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ABSTRACT

An analytical modelling of the symmetrical wrinkdjins proposed : from original assumptions on disgtaents
within the core, and from an energy minimisationthod, it is possible to predict critical loads amackling
modes better than traditional models do, and tingjsish the influence of each structure component.
Compression tests were carried out on sandwicletees to validate the model. Little curved stroetuwere
also tested to estimate the influence of skin dureaon rupture and buckling mode.

A finite elements analysis has been achieved iralighr a fine modelling allows to find results st to

experimental ones.

LOCAL BUCKLING, WRINKLING, COMPOSITE, FOAM, FINITEELEMENTS, ANALYTICAL

MODEL.
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INTRODUCTION

In the field of aeronautical engineering, composaadwich structures are widespread. The use af foa
core instead of Nida to stabilise the skin of swthuctures present an economic benefit, but theakw
mechanical characteristics poses the problem afl lmackling. Thus, to design such structures, itgortant to
be able to evaluate the critical loads of buckliMgny theoretical studies were carried out for platructures,
but there are few experimental results and thug fesv correlation.

First of all, an analytical study of the local Bliag of skins on elastic soil is made. The useneW
functions to represent the elastic foundationsvallto analyse and to underscore the influence eftfierent
component of the structure, and to improve the igAysunderstanding of the phenomenon. This model is
compared with finite elements calculations and othekling models.

Various compression tests were carried out onveighdoeams made of foam core and glass-epoxy skin.
These tests give experimental results to validegeanalytical model. Tests were also realized ightyy curved
sandwich beams, to study the influence of a skimature on rupture and buckling phenomenon.

A finite elements modelling is made to analyse ¢xperiments. It shows the necessity of a precise
representation of skin-foam interface to correfa@tme specimen buckling tests. Modelling of cursedictures

permits to find results close to experiments, ankdave a better understanding of the rupture phenom

ANALYTICAL MODELLING

The study of symmetrical local buckling of sandwigpe structures is equivalent to the study of the
instability of a skin on an elastic foundation (fig 1). The notations used are usual ; ¢ and smedpectively to

the core and the skin. b is the depth of the skin.

Existing modelling

One of the first wrinkling model developed, is ténkler type model, which considers the elastic
foundation as a succession of springs. Springsvatiorepresent linear transverse displacementsercore, but

the model do not consider transverse shearingcfitieal buckling load is (Timoshenko, 1966 ; AlleB69) :

[E
F. =20/K, [E; O, , with the foundation stiffned€ = b " c




This model does not suit to the case of short veangth buckling. It is possible to improve it by adpKxy
springs to take into account shear stress, buiddetification of the stiffness becomes difficukiéllo and

Ombres, 1997).

Hoff and Mautner (Hoff and Mautner, 1945), and tiAdien (Allen, 1969), worked on models with a conibus
representation of the core. They used Airy funditm represent stress in the core. This leadsdaldssical,

extensively used expression :

Jbuckling = Q af Es EEc EBc + Ql EBc (eq 1)

Allen determines Q et Qn function of Poisson's ratio in the core : 0.#3Q < 0.794 and 0.200 <;& 0.333.

Recently, in a study on the local and global bugkicoupling, Léotoing (Léotoing, 2001) proposed an
original method, based on displacements. He detesnthe equilibrium equations of the problem frdma t
potential energy of the system, and from the virtuarks principle. He linearizes the equilibriumuadjons,

which leads to an eigenvalues problem. The bucldiitgcal strength is :
/ E bE. O G, bh
I:critique = 2 < h > 4+ 3 (eq 2)

More specific models can be mentioned : Starlif@arlinger, 1990) take in account the orthotropy

the core, and Niu and Talrejas (Niu and Talrej®@9se Airy functions in the core, in forms of Feu series.

Most of these models do not give a precise reptaen of displacements within the core. Besides,
these models do not allow to visualise the infleemé the different structure components in the bogk

phenomenon.

Hypotheses

The structure studied is a plane skin on an elé&stiedation (figure 1).



Figure 1 : wrinkling model : beam on elastic found&on

The structure is a 2D model. A compressive loagbilied on the beam which represents the skin.stiueture
is in a compression state, until the buckling appea

gi are the parameters of the system : gi = qi°+adiere gi° are parameters at equilibrium, and dgi t
perturbations around equilibrium.

