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Bivariate Gamma Distributions for Image
Registration and Change Detection

Florent Chatelain, Jean-Yves Tourneret, Member, IEEE, Jordi Inglada, and André Ferrari

Abstract—This paper evaluates the potential interest of using
bivariate gamma distributions for image registration and change
detection. The first part of this paper studies estimators for the
parameters of bivariate gamma distributions based on the max-
imum likelihood principle and the method of moments. The per-
formance of both methods are compared in terms of estimated
mean square errors and theoretical asymptotic variances. The mu-
tual information is a classical similarity measure which can be used
for image registration or change detection. The second part of the
paper studies some properties of the mutual information for bi-
variate Gamma distributions. Image registration and change de-
tection techniques based on bivariate gamma distributions are fi-
nally investigated. Simulation results conducted on synthetic and
real data are very encouraging. Bivariate gamma distributions are
good candidates allowing us to develop new image registration al-
gorithms and new change detectors.

Index Terms—Correlation coefficient, image change detection,
image registration, maximum likelihood, multivariate gamma dis-
tributions, mutual information.

I. INTRODUCTION

THE univariate gamma distribution is uniquely defined in
many statistical textbooks. However, extensions defining

multivariate gamma distributions (MGDs) are more controver-
sial. For instance, a full chapter of [1] is devoted to this problem
(see also references therein). Most journal authors assume that a
vector is distributed according to an MGD if
the marginal distributions of are univariate gamma distribu-
tions. However, the family of distributions satisfying this con-
dition is very large. In order to reduce the size of the family of
MGDs, S. Bar Lev, and P. Bernardoff recently defined MGDs by
the form of their moment generating function or Laplace trans-
forms [2], [3]. The main contribution of this paper is to eval-
uate these distributions as candidates for image registration and
change detection.

Given two remote sensing images of the same scene , the
reference, and , the secondary image, the registration problem
can be defined as follows: determine a geometric transformation
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which maximizes the correlation coefficient between image
and the result of the transformation . A fine modeling of

the geometric deformation is required for the estimation of the
coordinates of every pixel of the reference image inside the sec-
ondary image. The geometric deformation is modeled by local
rigid displacements [4]. The key element of the image regis-
tration problem is the estimation of the correlation coefficient
between the images. This is usually done with an estimation
window in the neighborhood of each pixel. In order to estimate
the local rigid displacements with a good geometric resolution,
one needs the smallest estimation window. However, this leads
to estimations which may not be robust enough. In order to per-
form high-quality estimations with a small number of samples,
we propose to introduce a priori knowledge about the image sta-
tistics. In the case of power radar images, it is well known that
the marginal distributions of pixels are gamma distributions [5].
Therefore, MGDs seem good candidates for the robust estima-
tion of the correlation coefficient between radar images.

The change detection problem can be defined as follows.
Consider two co-registered synthetic aperture radar (SAR)
intensity images and acquired at two different dates and

. Our objective is to produce a map representing the changes
occurred in the scene between time and time . The final
goal of a change detection analysis is to produce a binary map
corresponding to the two classes: change and no change. The
problem can be decomposed into two steps: 1) generation of
a change image and 2) thresholding of the change image in
order to produce the binary change map. The overall detection
performance will depend on both, the quality of the change
image and the quality of the thresholding. In this work, we
choose to concentrate on the first step of the procedure, that is,
the generation of an indicator of change for each pixel in the
image. The change indicator can be obtained by computing the
local correlation between both images, for each pixel position.
For interesting approaches in the field of unsupervised change
image thresholding, the reader can refer to the works of Bruz-
zone and Fernández Prieto [6], [7], Bruzzone and Serpico [8],
and Bazi et al. [9]. The change indicator can also be useful
by itself. Indeed, the end user of a change map often wants,
not only the binary information given after thresholding, but
also an indicator of the change amplitude. In order to evaluate
the quality of a change image independently of the choice of
the thresholding algorithm, one can study the evolution of the
probability of detection as a function of the probability of false
alarm, when a sequence of constant thresholds is used for the
whole image. As in the image registration problem, a small
estimation window is required in order to obtain a high-resolu-
tion detector, that is, a detector being able to identify changes
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with a small spatial extent. Again, the introduction of a priori
knowledge through MGDs may improve the estimation accu-
racy when a small number of samples is used.

