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An ABORT-Like Detector With Improved
Mismatched Signals Rejection Capabilities
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Abstract—In this paper we present a GLRT-based adaptive de-
tection algorithm for extended targets with improved rejection ca-
pabilities of mismatched signals. We assume that a set of secondary
data is available and that noise returns in primary and secondary
data share the same statistical characterization. To increase the se-
lectivity of the detector, similarly to the ABORT formulation, we
modify the hypothesis testing problem at hand introducing ficti-
tious signals under the null hypothesis. Such unwanted signals are
supposed to be orthogonal to the nominal steering vector in the
whitened observation space. The performance assessment, carried
out by Monte Carlo simulation, shows that the proposed dectector
ensures better rejection capabilities of mismatched signals than ex-
isting ones, at the price of a certain loss in terms of detection of
matched signals.

Index Terms—Adaptive beamformer orthogonal rejection test
(ABORT), constant false alarm rate (CFAR), detection, general-
ized likelihood ratio test (GLRT), rejection of mismatched signals.

I. INTRODUCTION

I N the last decades many papers have addressed adaptive
radar detection of point-like targets embedded in Gaussian

or non-Gaussian disturbance. Most of these papers follow the
lead of the seminal paper by Kelly [1], where the generalized
likelihood ratio test (GLRT) is used to conceive an adaptive
decision scheme capable of detecting coherent pulse trains in
presence of Gaussian disturbance with unknown spectral prop-
erties. The case of point-like targets (possibly modeled as sto-
chastic signals) assumed to belong to a known subspace of the
observables has been addressed in [2], [3]. Detection of pos-
sibly extended targets in Gaussian and non-Gaussian noise has
been dealt with in [4]–[6]. In addition, several detection algo-
rithms for point-like or extended targets embedded in Gaussian
disturbance are encompassed as special cases of the amazingly
general framework and derivation presented in [7]. All of the
above papers rely on the assumption that a set of secondary data,
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namely returns free of signals components, but sharing certain
properties of the noise in the data under test, is available. Such
secondary data are used to come up with fully adaptive detec-
tion schemes.

However, previously cited detectors have been designed
without taking into account the possible presence of mis-
matched signals. In practice, instead, the actual signal backscat-
tered from a target (or target’s scattering centers) can be
different from the nominal one. A mismatched signal may arise
due to several reasons as, for example, [8] and [9]:

• coherent scattering from a direction different to that in
which the radar system is steered (sidelobe target);

• imperfect modeling of the mainlobe target by the nominal
steering vector, where the mismatch may be due to mul-
tipath propagation, array calibration uncertainties, beam-
pointing errors, etc.

Thus, it might be important to trade detection performance
of mainlobe targets for rejection capabilities of sidelobe ones.
In [8], the adaptive beamformer orthogonal rejection test
(ABORT) is proposed; such detector takes into account rejec-
tion capabilities at the design stage. The idea of the ABORT
is to modify the null hypothesis, which usually states that data
under test contains noise only, so that it possibly contains a fic-
titious signal which, in some way, is orthogonal to the assumed
target’s signature. Doing so, if a mismatched signal is present,
the detector will be less inclined to declare a detection, as the
null hypothesis will be more plausible than in the case where,
under the null hypothesis, the test vector contains noise only.
As customary, in [8] it is assumed that a set of noise only (sec-
ondary) data is available at the receiver. The extension of this
idea to the case of signals belonging to known subspaces of the
observables has been dealt with in [9], as a possible means to
maintain an acceptable detection loss for slightly mismatched
mainlobe targets. Moreover, in [10] the ABORT rationale
together with the so-called two-step GLRT design procedure
[11] has been used to derive detection strategies for extended
targets capable of working without a distinct set of secondary
data and guaranteeing good capabilities of rejection of sidelobe
targets. It is important to stress that in the detector proposed
in [8] the fictitious signal is assumed to be orthogonal to the
nominal steering vector in the quasi-whitened space, i.e., after
whitening of the data through the sample covariance matrix
computed over the secondary data set. The same approach is
also proposed in [9], where the quasi-whitening transformation
is presented as a way to face with the absence of knowledge
about the interference subspace.

