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Abstract:  

The load transfer in hybrid (bolted/bonded) single-lap joint is complex due to the association of two different 
transfer modes (discrete and continuous) through elements with different stiffness. Analytical methods exist for 
these two different modes, when considered separately. In this paper two one-dimensional elastic analytical 
models are presented for the determination of the load transfer in single lap configuration. The first one is 
developed by using the integration of the local equilibrium equations. From this first method an elastic-plastic 
approach is presented. The second one uses the Finite Element Method, introducing a new element called 
“bonded-bar”. These models are robust, easy to use and provide the same results. They allow to analyze the 
load transfer and to evaluate different geometric and mechanical parameters’ influence. Thus they represent the 
first step for the design of a hybrid joint able to replace its bolted equivalent used on aircraft. 

Key words: hybrid (bolted/bonded) joint, single-lap joint, load transfer, analytical 
analysis, Finite Element Method   

Nomenclature 

( )jE  : Young modulus of the adherent j in MPa 
G  : Coulomb modulus of the adhesive in MPa 

)( j
iu  : Longitudinal displacement in mm of the adherent j in the bay i 

b  : Transversal pitch in mm 
di  : Abscissa of the fastener i (d: edge distance in mm; s: longitudinal pitch in mm) 
e  : Thickness of the adhesive in mm 
e(j)  : Thickness of the adherent j  
L  : Length of the lap mm 
Lg  : Length of the left bar not bonded in mm 
Ld  : Length of the right bar not bonded in mm 
xp  : Length of the plastic region in mm 
Tp  : Plastic adhesive shear stress in MPa 
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N  : Normal force in N 
T  : Adhesive shear stress in MPa 

 

Figure 0. Nomenclature 

1  Introduction 

 The joints under study are joints of civil aircraft. The longitudinal joints of the fuselage are 
investigated. These longitudinal joints of fuselage are composed of aluminium sheets and 
titanium bolts. The developed method, which is presented in this paper, has to apply to the 
other joints on aircraft.  
 This paper deals with load transfer in hybrid single-lap joints. Hybrid joints are 
bolted/bonded joints, then associating a discrete transfer mode with a continuous one, each 
one belonging to its own stiffness. The bolted joint (discrete transfer mode) generates a high 
overstress around the holes of the fasteners which is prejudicial to the fatigue resistance. The 
bonded joint (continuous transfer mode) allows a better distribution of the transfer; however it 
presents a plastic accommodation which is prejudicial to the static strength in the long term. 
In the domain of aircraft structure assembly, the hybrid joining could be interesting because it 
could reduce the load transferred by the fasteners in order to improve the fatigue life, while 
ensuring static strength under extreme loads. The idea is to design the hybrid joint in order to 
share the load between the adhesive and the fasteners in a suitable way. That’s why the 
influence of the joint geometry and the material properties on the load transfer is investigated 
by means of developing efficient designing tools. Analytical approaches are thus privileged.
  
 Analytical methods exist for the two elementary transfer modes. The second and the third 
parts of this paper deal respectively with the analytical model of bolted joints design and with 
the analytical model of the bonded joints design, which will be used again within the 
analytical approaches of hybrid (bolted/bonded) joints. In the fourth and the fifth part two 
elastic one-dimensional analytical models are presented for the determination of the load 
transfer of hybrid joints in single-lap configuration. The results presented in the sixth part 
concern only the load transfer obtained from these models, although the adhesive shear stress 
can be deduced from the load transfer. In the seventh part, a perfectly elastic-plastic behaviour 
of the adhesive is introduced. 
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2  Analytical model for bolted joints 

 The load transfer in a bolted joint is a discrete transfer mode. It means that between each 
bolt (i.e.: on each bay) the transferred load is constant. In [1] the author calculates the load 
transferred by the fasteners using an analogy with an electric meshing and modelling the 
fasteners by springs, which work by shearing (Figure 1).The behaviour of a fastener in a joint 
is a difficult problem and the determination of its flexibility provides numerous studies and 
formulations ([2], [3], Douglas, Boeing). The behaviour of a fastener can be defined by a 
curve force-displacement of the joint. The linear part of this curve gives the rigidity of the 
fastener (Figure 2), quoted Cu. 

 

Figure 1. Electric meshing of bolted joint 

 

Figure 2. Behaviour of a fastener 

The idea of electric meshing of the bolted joint model will be used later in this paper. The 
whole fasteners are assumed to have the same rigidity. 

