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Abstract: This paper presents a gain-scheduling method applied to flight control
law design. The method is a stability preserving interpolation technique of existing
controllers under observer-state feedback form. Application is made on a flexible
civil aircraft example considering multiple scheduling parameters. Although the
interpolation technique gives powerful a priori stability guarantees, the sufficient
condition to satisfy leads to conservative results in practice. We thus use a fixed
observer model and check stability and performance thanks to µ-analysis. Provided
results are really satisfactory for a final controller of little complexity. Copyright
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1. INTRODUCTION

”For at least the last few decades, Machines that
walk, swim, or fly are gain scheduled” (Rugh and
Shamma, 2000, in (Rugh and Shamma, 2000)).
This is almost true in the aerospace community.
Gain-scheduling is one of the most common way
to take into account plants non linearity in con-
troller design. In spite of the wide application
field mentioned by (Rugh and Shamma, 2000),
gain-scheduling was rarely addressed within the
research community before the beginning of the
nineties. Two major surveys (Rugh and Shamma,
2000; Leith and Leithead, 2000) give a good
overview of the available techniques.

All those methodologies make the controller coef-
ficients continuously varying according to the cur-
rent value of scheduling signals through the same
procedure. Step 1: compute a Linear Parameter
Varying (LPV) model of the plant. Step 2: use
linear design methods to compute a family of lin-
ear controllers. Step 3: implement the controllers
family such that the controller coefficients vary

according to the scheduling parameters. Step 4:
assess performance and return to step 2 if nec-
essary. The first step excepted, we can however
distinguish two main classes of gain-scheduling
techniques. The first are a posteriori scheduling
methods based on interpolation of a Linear Time
Invariant (LTI) controllers set represented by dif-
ferent ways: zeros, poles, gains of transfer func-
tion, riccatti solutions of H∞ problems, observer
and state feedback gains, balanced state space
representation.The second are a priori scheduling
techniques that combine the second and the third
steps. Examples are given by LPV or LFT control
design.

The Airbus current procedure consists of de-
signing a set of linear controllers (Kubica and
Livet, 1994) associated to a system operating
domain gridding, interpolating static gains and
switching dynamic filters, and finally analyzing
stability and performance on the whole operating
domain. This technique is closely linked to the
controller shape that enables to distinguish the
static gain and the dynamic filter parts. Recent
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works on multi-objective control design (Puyou
et al., 2004; Ferreres and Puyou, 2006) lead us
to challenge the previous controller structure. We
want thus to modify the associated gain schedul-
ing technique in order to handle the general Multi-
Input Multi-Ouput (MIMO) controller form in
case of multiple scheduling parameters.

In order to stay close to the current schedul-
ing methodology (mainly to apply in-flight tun-
ing techniques), we have here chosen to develop
a stability preserving interpolation technique of
existing controllers under observer-state feedback
form extending (Stilwell and Rugh, 1999) to LMI
stability region in the case of vector scheduling
variable. We will apply it on the example of air-
craft longitudinal feedback control law design.

The paper is organized as follow. First, results
on interpolation of observer-state feedback con-
trollers are presented. Then application issues are
detailed. We perform application in a third part
before concluding.

2. GAIN SCHEDULING TECHNIQUE

Let’s define:

• θk ∈ [θk,min; θk,max] ⊂ R, k = 1..l, the
scheduling parameters.

• Θ the scheduling parameter vector such
that 1 (Θ)k = θk.

• Γ =
{

Θ ∈ Rl, ∀k = 1..l (Θ)k ∈ [θk,min; θk,max]
}

the admissible scheduling parameter vector
space

• θk,ik
, ik = 1..rk, rk scalar values of θk with

k = 1..l.
• Θi = Θ(i1,..,il) a scheduling parameter vector

value such that
(

Θ(i1,..,il)

)

k
= θk,ik

.
• XΘi

= X(Θi) the evaluation of the Θ depen-
dent matrix X(Θ).