Following the aforementioned approach, we attack the de-
sign of ABORT-like algorithms; however, differently from [8],
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we assume that the useful and the fictitious signals are orthog-
onal in the truly whitened observation space, i.e., after whitening
with the true noise covariance matrix. At the design stage we
derive both the GLRT and the ad hoc detector based upon the
two-step GLRT design procedure for the problem at hand, al-
though the main novelty of this work is the derivation of the
(one step) GLRT. Remarkably, proposed detectors possess the
constant false alarm rate (CFAR) property with respect to the
noise covariance matrix (this point will be better clarified in
Section III-C). Finally, a preliminary performance assessment,
carried out with simulated data, indicates that the newly pro-
posed (one step) GLRT possesses better selectivity properties
of previously proposed detectors, although at the price of a cer-
tain loss in detection performance of matched signals.

The reminder of the paper is organized as follows: next sec-
tion is devoted to the problem formulation while the design of
the detectors is the object of Section III. The performance as-
sessment is attacked in Section IV while some concluding re-
marks are given in Section V; finally, in order not to burden too
much the main body of the paper, some mathematical deriva-
tions are reported in the Appendices.

II. PROBLEM FORMULATION

Assume that an array of antennas senses range cells and
denote by , , the -di-
mensional complex vector containing returns from the th cell,

. We assume that each return is corrupted by an addi-
tive noise vector , , modeled as a complex
normal vector with unknown, positive definite, covariance ma-
trix .

Similarly to the ABORT formulation [8], we want to discrim-
inate between the hypothesis that the ’s, , contain
useful target echoes , and the hypothesis that
they contain fictitious signals , which herein are as-
sumed orthogonal to the useful ones in the whitened observation
space.

We suppose that the ’s, , can be modeled as
, , where is the (known) nominal steering

vector and the ’s are unknown deterministic complex scalars
accounting for both target and channel effects; the unwanted
signals ’s, , can be expressed as ,

, i.e., as linear combinations1 of the linearly
independent columns of an unknown deterministic matrix

such that

(1)

In other words, we assume that the range spaces of the arrays
and are orthogonal after a whitening transformation. As cus-
tomary, we also suppose that secondary data, ,

, containing noise only,
namely , , are available and that such returns
share the same statistical characterization of the noise compo-
nents in the primary data (the so-called homogeneous environ-
ment [4]). Finally, we assume that the ’s, , are
independent random vectors.

1For a given matrix AAA 2 C , we will denote by hAAAi the space spanned
by the columns ofAAA and by hAAAi its orthogonal complement.

We stress again that the ABORT [8] has been derived as-
suming orthogonality in the quasi-whitened observation space,
i.e., it uses condition (1) with replaced by the sample covari-
ance matrix based upon secondary data , .

Summarizing, the detection problem to be solved can be for-
mulated in terms of the following binary hypothesis test

,
,
,

(2)

where we suppose that and, as already stated, that
.

III. DETECTOR DESIGNS

Denote by the overall data matrix, where
is the primary data matrix and

is the secondary data
matrix. Moreover, let ,

, and , where the
superscript denotes transpose.

A. One-Step GLRT-Based Detector

We now derive the GLRT based upon primary and secondary
data, which is tantamount to the following decision rule [12]

(3)

where is the probability density function (pdf) of
under the hypothesis, , 1, and is the threshold value
to be set in order to ensure the desired probability of false alarm

. Note that is not explicitly indexed by in
(3). In fact, by (1), is a function of and and, as a con-
sequence, it is not an independent parameter to be jointly esti-
mated with and .

The pdf of , under , can be written as

(4)

where is times the sample covariance
matrix based on secondary data,2 and are the deter-
minant and the trace of a square matrix, respectively, and the su-
perscript denotes conjugate transpose. In order to compute the
compressed likelihood under , observe that the maximum of

with respect to can be obtained as follows [10]:

(5)

2Note that the matrix SSS is invertible (with probability one) ifK N .
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where and . If we now substi-
tute this estimate into the expression of the pdf (4), after some
algebra, we get

(6)

where

is the projector onto the range space of and
denotes the -dimensional identity matrix. If we now recall

condition (1), we have that can be replaced with a
projection matrix onto , i.e.,

which, substituted into (6), after some algebra, yields

(7)

In order to maximize with respect to , let us begin
with the following proposition [13].

Proposition 1: Let be the set of all positive definite Her-
mitian matrices over the complex field, then

• the function admits maximum over ;
• such a maximum occurs at a stationary point.