3  Analytical model for bonded joints 

 In [4], Hart-Smith analyses the stress distribution in a bonded double-lap joint, without 
taking into account the bending of the adherents and the adhesive peeling stress, since the 
eccentricity of the load path is not influent in double-lap configuration. The author realized 
the local equilibrium of an elementary length of the adherent. Considering the case of the 
single-lap configuration (Figure 3), the equilibrium equations are: 

( ) ( )xT
bdx

xdN =
)2(

  and  ( ) ( )xT
bdx

xdN −=
)1(

  (1) and (2) 

The elastic behaviour of the adhesive gives the following equation: 

( ) ( ) ( )( )xuxu
e

G
xT )1()2( −=    (3) 

Whereas the hypothesis of elastic adherents provides: 
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( )( ) ( )( )
( ) ( )jj

jj

Ebe

xN

dx

xdu =   for   j=1,2   (4) 

The author gets then the following differential equation of the second order with constant 
factors: 

( ) ( ) 02
2

2

=− xT
dx

xTd η   where:  
( ) ( ) ( ) ( ) 







 += 2211
2 11

EeEee

Gη                  (5) and (6) 

This bonded joint model will be used later in this paper. 

 
Figure 3. Bonded single-lap joint and local equilibrium 

4  First analytical model for hybrid joints 

 The goal is to combine both approaches in order to get a load transfer, which is continuous 
by parts. A similarly approach was developed for the calculation of stepped joints in [5]. 
The conditions of longitudinal force-equilibrium for a differential element dx in the bay i 
within the joint are (1) and (2). By differentiating (1) and with (3), it comes: 

( )( ) ( )( ) ( )( )








−=

dx

xdu

dx

xdu

e

G

bdx

xNd iii
12

2

22
  (7) 

Using (4) and the equation of the general equilibrium (f is the applied load in N): 
( )( ) ( )( ) fxNxN ii =+ 21       (8) 

it comes for the bay i (cf. Figure 4) the following differential equation: 
( )( ) ( )( ) fxN

dx

xNd
i

i γη =− 22
2

22

  where:  
( ) ( )11 Eee

G−=γ                      (9) and (10) 

Consequently the number of equations is equal to the number of bays i. In order to solve (9) 
on each bay, it is required to express the boundaries conditions. 

 

Figure 4. Bay number i of the hybrid joint 
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The developed approach is based on the following hypotheses: 
- an elastic behaviour of materials (adherents, adhesive, fasteners); 
- normal stress in the adherents (no bending); 
- shear stress in the adhesive (no peeling). 

It is assumed that the adhesive thickness is constant along the lap-joint and that the fasteners 
have the same rigidity. The mechanical and geometric parameters are free. 
 The solution of the equation (9) is: 

( )( ) feBeAxN x
i

x
ii

22 −− −+= γηηη       (11) 

For n fasteners (thus n+1 bays), there are 2n+2 unknowns, which are determined thanks to 
the boundaries conditions. 
The first condition is no tensile load at the start of the adherent 2, whereas the second 
condition corresponds to a complete load transfer at the end of the lap: 

( )( ) fBAN 2
11

2
1 00 −=+⇔= γη       (12) 

( ) ( ) ( ) feBeAfLN L
n

L
nn

2
11

2
1 1 −

+
−

++ +=+⇔= γηηη       (13) 

By considering the fasteners, the equation which corresponds to the load transfer ratio τi at the 
fastener i between both bays i and i+1  is: 

( )( ) ( )( ) fdNdN iiiii τ+=+
22

1
      (14) 

Moreover the fasteners are simulated by springs, the rigidity of which is Cu (in N.mm-1), thus: 
( )( ) ( )( )( )iiiiui duduCf 12 −=τ       (15) 

Thus with (1), (3) and (11): 

( )ii d
i

d
ii eBeAf ηηϕτ +−= −   where:  

bG

Ce uηϕ =        (16) and (17) 

And with (14) and (16), n additional equations come: 

011 =−−+ ++
−−

i
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i
d

i
d

i
d BeAeBqeAre iiii ηηηη       (18) 

with:  ϕ−= 1r   and  ϕ+= 1q              (19) and (20) 

Finally, the continuity of the adhesive shear stress provides the n last equations: 

( ) ( ) 0111 =+−−⇔= ++
−−

+ i
d

i
d

i
d

i
d

iiii BeAeBeAedTdT iiii ηηηη      (21) 

Thus, a linear system, the size of which is 2n+2, is obtained: 
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The resolution of this system gives the parameters A i and Bi and allows to build the whole 
functions, which characterize the one-dimensional behaviour of the hybrid joint. 
 