• Fl the lower LFT

Let’s consider a plant of the form:
{

ẋ = A(Θ)x + B(Θ)u
y = C(Θ)x + D(Θ)u

(1)

State space representation 1 will be also noted
(A(Θ), B(Θ), C(Θ), D(Θ)).

We make the hypothesis that Θ contains slowly
varying parameters, so that we can consider (1)
as an LTI system.

The aim of the following method is to gener-
ate a continuously varying family of controllers
given under the observer-state feedback form
(Kc(Θ), Kf(Θ), Q(Θ, s)), respectively the state
feedback gain, the estimator gain and the Youla
parameter.

1 (.)k represents the kth coordinate of a given vector

Due to the separation principle, the closed-loop
eigenvalues can be independently separated into
the closed-loop state feedback poles, the closed-
loop state estimator poles and the Youla param-
eter poles. We here consider the case of a static
youla parameter, so that we must ensure stability
of the state feedback A(Θ) + B(Θ)Kc(Θ) and the
state estimator A(Θ) + Kf(Θ)C(Θ) to guarantee
the closed-loop stability. In the case of scalar
scheduling variable, Stilwell and Rugh (Stilwell
and Rugh, 1999) present results on interpolation
techniques of initial controllers set. Under stabil-
ity covering condition, the methodology enables
to stabilize the plant on the whole parametrical
domain. We are now going to present results that
extends Stiwell and Rugh approach (Stilwell and
Rugh, 1999) to LMI stability region in the case of
vector scheduling variable. Let’s first define:

Definition 2.1. (LMI-region). Let P = PT and Q

be real matrix. LMI-region is defined by a region
D:

D =
{

s ∈ C |P + Qs + QT s̄ < 0
}

Definition 2.2. (D-stability). Let A be real ma-
trix and D a LMI-region. A is said D-stable if
all its eigenvalues are contained in the region D.

It is then possible to extend the classical Lya-
punov stability characterization to the LMI region
case (Chilali and Gahinet, 1996).

Proposition 1. ((Chilali and Gahinet, 1996)). Let
A be a real matrix, A is D-stable if and only if
there exists a symmetric definite-positive matrix
X such that 2 :

P ⊗ X + Q ⊗ (AX) + QT ⊗ (XAT ) < 0 (2)

Let’s now define the D-stability covering condi-
tion.

Definition 2.3. Let D be a LMI stability region,
A(Θ) and B(Θ) given as in (1), Θ ∈ Γ ⊂ Rl, sup-
pose the state feedback gain Kc(i1,...,il)

is such that

(A(Θ(i1,...,il)) + B(Θ(i1,...,il)) Kc(i1,...,il)
) is stable

for all {ik = 1 . . . rk}k=1...l. Let
U(i1,...,il), containing Θ(i1,...,il), be an open neigh-
borhood such that A(Θ) + B(Θ)Kc(i1,...,il)

is D-
stable for each fixed Θ ∈ U(i1,...,il). If Γ ⊂

⋃

{ik=1...rk}k=1...l

U(i1,...,il) then we say that the state

feedback gains satisfy the D-stability covering

condition.

We can propose a continuous state feedback gain
that ensures the D-stability on Γ.

2 ⊗ represents Kronecker product



Theorem 2.4. Let P = PT and Q be real matrix
defining the LMI-region D. Given A(Θ) and B(Θ)
as in (1), θ ∈ Γ ⊂ Rl, suppose the state feedback
gains Kc(i1,...,il)

corresponding to Θ(i1,...,il) ∈ Γ
with ik = 1 . . . rk and k = 1 . . . l, satisfy the
stability covering condition. If there exists γ > 1
and symmetric positive-definite matrix W(i1,...,il)

such that for all {ik = 1 . . . rk}k=1...l

P ⊗ W(i1,...,il)
+ Q ⊗ (A(Θ) − B(Θ)K(i1,...,il)

)W(i1,...,il)

+QT ⊗ W(i1,...,il)
(A(Θ) − B(Θ)K(i1,...,il)

)T ≤ −γI

with Θ ∈ U(i1,...,il), then there exists intervals

[b(i1,...,il)
, c(i1,...,il)

] ⊂ U(i1,...,il)
. . .