This paper is organized as follows. Section II recalls some
important results on MGDs. Section III studies estimators of the
unknown parameters of a bivariate gamma distribution (BGD).
These estimators are based on the classical maximum likelihood
method and method of moments. Section IV studies interesting
properties of the mutual information for BGDs. The application
to image registration and change detection is discussed in Sec-
tion V. Conclusions are finally reported in Section VI.

II. MULTIVARIATE GAMMA DISTRIBUTIONS

A. Definitions

A polynomial with respect to is affine
if the one variable polynomial can be written

(for any ), where and are polynomials
with respect to the s with . A random vector

is distributed according to an MGD on with
shape parameter and scale parameter (denoted as

) if its moment generating function (also called Laplace
transform) is defined as follows [3]:

(1)

where and is an affine polynomial. It is important to
note the following points.

• The affine polynomial has to satisfy appropriate condi-
tions including . In the general case, determining
necessary and sufficient conditions on the pair such
that exist is a difficult problem. The reader is in-
vited to look at [3] for more details.

• By setting for in (1), we obtain the Laplace
transform of , which is clearly a gamma distribution with
shape parameter and scale parameter , where is the
coefficient of in .

A BGD corresponds to the particular case and is de-
fined by its moment generating function

(2)

with the following conditions:

(3)

In the bidimensional case, (3) are necessary and sufficient con-
ditions for (2) to be the moment generating function of a proba-
bility distribution defined on . Note again that (2) implies
that the marginal distributions of and are “gamma distri-
butions” (denoted as and ) with
the following densities:

where is the indicator function defined on
( if , else), for .
Here, is the usual gamma function defined in [10, p. 255].

B. Bivariate Gamma pdf

Obtaining tractable expressions for the probability density
function (pdf) of a MGD defined by (1) is a challenging
problem. However, in the bivariate case, the problem is much
simpler. Straightforward computations allow to obtain the
following density (see [1, p. 436] for a similar result)

where and is defined as follows:

(4)

Note that is related to the confluent hypergeometric func-
tion (see [1, p. 462]).

C. BGD Moments

The Taylor series expansion of the Laplace transform can
be written

(5)

The moments of a BGD can be obtained by differentiating (5).
For instance, the mean and variance of (denoted and

respectively) can be expressed as follows:

(6)

for 1, 2. Similarly, the covariance and correla-
tion coefficient of a BGD can be easily computed

(7)

(8)

It is important to note that for a known value of , a BGD is
fully characterized by which will
be denoted in the remaining of the paper. In-
deed, and are obviously related by a one-to-one
transformation. Note also that the conditions (3) ensure that the
covariance and correlation coefficient of the couple are
both positive.

More computations allow to obtain a general formula for the
moments , for , of a BGD

(9)
where is the Pochhammer symbol defined by and
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for any integer (see [10, p. 256]). The mutual information of
a BGD is related to the moments of and for
1, 2. Straightforward computations detailed in Appendices I and
II yield the following results:

(10)

(11)

where is the digamma function and is
the Gauss’s hypergeometric function (see [10, pp. 555–566]).

III. PARAMETER ESTIMATION

This section addresses the problem of estimating the
unknown parameter vector from independent vectors

, where is distributed ac-
cording to a BGD with parameter vector . Note that the
parameter is assumed to be known here, as in most practical
applications. However, this assumption could be relaxed.

A. Maximum Likelihood Method

1) Principles: The maximum likelihood (ML) method can
be applied in the bivariate case since a closed-form
expression of the density is available.1 In this particular case,
after removing the terms which do not depend on , the log-
likelihood function can be written as follows:

(12)

where , and
is the sample mean of for , 2. By differentiating the
log-likelihood with respect to , and , and by noting that

, the following set of equations is obtained:

(13)

(14)

where

(15)

The maximum likelihood estimators (MLEs) of and are
then easily obtained from these equations

(16)

1The problem is much more complicated in the general case where d > 2

since there is no tractable expression for the MGD density. In this case, the
coefficients of P can be estimated by maximizing an appropriate composite
likelihood criterion such as the pairwise log-likelihood. The reader is invited to
consult [11] for more details.