In the particular case of a constant pitch s between the fasteners and a constant distance 
between the end of the joint and the fastener d (longitudinal edge distance), the linear system 
(22) may be simplified in a linear system the size of which is 2. 
Changing the parameters like: 
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and setting: 

[ ]1;1, +∈







= niU

i

i
i β

α       (24) 

the linear system (22) becomes: 
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The matrix XΓ is diagonalisable and { }21; xxSp
X

=Γ
.  In the base of diagonalisation (25) 
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A solution is searched like: 
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Then, it comes: 
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Only A and B parameters have to be determined. 

5 Second analytical model for hybrid joints (bonded-bar element) 

 The Finite Element Method is used in the second approach. The single-lap joint is meshed 
in 1D-elements (Figure 5). Simple elements are used: bar elements (element 1 and 7 on Figure 
5), springs (element 5 and 6) and new elements called “bonded-bars” (element 2, 3 and 4). 
These new elements are 1D-elements since only the displacements in the direction of the load 
are taken into account. However they have four nodes (Figure 6) allowing to differentiate the 
displacement of each adherent.  
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Figure 5. Structure meshing 
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Figure 6. Bonded-bar element 

The rigidity matrix of the bonded-bar element has to be determined. The length of the 
bonded-bar element is quoted ∆. The subscript i is not useful here. 
Thanks to the equations (1) to (4), the following system of differential equations is obtained: 
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and it is solved (by addition and subtraction for example) as: 
( ) ( )[ ]
( ) ( )[ ]
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where: 

( ) ( ) ( ) ( ) 
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The following boundaries conditions: 
( ) ( )
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leads to: 
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The rigidity matrix of the bonded-bar element is defined by: 
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It follows that: 
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The matrix components can be obtained using the boundaries conditions. Indeed, the normal 
loads in the adherents are obtained from (4) and (31); the forces Qi, Qj, Qk, and Ql which the 
nodes i, j, k and l exert on the element are:  
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Finally, the rigidity matrix of the bonded-bar element is: 
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( ) ( )

∆
= beE

h
22

5.0 , ( )∆∆= ηη coshcs , ( )∆∆= ηη cothct  and
( ) ( )

( ) ( ) θ
ωµ ==

22

11

eE

eE                 (44) to (47) 

On the other hand, the rigidity matrix of the bar elements, which describe the not bonded 
portions of the adherents, take the conventional form: 
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Similarly, the rigidity matrix of the fasteners is: 
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The rigidity matrix of the whole structure can be obtained using the conventional assembly 
rules of the FEM, and the classical system (F=Ku) is solved. For n fasteners, the size of this 
linear system is (2n+5). 
In order to calculate the load transfer of the fasteners, the nodal forces are determined thanks 
to (4), (31), (42) and the nodal displacements calculated by the previous system: 
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6  Results 

 Both previous approaches lead to the same results. 
 For a hybrid joint with 3 fasteners with a Coulomb modulus of the adhesive, the value of 
which is near from 0Mpa, the models allow to find the results which are given by the 
analytical model of a bolted joint. In the same way, the models provide the behaviour of a 
bonded joint, when the rigidity of the fasteners is equal to 0. 
  From now we will consider examples with two fasteners. The Table 1 gives the values of 
the mechanical and geometric parameters used for the whole following curves. The 
transversal pitch is taken equal to 1mm in order to present significantly the effect of the 
fasteners on the curves, even if it is not realistic. 
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E
(j)
 (Mpa) G (Mpa) e(j) (mm) e (mm) d (mm) s (mm)

72000 800 2,4 0,4 9,6 19,2
 

Table 1. Geometric and mechanical parameters used 

The following figure (Figure 7) gives the load transfer along the second adherent in a two 
fasteners hybrid joint; this load transfer is compared to the load transfer in a simply bonded 
and a simply bolted joint. 
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Figure 7. Load transfer (b=1mm, Cu=40000N/mm) 

This figure shows that the load transfer in a hybrid joint sets between the load transfer in a 
bonded joint and a bolted joint. Both steps correspond to the transfer by the fasteners and the 
aspect in sinh corresponds to the load transferred by the adhesive. 
The following figure (Figure 8) represents the load transfer for different rigidities of the 
fasteners. 
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Figure 8. Load transfer as a function of Cu (b=1mm) 

This figure shows that the load transfer is mainly performed at the bonded ends of the joint. 
Then, compared to a simply bolted joint, the bonding decreases highly the load transferred by 
the fasteners. 
 Moreover the parametric study performed thanks to these models fits the trends given in 
[6] (experimental and numeric study of hybrid joints in single-lap configuration) that is to say 
the load transferred by the bolts increases when: 

- the Young modulus of adherents increases; 
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- the thickness of the adherents increases; 
- the length of the lap decreases; 
- the Coulomb modulus of the adhesive decreases; 
- the longitudinal pitch decreases. 