⋂

U(i1+1,...,il+1)

⋂

[Θ(i1,...,il)
,Θ(i1+1,...,il+1)]

, for all ik = 1, . . . , rk − 1 and k = 1, . . . , l, such
that the continuous state feedback gain Kc(Θ) is
equal to:






Kc(i1,...,il)
, Θ ∈ [Θ(i1,...,il)

, b(i1,...,il)
)

K̃c(i1,...,il)
(Θ)W (Θ)−1 , Θ ∈ [b(i1,...,il)

, c(i1,...,il)
]

Kc(i1+1,...,il+1)
, Θ ∈ (c(i1,...,il)

, Θ(i1+1,...,il+1)]

where 3

[

K̃c(i1,...,il)
(Θ)

W (Θ)

]

=

∑

{jk=ik...ik+1}k=1...l

[

Kc(j1,...,jl)

I

]

. . .

W(j1 ,...,jl)

∏

h=1...l

((

c(i1,...,il)
− Θ

c(i1,...,il)
− b(i1,...,il)

)

h

δih+1,jh
. . .

+

(

Θ − b(i1,...,il)

c(i1,...,il)
− b(i1,...,il)

)

h

δih,jh

)

guarantees D-stability on Γ.

Remark: Linear interpolation case is obtained
when Lyapunov functions W(i1,...,il) are equal to
identity.

A continuous state-estimator gain Kf(Θ) com-
putation method that guarantees D-stability of
A(Θ)− Kf(Θ)C(Θ) can be extended in the same
way from Stilwell and Rugh results. Concerning
the Youla parameter, we will consider in the ap-
plication the case of a static parameter. Therefore
linear interpolation is enough. Nevertheless, if is
needed, transfer function interpolation method
that guarantees D-stability must be investigated
to tackle the dynamic Youla parameter case.

3. INTRODUCTION TO THE APPLICATION

3.1 Application issue

The flight control law requirements are widely
described in (Puyou et al., 2004). We are dealing

3 δi,j is defined by: ∀(i, j) ∈ N
2 , δi,j =

{

1 if i = j

0 if i 6= j

in this article with the case of longitudinal aircraft
control design. Here are summarized the main
specifications:

Handling qualities: they are mainly specified
through time domain requirements and are dedi-
cated to feedforward part of the controller. The
feedback part of the controller is assumed to
enhance the rigid body modes damping to more
than 0.5

Comfort: Comfort level improvement is linked to
minimisation of the frequency domain maximal
response of vertical accelerations at the front of
the fuselage on wind input: ‖Twind→Nzfront

‖∞

Loads: Loads alleviation is linked to power spec-
tral density reduction of aircraft vertical accel-
eration response on the wing on wind input:
‖Twind→Nzwing

‖2

To fulfill the previous requirements on the whole
flight domain two scheduling parameters will be
used in the feedback controller computation:

• Vc: the conventional speed 4 varying between
145kt and 330kt.

• ω2NW : the first bending mode (two nodes
wing (2NW) bending mode) natural fre-
quency varying between 1Hz and 2Hz.

Remark: We will note δVc
and δω2NW

the nor-
malized scheduling parameter respectively corre-
sponding to Vc and ω2NW .

3.2 Control law architecture

The fly-by-wire architecture enables any kind of
control architecture. Fig. 1 we give a conventional
one for longitudinal control. The pilot’s orders are
transmitted by the side stick and correspond to a
vertical acceleration Nz objective. The measure-
ments are:

• Nz: vertical acceleration
• q: pitch rate
• Nzwing: vertical acceleration on the wing

The pilot’s orders and measurements are mixed
through feedforward and feedback controllers to
produce orders for the ailerons (dp) and elevator
(dq). Let’s note that we only deal here with
feedback part of the controller.