Proof: See Appendix I.
In the light of previous proposition, we have to search for the

stationary points of . This can be accomplished by
setting to zero the derivative3 of , with respect to
the th entry, say, , of the Hermitian matrix , i.e.,

3We make use of the following definition for the derivative of a real function
f(RRR) with respect to a complex variable

@f(RRR)

@r
=

1

2

@f(RRR)

@x
+ j

@f(RRR)

@y

where r = x + jy is the (h; l)th entry of RRR; h < l; see [14], [15] for
more details.

where denotes the -th entry of the matrix argument.
Such conditions are equivalent to the following matrix equation

which can be rewritten in a more compact form as

(8)

where the Hermitian matrix is defined as
and is given by

(9)

If we pre- and post-multiply both sides of (8) by and ,
respectively, we obtain

Now note that

i.e.,

(10)

By premultiplying both sides of (10) by we obtain4

which substituted into the expression of gives

Using this into (8) we find the unique stationary point of
, say,

Based upon Proposition 1, we have that is a positive def-
inite Hermitian matrix and that it corresponds to a maximum

4Observe that matrixSSS = SSS+ZZZ ZZZ is invertible sinceSSS is invertible and
ZZZ ZZZ is positive semidefinite [16].
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of ; summarizing, it is the maximum likelihood es-
timate (MLE) of under the hypothesis. Now it only re-
mains to compute the compressed likelihood under ; to this
end, note that from (8) it follows that:

from which we have

By taking the trace at both sides of previous equation and using
(9), we obtain

(11)

which, substituted into the compressed likelihood (7), with
in place of , yields the final expression for the denominator of
(3)

The solution to the optimization problem under the hy-
pothesis is well known (see, for instance, [4], [7]) and the com-
pressed likelihood is given by

where

Thus, we conclude that the one-step GLRT for problem (2) is
equivalent to

(12)

where is a proper modification of the original threshold in (3).
Test (12) can also be expressed in an alternative form as follows

(13)

where

is the Kelly GLRT (see [4] and [7]). For the special case
, i.e., the case of a single cell under test, expression (13) sim-

plifies to

where can be written as in [1]:

Details on the derivation of expression (13) for the proposed
GLRT can be found in the Appendix II.

B. Two-Step GLRT-Based Detector

This section is devoted to the derivation of an ad hoc detector
for the hypothesis test (2) based upon the two-step GLRT design
criterion. As a matter of fact, it can be straightforwardly derived
using results in [10] and will be reviewed here only for the sake
of clarity.

The rationale of the design procedure is the following: first
assume that the covariance matrix is known and derive the
GLRT based on primary data . Then, a fully adaptive de-
tector is obtained by replacing the unknown matrix with ,
i.e., times the sample covariance matrix based on secondary
data only.
Step 1) The GLRT, under the assumption that is known, is

given by

(14)

where is the pdf of under the hy-
pothesis, , 1, and the threshold value to be
set according to the desired .
If we write the explicit expression of the pdf’s, we
come up with the decision rule that is shown in the
equation at the bottom of the page. Minima over



18 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 1, JANUARY 2008

and can be computed using the result given in (5)
to obtain

where is the projection
matrix onto the range space of the vector

. Condition (1) implies that
and, hence, the GLRT becomes

Taking the natural logarithm and substituting for
and their expressions as functions of the

original quantities, we come up with the following
ad hoc detector:

(15)

where is a proper modification of the original
threshold in (14).

Step 2) Detector (15) can be made fully adaptive by plugging
in place of to obtain

(16)

or, equivalently

where is the generalized adaptive matched
filter (GAMF) proposed in [4], i.e.,

C. On the CFAR Property of the Proposed Solutions

It is of interest to investigate the CFAR behavior of the pro-
posed algorithms. To this end, we follow the usual assumption
and define the as the probability to declare that a useful
target echo is present (i.e., to accept the hypothesis) when
data under test contain noise only, i.e., , .
With this definition in mind, we have that both the GLRT (13)
and the ad hoc detector (16) possess the CFAR property with
respect to the unknown covariance matrix (see Appendix III
for the proof).

IV. PERFORMANCE ASSESSMENT

This section is devoted to a performance assessment of the
presented algorithms in terms of probability of detection
and selectivity, also in comparison to previously proposed solu-
tions. More precisely, we compare our detectors to the GLRT,

the GAMF, and the generalized adaptive subspace detector
(GASD) [4], and to the ABORT5 proposed in [8]. For the sake
of clarity, such competitors are repeated in the following:

(17)

(18)

(19)

For the case of a single snapshot under test (i.e., ),
previous detectors reduce to well-known detection schemes;
precisely, the GLRT reduces to that presented in [1], the GAMF
to the adaptive matched filter (AMF) [11], and the GASD to the
adaptive normalized matched filter (ANMF) [17], also known
as adaptive coherence estimator (ACE) [18, and references
therein]; in addition, the ABORT [8] is given by

(20)

Moreover, it is worth pointing out here that all of the aforemen-
tioned detectors guarantee the CFAR property with respect to
the noise covariance matrix .