After replacing and by their MLEs in (14), we can easily
show that the MLE of is obtained by computing the root

of the following function:

(17)

where

This is achieved by using a Newton–Raphson procedure initial-
ized by the standard correlation coefficient estimator [defined
in (25)]. The convergence of the Newton–Raphson procedure is
generally obtained after few iterations.

2) Performance: The asymptotic properties of the ML
estimators and can be easily derived from the
moments of the univariate gamma distributions and

. These estimators are obviously unbiased, convergent
and efficient. However, the performance of is more difficult
to study. Of course, the MLE is known to be asymptotically
unbiased and asymptotically efficient, under mild regularity
conditions. Thus, the mean square error (MSE) of the estimates
can be approximated for large data records by the Cramér–Rao
lower bound (CRLB). For unbiased estimators, the CRLBs of
the unknown parameters , and can be computed by
inverting the Fisher information matrix, whose elements are
defined by

(18)

where . However this com-
putation is difficult because of the term appearing in the
log-likelihood. In such situation, it is very usual to approximate
the expectations by using Monte Carlo methods. More specif-
ically, this approach consists of approximating the elements of
the Fisher information matrix as follows:

(19)

where is distributed according to the BGD of density
and is the number of Monte Carlo runs.

B. Method of Moments

1) Principles: This section briefly recalls the principle of the
method of moments. Consider a function and
the statistic of size defined as

(20)

where is usually chosen such that is composed of em-
pirical moments. Denote as

(21)

The moment estimator of is constructed as follows:

(22)
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where . By considering the function

the following result is obtained:

(23)
The unknown parameters can then be expressed as
functions of . For instance, the fol-
lowing relations are obtained:

(24)

yielding the standard estimators

(25)

2) Performance: The asymptotic performance of the esti-
mator can be derived by imitating the results of [12] derived
in the context of time series analysis. A key point of these proofs
is the assumption which is verified herein by
applying the strong law of large numbers to (20). As a result,
the asymptotic MSE of can be derived

(26)

where is the Jacobian matrix of the vector at point
and

(27)

In the previous example, according to (24), is
defined as follows:

(28)

The partial derivatives of and with respect to ,
are trivial. By denoting ,

those of can be expressed as

(29)

The elements of can be computed from the moments of
which are obtained by differentiating the Laplace trans-

form (2). The asymptotic MSEs (26) are then computed by using
(9).

IV. MUTUAL INFORMATION FOR BGDs

Some limitations of the standard estimated correlation coef-
ficient can be alleviated by using other similarity measures [4].
These similarity measures include the well-known mutual infor-
mation. The mutual information of a BGD of shape parameter

and scale parameter can be defined as fol-
lows:

(30)
where and are the marginal densities of the
vector and is its joint pdf. This section
shows that the mutual information of BGDs is related to the cor-
relation coefficient by a one-to-one transformation. Interesting
approximations of this mutual information for and
are also derived.

A. Numerical Evaluation of the Mutual Information

By replacing the densities , and by
their analytical expressions, the following results can be ob-
tained:

(31)

The first terms of can be easily expressed as a
function of by using the mean of a univariate gamma distribu-
tion given in (6). The mutual information can
then be expressed as follows:

(32)

However, a simple closed-form expression for
cannot be obtained, requiring to

use a numerical procedure for its computation.
The numerical evaluation of can be significantly simplified

by noting that and have the same mutual
information for any . Indeed, this property implies
the following result:

(33)

where . As a consequence,
can be computed by replacing

by , where . This expec-
tation can be precomputed for all possible values of and for

, simplifying the numerical evaluation of .
Moreover, it is interesting to note that (33) shows that the

mutual information and the correlation are related by a
one-to-one transformation. Consequently, and should pro-
vide similar performance for image registration and change de-
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tection. The advantage of using the mutual information will be
discussed later.