Feedforward
H(s)

F
ee

db
ac

k

K(s)

Nzc

1
s

+
+

Nz
q
Nzwing

+

+

Aircraftdp
dq

Fig. 1. Longitudinal law architecture

4 expressed in ’kt’ for ’knots’



3.3 LFT modeling

One key issue is to compute parametrized model
of aircraft with respect to the selected scheduling
parameters: Vc and ω2NW . We consider (Cf. Fig.
2) a state variable aircraft representation built
by coupling rigid and elastic body models (see
(Kubica and Livet, 1994) for more details).

Because aerodynamic coefficients usually depend
on V 2

c term, we chose to build quadratic speed
dependent rigid aircraft state-space model. Each
matrix of (A(Vc), B(Vc), C(Vc), D(Vc)) will thus
has the form of A(Vc):

A(Vc) = A0 + A1Vc + A2V
2
c (3)

To do so we use three non parametrized state-
space models (computed for three different speed
values) and apply LFR toolbox (v2.0) (Hecker
et al., 2004) routines. The provided rigid aircraft
LFT model has so a 8 order variation block ∆r,
which only parameter is δVc

.

Regarding flexible model, real modal state-space
representation is chosen to highlight dependence
on bending mode natural frequency. If natural
frequency variation is noted : ω = (1 + δω)ω0,
first order variation approximation can be made
so that elementary bending mode state-space rep-
resentation can be written:

ẋ =

[

−2ξω −ω2

1 0

]

x + bu

Conversion to LFT of flexible aircraft (using
previous approximation) is detailed in (Ferreres,
1999) and implementation is made using LFRT.
The provided flexible aircraft LFT model has so a
2 order variation block ∆f , which only param-
eter is δω2NW

. Let’s note that flexible aircraft
model dependency on conventional speed is not
made explicit. Bending mode natural frequency
variations, induced by speed changes, are covered
by δω2NW

and amplitude variations, induced by
speed changes, are covered by worst case ampli-
tude model (maximum speed model indeed).

4. GAIN SCHEDULING APPLICATION

4.1 Initial controller

We have developed in previous work (Puyou
et al., 2004) a multi-objective control design
technique based on convex design (Ferreres and
Puyou, 2006). This methodology is here used to
compute initial controllers. We chose three speed
points corresponding to Vc = 145kt, 230kt and
330kt, and three pulsation points corresponding
to ω2NW = 1Hz, 1.5Hz and 2Hz. We thus gener-
ate nine initial controllers KVc,ω2NW

. In order to

Fig. 2. LFT closed-loop model

highlight gain-scheduling interest, we attempt to
maximise the robustness to Vc and ω2NW varia-
tions under performances constraints. We there-
fore succeed in producing compensators that still
stabilize the plant model on the nearest gridding
points, but do not reach performance objective
out of design point.

4.2 Straightforward approach

4.2.1. Principle The first step is to deduce the
observer-state feedback controller form from the
initial controllers. We use (Alazard and Apkar-
ian, 1999) to do so. They both have shown that
any compensator (which order is higher than the
system one) can be put into the observer-state
feedback form (Kc, Kf , Q(s)). The equivalent rep-
resentation of the controller K(s) stabilizing the
plant P (s), choosing any state-space representa-
tion (A, B, C, D) for the observer model, is noted
as follow:

K(s) = lqg(Kc, Kf , Q(s), A, B, C, D) (4)

Noting that there exists several choice of triplet
(Kc, Kf , Q(s)), one hot point of this technique is
to choose an invariant subspace of the closed loop
system matrix by repartition of the closed-loop
eigenvalues (between the state feedback closed-
loop, the observer state closed-loop and the Youla
parameter) that ensures a continuous path con-
necting observer-based realizations of initial con-
trollers. This problem is addressed by continua-
tion of the selected invariant subspace techniques
developed in (Pellanda et al., 2000). We must now
try to satisfy stability covering condition (2.3) to
be able to apply theorem (2.4).

