant to verify the following properfy; :

P, “a department and an exterior workshop have @negm in common at the most ”.
For doing this, it is possible to use the negatimestrainiNc (see Figure 16) and the rifg presented below:
Nc “incompatibility of membership relation with nenembership relation”

R; “if two persons x and y working in a workshop €& @he members of a same department D, then all the
persons of the workshop C are members of this tiepat D .

Figure 16 : The negative constraint Nc

The proof by reductio ad absurdumRyfin natural language is as follows : supposing ihahe company, there
are two different personsandy which both are the members of a department D amdrkshop C, with C is not
a subset of D. The previous riRetells us that all the persons of the workshop Onaeenbers of this department
D, therefore C is a subset of D. This result bediesstarting hypothesis, so it all goes to prokapprtyP;. This
proof by reductio ad absurdum (method of proof Whicoceeds by stating a proposition and then shpttiat

it results in a contradiction, thus demonstratimg proposition to be false) is formalized in cortaebgraphs as
follows:

« The starting hypothesis of proof is representethbyconceptual grap@hin Figure 17.
« The result of the application of ruig to graphGhis represented by the conceptual gr&ghn Figure 18.

- The condition of negative constraint Nc is the gmgtaph, which can be projected into Gc. And this
constraint is violated since there exists a prajacdf Nc as a whole into Gc. It's a contradictinrierms, so
the proof of property fs establish

A

Figure 17 : Graph G of the starting hypothesis to prodfigure 18 : Graph G resulting from the application of
rule R, to graph G reveals one contradiction

8. Conclusion and Perspectives

The property is an opportunity allowing an usecémnplete knowledge about a complex system andrtodiy
investigate about it by using some formal mechasjsancepts, ontology and tools supporting Vetiiisaand
Validation step.

Evolution perspectives of this work are numerous Wwe will focus on the two following axes. Firsteth
proposed approach stays for the moment a littledisitributing for an engineer or a consultant irarge of

several processes. It is then necessary to deweélepme supporting and automated tools. Secomsdniécessary
to integrate this approach in a global ‘Enterpiedeling and Analysis’ method in which it will begsible to

improve the V&V abilities of the main modeling appches used in industry.
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