B. Approximations of the Mutual Information

The numerical evaluation of can be avoided for values of
closed to 0 and 1 by using approximations. Indeed, the following
results can be obtained:

1) : The second-order Taylor expansion of
around can be written

(34)

where tends to 0, as . As a consequence, can
be approximated as follows:

(35)

By using (9), the mutual information can be finally approx-
imated as follows:

(36)

2) : The Taylor expansion of around can be
written

(37)

where tends to 0, as . As a consequence, can be
approximated as follows:

(38)

After replacing the means of , and de-
rived in Appendices I and II, the following result can be ob-
tained:

(39)
Fig. 1 shows that the mutual information can be accurately
approximated by (36) and (39) for and . This
figure has been obtained with the parameters and
without loss of generality (see discussion at the beginning of this
section).

V. APPLICATION TO IMAGE REGISTRATION

AND CHANGE DETECTION

This section explains carefully how BGDs can be used for
image registration and change detection. Theoretical results are
illustrated by many simulations conducted with synthetic and
real data.

Fig. 1. Mutual information and its approximations for r ! 0 and r ! 1.

A. Synthetic Data

1) Generation: The generation of a vector
distributed according to a BGD has been performed as follows.

• Simulate independent multivariate Gaussian vectors of
denoted as with means (0,0) and the fol-

lowing 2 2 covariance matrix:

• Compute the th component of as
, where is the th component

of .
By computing the Laplace transform of , it can be shown
that the two previous steps allow to generate random vectors

distributed according to a BGD whose marginal
distributions are univariate gamma distributions
and . Moreover, the correlation coefficient of

is equal to (the reader is invited to consult
Appendix III for more details).

2) Estimation Performance: The first simulations compare
the performance of the method of moments with the ML method
as a function of . Note that the possible values of are

, where (more precisely
). These values are appro-

priate for the image registration and change detection problems,
as explained in the next sections. The number of Monte Carlo
runs is 1000 for all figures presented in this section. The other
parameters for this first example are , and

(1-Look images). Figs. 2 and 3 show the MSEs of the esti-
mated correlation coefficient for two different correlation struc-
tures ( and ). The circle curves correspond to the
estimator of moments whereas the triangle curves correspond
to the MLE. These figures show the interest of the ML method,
which is much more efficient for this problem than the method of
moments. The figures also show that the difference between the
two methods is more significant for large values of the correla-
tion coefficient . Note that the theoretical asymptotic MSEs of
both estimators determined in (18) and (26) are also displayed
in Figs. 2 and 3 (continuous lines). The theoretical MSEs are
clearly in good agreement with the estimated MSEs, even for
small values of . This is particularly true for large values of .

3) Detection Performance: We consider synthetic vectors
(coming from 128 128 synthetic images)

distributed according to BGDs with and
modeling the presence and absence of changes, respectively.
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Fig. 2. Log MSEs versus log(n) for parameter r(r = 0:2).

Fig. 3. Log MSEs versus log(n) for parameter r(r = 0:8).

The correlation coefficient of each bivariate vector
(for ) is estimated from vectors

belonging to windows of size centered
around the pixel of coordinates in the two analyzed im-
ages. The following binary hypothesis test is then considered:

(40)

where is a threshold depending on the probability of false
alarm and is an estimator of the correlation coefficient (ob-
tained from the method of moments or the maximum likelihood
principle). The performance of the change detection strategy
(40) can be defined by the two following probabilities [13, p.
34]

(41)

(42)

where and are the pdfs of under hypotheses
and , respectively. Thus, for each value of , there exists

Fig. 4. ROCs for synthetic data for different window sizes. (a) n = 9 � 9;
(b)n = 15 � 15; (c) n = 21� 21.

a pair . The curves of as a function of are
called receiver operating characteristics (ROCs) [13, p. 38].

The ROCs for the change detection problem (40) are depicted
in Fig. 4(a)–(c) for three different window sizes corresponding
to . The ML estimator clearly outper-
forms the moment estimator for these examples. However, it is
interesting to note that the two estimators have similar perfor-
mances for large window sizes.

B. Application to Image Registration

This section studies an image registration technique based on
BGDs. More precisely, consider two images whose pixels are
denoted and . Given the left image

, we propose the following basic three-step image registration
algorithm.