Analysis is carried out by resorting to standard Monte Carlo
counting techniques. More precisely, in order to evaluate the
thresholds necessary to ensure a preassigned value of and
the ’s, we resort to and independent trials, re-
spectively. For simulation purposes we also set ,

, and

Moreover, we assume that all of the range cells in con-
tain, under the hypothesis, target returns generated with one
and the same non-fluctuating radar cross section. The signal-to-
noise ratio (SNR) is defined as

(21)

where is the magnitude of a complex number. As to the noise,
it is modeled as an exponentially correlated complex normal
random vector with one-lag correlation coefficient ;
namely, the th element of the noise covariance matrix is
given by , , with .

We conduct the analysis in two phases: first, we compare the
performance of the different detectors for matched mainlobe tar-
gets (Figs. 1–4); second, we study the selectivity properties of
the detectors (Figs. 5–9). For this last case, detector (13) is as-
sumed as a benchmark and the comparison is made only with
detector (16), the GASD, and the ABORT, since the GAMF and
the GLRT do not provide high selectivity (see also [8]).

5Comparison with the ABORT can be made only for the case of a single cell
under test, i.e., K = 1.



BANDIERA et al.: AN ABORT-LIKE DETECTOR 19

Fig. 1. P versus SNR for the ABORT, the proposed detectors (13) and (16),
the GAMF, the GASD, and the GLRT, N = 20, K = 1, K = 40, P =

10 , and � = 0:95.

Fig. 2. P versus SNR for the ABORT, the proposed detectors (13) and (16),
the GAMF, the GASD, and the GLRT, N = 20, K = 1, K = 80, P =

10 , and � = 0:95.

In Fig. 1 we plot the curves of versus SNR of detectors
(13) and (16) proposed herein together with those of the GLRT
(17), the GAMF (18), the GASD (19), and the ABORT (20), for

and . As it can be seen, the best performance
is attained by the GLRT and the GAMF (for high SNR), while
detector (16) and the ABORT experience a loss of less than 0.5
dB at ; the GASD looses about 1 dB with respect to
the GLRT and, finally, the horizontal displacement between de-
tector (13) and the GLRT is about 2.5 dB. In Fig. 2 we have
the same system parameters as in Fig. 1, but for . Re-
sults indicate that the hierarchy of the six considered detectors
remains approximately the same, but for the fact that the GASD
has now practically the same performance of the ABORT and
of detector (16).

In Fig. 3 we plot the ’s of the same detectors considered in
Figs. 1 and 2 (but for the ABORT), for , . It
is seen that the best performance is still attained by the GLRT,

Fig. 3. P versus SNR for the proposed detectors (13) and (16), the GAMF,
the GASD, and the GLRT, N = 20, K = 5, K = 40, P = 10 , and
� = 0:95.

Fig. 4. P versus SNR for the proposed detectors (13) and (16), the GAMF,
the GASD, and the GLRT, N = 20, K = 5, K = 80, P = 10 , and
� = 0:95.

while both the GAMF and the GASD experience a loss of about
1 dB at . The losses of detectors (13) and (16) are
larger and amount to 2 and 5 dB, respectively. In Fig. 4 we
plot the ’s for and the remaining parameters as in
Fig. 3; again, the increase of the number of secondary data does
not significantly affect the ranking of the considered detectors,
but for the fact that the GAMF and the GASD are closer to the
GLRT.

In Figs. 5–9 we present a selectivity analysis of the detectors
for the case of mismatch between design and operating steering
vector, for and different values of . More precisely,
we plot contours of constant , as functions of the SNR (21),
with replaced by the actual steering vector, say. To this
end, we define
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Fig. 5. Contours of constantP for detectors (13) and (16),N = 20,K = 1,
K = 80, P = 10 , and � = 0:95.