Thanks to these models, it is possible to add that the load transferred by the fastener increases 
when: 

- the rigidity of the fasteners increases; 
- the transversal pitch decreases; 
- the edge distance decreases. 

It is noticeable that the load transferred by the fasteners is nearing 0 when the edge distance 
increases. 
 Finally, using the Finite Element code SAMCEF, a two-dimensional model in plane strain 
is developed. The hypotheses are the same than the one of the analytical approaches. Three 
superposed layers simulate the joint adherent-adhesive-adherent. These elements are 
quadrangle elements of degree 2. Each fastener is simulated by quadrangle elements of degree 
2. As it is shown on the Figure 9, there is a good correlation between the numerical and 
analytical approaches. 
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Figure 9. Comparison between numerical and analytical approaches (b=1mm, 
Cu=10000N/mm) 

7  Considering the elastic-plastic behaviour of the adhesive 

 In the previous models, the adhesive is perfectly elastic. However, perfectly elastic-plastic 
behaviour of the adhesive can be computed using the first approach. It is assumed that both 
edge distances are equal. Moreover, it is assumed that the adhesive has a plastic behaviour 
only into the edge distances, since the load transfer is more important along both bonded ends. 
This elastic-plastic approach is inspired by [4]. 
The length, along which the adhesive has a plastic behaviour, is quoted xp: 

dxp ≤≤0                                     (53)     

It comes: 

( ) pp TxTxx =≤∀ 1,   and  [ ] ( ) pnp TxTLxLx =−∈∀ +1,;                                                                            (54) and (55) 

The local equilibrium equations are the same as (1) and (2). Hence, by integrating: 
( )( ) bxTxNxx pp =≤∀ 2
1,   and  [ ] ( ) ( ) ( )xLbTfxNLxLx pnp −−=−∈∀ +

2
1,;                                                    (56) and (57) 

Both following equations replace (12) and (13): 
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( ) ( ) ppp bxTxN =2
1

  and  ( ) ( ) pppn bxTfxLN −=−+
2

1
                                                                                    (58) and (59) 

Finally with (11) along the elastic region, the linear system (22) in elastic-plastic behaviour of 
the adhesive becomes: 
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                                                                                      (60) 

The method consists in an iterative resolution of the elastic problem. More precisely, for the 
first iteration xp is taken equal to 0. Then (60) is solved until the adhesive shear stress in the 
elastic region is lower to Tp.  
The following figure (Figure 10) represents the ratio of the bolt load transfer with the elastic-
plastic adhesive (τp) divided by the ratio of the bolt load transfer with the elastic adhesive (τe) 
when the load increase. 
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Figure 10. Bolt load transfer with elastic-plastic adhesive (b=19,2mm, Cu=50000N/mm) 

This curve shows that the bolt load transfer in elastic-plastic case is around twice as big as the 
ratio of the bolt load transfer in elastic case, when the adhesive is plasticized all along the 
edge distance. 
In that case, (3) and (15) allows to write: 

pup T
G

e
Cf =τ                           (61) 

This last equation provides the three most important parameter of the design of a hybrid joint: 

- the edge distance (d); 
- the rigidity of the fastener (Cu); 
- the relative rigidity of the adhesive (G/e). 

8 Conclusions 

 Two one-dimensional elastic analytical models are developed and presented in this paper. 
They allow to analyse easily (Figure 11) the influence of the mechanical and geometric 
parameters on the load transfer in a hybrid joint. These models are robust and simple to use. 
These models can be regarded as a design tool. Moreover, an original approach, inspired by 
the Finite Element Method, is presented and validated. Finally, an extension to the perfectly 
elastic-plastic behaviour of the adhesive is proposed.  
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 Three ways are under consideration to continue. The first way is the development of a 
two-dimensional model taking into account the bending of the adherent due to the eccentricity 
of the load path, and the adhesive peeling stress. The second way is the numerical simulation. 
A three-dimensional model is required to represent accurately and to understand better the 
behaviour of the hybrid joint. Finally, the last way is the test experience. Static tests using 
instrumented bolts ([6]) are launched in order to validate and calibrate these models. In 
particular, the rigidity of the fastener does not seem to be determined accurately, using to the 
different existing formulations, which does not take into account the hybrid configuration of 
joint.  

 

Figure 11. Influence of d and s on the bolt load transfer (b=1mm, Cu=50000N/mm) 

This study is performed in cooperation with AIRBUS (Toulouse and Saint-Nazaire). The 
authors acknowledge the industrial partners for their advice and support. 
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