• Step 1: Determine the search area in the right image .
Here, we use images that have been previously registered
by a human operator using appropriate interactive soft-
ware, a digital elevation model and geometrical sensor
models. The use of registered images allows us to validate
the results, since the expected shift between the images is
equal to 0. For this experiment and without loss of gener-
ality, the search area is reduced to a line (composed of ten
pixels before and ten pixels after the pixel of interest).

• Step 2: For each pixel in the search area, estimate a sim-
ilarity measure (correlation coefficient or mutual informa-
tion) between and .

• Step 3: Select the pixel providing the largest similarity.
This three-step procedure has been applied to a couple of
Radarsat 1-Look images acquired before and after the eruption
of the Nyiragongo volcano which occurred in January 2002.
The Radarsat images are depicted in Fig. 5(a) (before eruption)
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Fig. 5. Radarsat images of the Nyiragongo volcano. (a) Before; (b) after;
(c) mask.

and (b) (after eruption). Note that some changes due to the
eruption can be clearly seen on the landing track for example.
Fig. 5(c) indicates the pixels of the image which have been
affected by the eruption (white pixels). This reference map
was obtained by photo-interpreters—who used the same SAR
images we are using—and ground truth elaborated by the
United Nations Office for the Coordination of Humanitarian
Affairs (OCHA) Humanitarian Information Center (HIC) on
January 27, 2002, that is, a few days after the eruption. This
reference map was afterwards validated by a terrain mission.
The types of change covered are: presence of a lava flow over
old existing lava flows, damaged buildings (areas with different
types of habitat). The area of study does not include forest or
areas of dense vegetation (see http://www.users.skynet.be/tech-
naphot/webgomma/index.htm for some examples of damages).

Fig. 6(a)–(c) shows an average of the estimated corre-
lation coefficients with errobars corresponding to

. These estimates have been com-
puted for all black pixels which have not been affected by the
eruption for different window sizes. More precisely, for every
black pixel of the left figure, we consider a window of size

centered around . The same window is
also considered in the right picture around pixel . The correla-
tion coefficient between the two pixels and is estimated by
using the couples of pixels located in the
left and right windows. This operation is repeated for different
central pixels belonging to the search area (i.e., the 21 pixels
of ),
where is the shift between the right and left windows. The
results are averaged over all black pixels displayed in the mask
Fig. 5(c). The estimated correlation coefficient is maximum
when , or equivalently , i.e., when the left and
right windows are centered at the same location. This result
indicates that the correlation coefficient can be efficiently used
for image registration. Moreover, it is interesting to study how
the estimator selectivity (which can be defined as the relative
amplitude of the peak compared to that of the plateau) varies
from one estimator to another and depends on the window
size. In particular, the ML estimator provides a slightly better
selectivity than the estimator of moments. Note that the errobars
are very similar for the two estimators. Even if the different

Fig. 6. Averaged correlation coefficient estimates versus � for black pixels with
errorbars (ML: maximum likelihood estimator, moment: moment estimator) for
Nyiragongo images for several window sizes. (a) Window size n = 7 � 7;
(b) window size n = 9� 9; (c) window size n = 15� 15.

methods provide similar results for image registration, it is
important to note that the proposed framework allows one to
define an interesting joint distribution for the vector .
This distribution might be used for other tasks as, for instance,
joint image segmentation and classification of both data sets.

The same operation is conducted on a rectangular region
composed of white pixels of the mask Fig. 5(c) (which have
been affected by the eruption) depicted in white in Fig. 5(a)
and (b). The results presented in Fig. 7 clearly show that the
estimated correlation coefficient is much smaller when com-
puted on a region affected by the eruption (and also that there
is no peak which might be used for registration). This result is
interesting and can be used for detecting changes between the
two images, as illustrated in the next section.

C. Application to Change Detection

This section considers two 1-Look images acquired at dif-
ferent dates around Gloucester (U.K.) before and during a flood
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Fig. 7. Averaged correlation coefficient estimates versus � for white pixels be-
longing to the Nyiragongo images square region (ML: maximum likelihood es-
timator; moment: moment estimator).

Fig. 8. Radarsat images of Gloucester before and after flood. (a) Before;
(b) after; (c) mask.