Fig. 6. Contours of constant P for detector (13) and GASD (equivalently,
ACE), N = 20, K = 1, K = 80, P = 10 , and � = 0:95.

where is the mismatch angle between the nominal steering
vector and its mismatched version in the whitened obser-
vation space. Observe that corresponds to perfect
match ( hypothesis), while corresponds to the
hypothesis. Figs. 5, 6, and 7 contain the performance of detector
(13) as it compares to detector (16), the GASD, and the ABORT,
respectively, for . Inspection of the figures shows that,
for the considered system parameters, detector (13) exhibits the
strongest performance in terms of mismatched signals rejection,
at the price of a certain detection loss for matched ones; notice
also that detector (13) is even stronger than the GASD, which,
for the case at hand, coincides with the ACE (Fig. 6). Moreover,
we can see that detector (16), the GASD, and the ABORT have
basically the same performance. In Figs. 8 and 9 we plot the se-
lectivity of detector (13) as it compares to detector (16) and the
GASD, respectively, for and remaining parameters as
in Figs. 5–7. It is seen that in case of multiple cells under test,

Fig. 7. Contours of constantP for detector (13) and ABORT,N = 20,K =

1, K = 80, P = 10 , and � = 0:95.

Fig. 8. Contours of constantP for detectors (13) and (16),N = 20,K = 5,
K = 80, P = 10 , and � = 0:95.

detector (13) still ensures better capabilities of mismatched sig-
nals rejection.

V. CONCLUSION

In this paper we have proposed GLRT-based adaptive de-
tection schemes for possibly distributed targets capable of
providing improved rejection capabilities against mismatched
signals. We have considered the homogeneous Gaussian en-
vironment, i.e., the case where noise returns into primary and
secondary data possess the same (unknown) covariance matrix.
The capability to reject unwanted mismatched signals has been
achieved by following the lead of the ABORT formulation,
namely by adding fictitious signals under the null hypothesis.
The novelty stems from the fact that in this paper we assume,
under the hypothesis, the possible presence of signals
orthogonal to the nominal steering vector in the whitened
observation space, i.e., the space obtained after whitening the
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Fig. 9. Contours of constant P for detector (13) and GASD, N = 20,K =

5, K = 80, P = 10 , and � = 0:95.

observables with the true covariance matrix. Proposed detec-
tors possess the CFAR property with respect to the unknown
covariance matrix of the noise. Finally, some simulation studies
have been presented to assess the performance of the newly
introduced detectors with respect to existing ones; such studies
have shown that the (one-step) GLRT herein proposed can
guarantee better rejection capabilities of mismatched signals,
although at the price of a certain detection loss for matched
signals.

A further way to apply results contained in this work might
rely on the possibility to use two-stage algorithms [8], [19], [20],
i.e., detection structures formed by two detectors: a first stage
with poor selectivity properties to identify signals that deserve
further attention and a second stage much more selective to dis-
criminate whether detected signals are to be considered useful
target echoes or unwanted mismatched signals; in the light of
previous considerations, the proposed solution might be a good
candidate for the second stage of detection.

APPENDIX I
PROOF OF PROPOSITION 1

In this Appendix, we give the proof of Proposition 1. Our
proof parallels that reported in [13] and is reviewed here for the
sake of completeness. For notational convenience, let

; Proposition 1 is thus equivalent to
Proposition 2: Let be the set of all -dimensional,

positive definite, and Hermitian matrices over the complex field,
then:

• the function admits maximum over ;
• such a maximum occurs at a stationary point.

Proof: To begin with, observe that an Hermitian matrix
can be represented by

real numbers; hence, it is possible to map complex Hermitian
matrices onto the space , where is the real field. This
can be accomplished by considering the real and imaginary part
of all independent elements of as the components
of a vector in .

Now let be the set of all positive semidefinite Hermitian
matrices. Then, corresponds to a closed and unbounded
subset of . The boundary between and its comple-
ment corresponds to the set of singular positive semidefinite
matrices. Our first step is to show that approaches
minus infinity when , assumed to belong to , approaches
a singularity. To this end, observe that

Moreover, by the arithmetic-geometric mean inequality [16], we
have that

Therefore, the following inequality holds true

(22)

Hence, when tends to zero (i.e., matrix tends to be
singular), tends to minus infinity. In other words, this
implies that for each there exists a positive number
such that for each in , such that , we have that

. Now let be a positive definite Hermitian matrix
(i.e., belongs to ). It follows that exists and it is
some finite value. Choose , it follows that there
exists such that for each in , whose determinant is
less than , we have .