4.2.2. Difficulties Initial controllers ensure ro-
bust stability of the feedback loop between the
design points. Therefore, for any design point
Θ(i,j) = (Vci

, ω2NWj
) and associated controller

KVci
,ω2NWj

, the feedback loop:



Fl

(

P (s, Θ), KVci
,ω2NWj

(s)
)

, is stable for Θ ∈ U ,

with U = [Vci−1 , Vci+1 ] × [ω2NWj−1 , ω2NWj+1 ].
Therefore if we note (Kc(i,j)

, Kf(i,j)
, Q(i,j)(s)) the

observer-state feedback form of KVci
,ω2NWj

, be-

cause of (4) equivalence, initial controller ensures
stability of the feedback loop (5) for Θ ∈ U :

Fl

(

P (s, Θ), lqg(Kc(i,j)
, Kf(i,j)

, Q(i,j)(s), . . .

AΘ(i,j)
, BΘ(i,j)

, CΘ(i,j)
, DΘ(i,j)

)
) (5)

To satisfy the stability covering condition, we have
to guarantee robust stability of the feedback loop
(6) for Θ ∈ U :

Fl

(

P (s, Θ), lqg(Kc(i,j)
, Kf(i,j)

, Q(i,j)(s), . . .

A(Θ), B(Θ), C(Θ), D(Θ)))
(6)

Despite of the initial compensators robustness
properties, we do not manage to fulfill stability
covering condition. In the first case (5), only the
plant model is dependent from scheduling param-
eter Θ, whereas in the second case (6), observer
model is also scheduled by Θ (in order to still
satisfy the separation principle). It thus clearly
appears that initial robustness properties are not
directly linked to stability covering condition ful-
fillment which also depends on (Kc, Kf , Q(s))
choice.

4.3 A practical approach

4.3.1. Principle We thus decide to take a fixed
observer model (Aobs, Bobs, Cobs, Dobs) for Θ ∈ U

whatever the initial controller KVci
,ω2NWj

:

K(i,j)(s, Θ) = lqg(Kc(i,j)
(Θ), . . .

Kf(i,j)
(Θ), Q(i,j)(s, Θ), Aobs, Bobs, Cobs, Dobs)

with (Kc(i,j)
(Θ), Kf(i,j)

(Θ), Q(i,j)(s, Θ)) of the form
as Kc(i,j)

(Θ) given hereafter as an example:

Kc(i,j)
(Θ) =

Vc − Vci+1

Vci
− Vci+1

(

ω2NW − ω2NWj+1

ω2NWj
− ω2NWj+1

Kc(i,j)
. . .

+
ω2NW − ω2NWj

ω2NWj+1
− ω2NWj

Kc(i,j+1)
+

)

. . .

+
Vc − Vci

Vci+1
− Vci

(

ω2NW − ω2NWj+1

ω2NWj
− ω2NWj+1

Kc(i+1,j)
. . .

+
ω2NW − ω2NWj

ω2NWj+1
− ω2NWj

Kc(i+1,j+1)

)

with, for ĩ = i, i + 1 and j̃ = j, j + 1:

KVc
ĩ
,ω2NW

j̃
(s) = lqg(Kc(̃i,j̃)

, Kf(̃i,j̃)
, Q(̃i,j̃), . . .

Aobs, Bobs, Cobs, Dobs)

This restores the original robustness properties
of compensator, but invalidates the separation
principle (only true if observer model is equal
to the system-to-be-controlled model ) and the
theoretical stability guarantees that have to be
checked a posteriori.