(on September 9, 2000 and October 21, 2000 respectively). The
images as well as a mask indicating the pixels affected by the
flood are depicted in Fig. 8(a)–(c). The reference map Fig. 8(c)
was obtained by photo-interpreters—who used the same SAR
images we are using—and a reference map built from Landsat
and SPOT data acquired one day after the radar image.

This section compares the performance of the following
change detectors:

• the ratio edge detector which has been intensively used for
SAR images [14], [15];

• the correlation change detector, where in (40) has been
estimated with the moment estimator (referred to as “Cor-
relation Moment”);

• the correlation change detector, where in (40) has been
estimated with the ML method for BGDs (referred to as
“Correlation ML”).

The ROCs for this change detection problem are shown in
Fig. 9(a)–(c) for different window sizes . The correlation ML
detector clearly provides the best results.

Fig. 9. ROCs for Gloucester images for different window sizes. (a) n = 9�9;
(b) n = 15 � 15;; (c) n = 21� 21.

The last experiments illustrate the advantage of using the mu-
tual information for change detection. Consider the following
change detector based on the mutual information:

(43)

where is the estimated mutual information obtained
by numerical integration of (32). The ROCs obtained with the
detectors (40) and (43) are identical, reflecting the one-to-one
transformation between the parameters and . How-
ever, the advantage of using the mutual information for change
detection is highlighted in Fig. 10, which shows the average
probability of error (where

is the probability of nondetection) as a function of the
threshold for the change detectors (40) and (43). For a prac-
tical application, it is important to choose a threshold for
these change detection problems. This choice can be governed
by the value of the probability of error . Assume that we
are interested in having a probability of error satisfying

. Fig. 10 indicates that there are clearly more values of the
threshold satisfying this condition for the curve “Mutual
information” than for the curve “Correlation ML.” This remains
true whatever the value of the maximum probability of error .
Consequently, the threshold is easier to be adjusted with the de-
tector based on the mutual information (43) than the detector
based on the correlation coefficient (40).

VI. CONCLUSION

This paper studied the performance of image registration and
change detection techniques based on bivariate gamma distri-
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Fig. 10. Average probability of errorP = 1=2(P +P ) versus threshold
� for Gloucester images for an estimation window of size n = 9� 9.

butions. Both methods required to estimate the correlation co-
efficient between two images. Estimators based on the method
of moments and on the maximum likelihood principle were
studied. The asymptotic performance of both estimators was de-
rived. The application to image registration and change detec-
tion was finally investigated.

The results showed the interest of using prior information
about the data. On the other hand, the method presented here
should not be used for more general cases where the BGD model
does not hold. For these cases, the use of more general models
as, for instance, copulas [16] or bivariate versions of the Pearson
system [1, pp. 6–9], should be studied.

APPENDIX I
WHERE

The moment of can be determined by the simple change
of variable

(44)

APPENDIX II
AND ITS APPROXIMATION FOR WHERE

A. Computation

The moment of the random variable is derived from
the probability density function of the bivariate vector

The definition of given in (4) yields

since

Here is the Gauss’s hypergeometric function (see [10, pp.
555–566]) defined as

and is the Pochlammer symbol presented in Section II-C
(note that for any integer and any real

). By using the following properties of Gauss’s hyperge-
ometric functions.

1) The hypergeometric series converges if is
not a negative integer for complex numbers such that

or if .
2) for

all of (see [10, p. 559]).
The following results can be obtained

B. Approximation for

The following identity (Gauss’s hypergeometric theorem):

leads to
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and to the following first-order Taylor expansion around :

where tends to 0, as . Using

for

the previous Taylor expansion can be written

Finally

APPENDIX III
GENERATION OF SYNTHETIC DATA DISTRIBUTED

ACCORDING TO BGDs

This appendix shows that the vector where
(where is the th component

of , with )
is distributed according to a BGD whose marginals are Gamma
distributions and and whose correla-
tion coefficient is . By using the independence between vec-
tors , the Laplace transform of evaluated at

can be written

where

By using the probability density function of a bivariate normal
distribution , the Laplace transform can be finally ex-
pressed as

where is the identity matrix in dimension 2. According to the
definition (2), the vector is distributed according to a BGD
with shape parameter and scale parameters ,

, . Property, (8) ensures that the
correlation coefficient of is .
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