We can thus define to be the set of positive definite Her-
mitian matrices whose determinant is greater than or equal to .
Clearly we have that is a closed and unbounded subset of ,
and that belongs to . Moreover, the boundary between
and its complement consists of positive definite Hermitian ma-
trices whose determinant is equal to . The search for the pos-
sible maximum of over can, thus, be restricted to

.
Now let such that each entry of is less than or equal

to (in magnitude), and let be the set of positive semidefi-
nite Hermitian matrices whose elements are less than or equal
to (in magnitude). It is clear that is compact in and
it contains by construction. Let be the intersection be-
tween and . Then, is compact and nonempty, since it
contains at least . The boundary with its complement consists
of positive definite Hermitian matrices with determinant equal
to and/or with some (diagonal) element equal to in magni-
tude.6 Since is a continuously differentiable function of

, it is clear that it has a maximum on and such a maximum

6Recall that, as a consequence of the Cauchy-Schwarz inequality, for a pos-
itive semidefinite matrix AAA 2 C , whose entries are denoted by a ,
m;n 2 f1; . . . ; Ng, we have that

ja j max ja j:
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is equal to or greater than . To complete the proof of
the first statement, we have to show that for a large enough,
each point outside (but still in ) does not provide values
of greater than . To this end, let us consider
the eigenvalue decomposition of the matrix , i.e.

where is a diagonal matrix whose diagonal en-
tries are the eigenvalues of and is a unitary ma-
trix whose columns are the corresponding orthonormal eigen-
vectors. We have

where are the eigenvalues of arranged in de-
creasing order and are the diagonal elements of

. If is the minimum eigenvalue of , then , for
all . Then,

(23)

where the last inequality follows from the fact that for

Now, let be the maximum value of (in magnitude), it follows
that

Therefore, as goes to plus infinity, goes to plus infinity and
goes to minus infinity by (23).

As a consequence, for each , there exists a
such that, for each whose maximum element is greater than
, . Now choose , we have that

there exists a such that for each positive
definite outside .

We have, thus, obtained that admits a maximum over
and that each point in the intersection between and the

complement of in does not provide values greater than
. As a consequence, the maximum of over

is the maximum over the open set , too.
The second statement is straightforward; since is

continuously differentiable over the open set , the maximum
of has to be a stationary point of . The proof is thus
finished.

From Proposition 2 and the fact that is the unique sta-
tionary point of we can conclude that is the maxi-
mizer of and, hence, the maximum likelihood estimate of

under .

APPENDIX II
DERIVATION OF EQUATION (13)

The aim of this Appendix is the derivation of an alternative
form for the GLRT given by (12). To this end, observe that

where is the projector onto
. Hence, can be rewritten as

(24)

Recall now that ; as a consequence, we have
that

(25)

and [16]

(26)
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If we substitute (25) and (26) into (24), after some algebra, we
come up with the expression shown at the bottom of the previous
page, where

Observe now that

(27)

and, hence, that

(28)

which, in turn, implies that

(29)

We also have that

(30)

Using (27), (29), and (30) into the expression of we
get

Following the lead of previous derivation, it is easy to check that
can be expressed as

and, therefore, that the GLRT is given by

which can also be expressed as a function of the original quan-
tities as shown in the equation at the bottom of the page, which
is exactly the expression given by (13).

APPENDIX III
CFARNESS OF THE PROPOSED DETECTORS

The aim of this Appendix is to show that detectors (13) and
(16) guarantee the CFAR property with respect to covariance
matrix . As already stated, we follow the usual assumption to
define the as the probability to decide that the hypothesis

is true when data under test contain noise only, i.e., ,
.

The proof parallels results presented in [1], but it is reported
here for the sake of completeness. To begin with, let us define
the following quantities

where, in particular, and are
the whitened data. As to the decision statistic (13), it can be
rewritten as (31) shown at the top of the next page. Now denote
by a unitary transformation aimed at rotating the
vector onto the direction of ; in particular,
we can write

(32)
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(31)

Thus, plugging (32) into (31) and performing straightforward
manipulations we have the unnumbered equation shown at the
top of the page, where

and
being matrices whose

columns are independent and identically distributed complex
normal random vectors with zero mean and identity covariance
matrix, i.e.

It is then apparent that under the noise-only hypothesis the de-
cision statistic (13) can be expressed as a function of random
variables whose distribution does not depend on . The claimed
CFAR property of detector (13) is thus proved.

Similarly, the decision statistic of the ad hoc detector (16) can
be recast as

whose distribution is apparently independent of under the
noise-only hypothesis.
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