4.3.2. Results Results of the application are
really satisfying. We only need four initial points
(corresponding to the limits of the parametric
domain) to generate a scheduled compensator
that stabilizes the plant on the whole parametric
domain and provides an uniform level of perfor-
mances. Because computation of observer-state
feedback form is now made by linear interpolation,
conversion to LFT is straightforward using LFR
toolbox. The computed LFT controller has an 18
order variation block ∆c which parameters are δVc

(repeated 10 times) and δω2NW
(repeated 8 times).

Stability can be checked by µ-analysis on the
global closed-loop LFT model (Cf. Fig. 2). Ana-
lysis is implemented through Skew-mu toolbox
(Ferreres et al., 2004). Because of high level of un-
certainties repetition, µ upper bound computation
on the whole parametrical domain return a very
conservative result (conservatism is evaluated by
considering the gap between lower bound (=0.63)
and upper bound (=1.21)). We thus divide the
parametrical space into four sub-zones. The four
guaranteed stability domains are represented on
Fig. 3 (gray boxes). We can check that they cover
the whole normalized domain (doted-line box).

Fig. 3. Robust stability analysis

Handling quality performance can not be va-
lidated by robust D-stability because of poor
damping of flexible modes. We thus check mini-
mum damping requirement on rigid body mode
by cross sweeps on (Vc, ω2NW ) values. Root locus
visualisation (Fig. 4) shows that short period
mode fulfills the 0.5 minimum damping contraint.

Fig. 4. Rigid body roots locus on the flight domain



Comfort level assessment is defined as an H∞

performance problem whereas load alleviation is
an H2 criteria ‖Twind→Nzwing

‖2. Nevertheless load
is mainly induced by first bending mode frequency
domain response. According to in-house experi-
ence, its power spectral density level is linked to
its damping and to the H∞ norm of its frequency
domain response. Therefore robust performance

can be assessed by

∥

∥

∥

∥

Twind→Nzfront

Twind→Nzwing

∥

∥

∥

∥

∞

norm. Us-

ing main loop theorem, robust H∞ performance
under robust stability condition can be formu-
lated as a classical µ computation problem (see
(Ferreres, 1999) for more details) by adding fic-
titious performance block in the global variation
block ∆. µ upper bound computation provides the
same result that in the stability assessment case
(see Fig. 3), what means performance constraint
is not active in the resolved µ problem. In order
to compare gain scheduled controller performance
to the initial controller we can visualize (see Fig.
5) comfort and load transfer frequency domain re-
sponse on the middle point (Vc = 230kt, ω2NW =
1.5Hz) - which is the most far away from the
points involved in the scheduled controller com-
putation.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1
Comfort

P
S

D

Frequence (Hz)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

Loads

P
S

D

Frequence (Hz)

Open-loop

Initial closed-loop

scheduled closed-loop

Fig. 5. Comfort and loads for (Vc =
230kt,ω2NW = 1.5Hz)

5. CONCLUSION

This paper presents extensions of Stilwell and
Rugh stability guarantees on the observer-state
feedback controller interpolation to the case of
LMI-region stability for a vector scheduling va-
riable. Putting it into practice on a flexible air-
craft application was not an easy job. We faced
significant difficulties to satisfy the stability co-
vering condition through controller observer-state
feedback parametrisation. Although the theoreti-
cal guarantees are no more valid, use of a fixed
observer model on the whole parametric domain
make the scheduling easier. Stability is then a pos-

teriori checked by µ-analysis on the LFT closed-
loop model. Two way of improvements may be
considered in the future. First way is introduction

of a non constant Lyapunov matrix (e.g.piecewise
linear) in order to reduce conservatism of the
method. Second way is development of an a priori

gain scheduling technique. A first experimentation
was made in (Ayache et al., 2006) using robust
modal control but further work has to be done
in order to include scheduling in a multi-objective
synthesis.
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