After buckling, the deformed skin is supposed tcsimisoidal (figure 1). I is the deformed skin wavelength,

the transverse displacement of the skin is suppiusbd :
. T[X
N, = dAE‘sln(T)

Deformations within the core are complex. To amalgésplacements in the foam, a finite elements
calculation is achieved, that allows to observe ftren of displacements (figure 1). For short wangths in
comparison to core thickness, perturbations areliked in a restricted area, under skin. Thereforear
transverse displacements in the core are not aetiigf/ to represent reality, except while adjustimg stiffness
according to the wavelength. It is necessary toesgmt displacements by functions which permitgh kiecrease
versus y. In this study, we chose to consider efiloé/nomial of order higher than 3, or piecewisdypomial.
Besides, it might be important not to impose a didplacement in the x direction, to avoid she#fesing in

the core.

By consideration of symmetry on the infinite-lengstructure, it is possible to demonstrate the
periodicity of displacements dand dy in the x direction. Besides, dand dy increase with dA, which allows

to write the following hypothesis :

&, = ALP(Y) mn(”T[X), &, = AQ(y) m:os@)



with P(y)=> a X' et Q(y)=) b X
andP(0) = 0, P(h) =1, to be cinematically admissibl€(h) =0.

(P and Q might be piece-polynomials).

The simplified behaviour law used in the foam dsrthe following :

o,=E L&, o, =E L&, o0,=2[G L,

Energetic approach
Total potential energy of the structure is the soindeformation energy and external energy. The
calculation is done for a fixed wavelengi):(

Er =Ugy +V
A stable equilibrium state corresponds to the mimmof the total potential energyc5ET =0, 0° E; >0.

Buckling happens when equilibrium becomes unstaiié E; =0.

Energies are expressed below (Barrau, 1987) :

Elastic energy in the skin (transverse shearimpgiected) :

11 11
:Wnormal +Wbending = J-E m.l.l |:Ge.l.o)z mX+ J-E I:q:ll [ﬂklo)z E:IX
0

0
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skin
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with ° =&, —%+1[é$/j , k1°:—d—\2/, u=u°+au, Vv=v°+ov
dx 2 (dx dx

Elastic energy in the core :
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External energy (punctual load F) :

IFBd—mlx

skin



The total potential energy is written in secondesrdaylor seriess’ET=0 leads to the following equation,
according to the problem parameters :

p) 2 p)
] EE ] mx—J.FEﬁdeS]Ed:ix
5 o dx
2 2
N dov, \’ ‘G, dau, , ddv, Xy
dy dy dx
The critical load for a fixed wavelength is then :
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Critical buckling load and deformation mode arecokdted by minimisation of the load, in function)of
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Calculation of shape functions in the core

The previous calculation is made for a fixed wangth and fixed shape functions. The critical effort
has to be minimal, therefore it is possible to dabee polynomial coefficients of the shape functibp
minimisation of elastic energy in the core, forigeg wavelength.

A matrix formulation of the energy is used to siifyptalculation. The energy is quadratic in funatiof the
unknown coefficient vector. It permits to have msie expression of the energy, and an expressitimeofector

that reaches the minimum (Kelley, 1999): (Kelle999) :

Wcore:t [Coef] [@Quad] [@Coef] + [Lin] [ﬂCoef] +Cste

[Coef] ini = —% fouad L fLin]

In any case, it is possible to express the dispiaecés in the core with an analytical function.

No restriction is given on materials : the corefdam, can be either isotropic or orthotropic ; akth

can be made of composite, the expression of beratiaggy being expressed according to bending atiffiiz.



Comparison with a finite element calculation

To validate the modelling, a 2D linear bucklingité element analysis have been carried out. Skies
represented by beams, and core is represented topnaee elements. Boundary conditions have few énite
on wrinkling (local phenomenon), so the load canapelied through a rigid body, at the extremitiéste
model. The mesh must be fine so that a wavelergttams about ten elements; the length of the moast be
great enough to neglect boundary conditions ( rtitae 5 wavelengths ).

Table 1 gives the critical load for several modeldth different structure configurations. The refece
configuration is the following: E50 MPa, E=50000 MPa, h=20 mm, t=1 mm (thickness of skin)z0.8, b=30
mm. The other configurations only present a vaatf one of the parameter around the referenceer8e
shape functions are used to represent the carearli cubic, 2-piece cubic spline, and 2-pieceaspiine plus a

3-order polynomial which takes count of the londihal displacement (x direction).

Ref. E- E- E- E- t= t= =
Model 10 200 | 10000 | 100000 0.25 5 50
Linear 13% 7% 21% 23% 10%|  103% 3% 50%
Cubic 5% 5% 0% 2% 5% 3% 3% 1%

2-piece cubic 5% 5% 0% -2% 5% -1% 3% 0%

2-piece cubic ®uy, 1% 1% -3% -4% 2% -1% 0% -1%

Classic 2% | -10%| -3% 5% 4% 5%)|  -38% -39
Leotoing 13% 7% 21% 23% 10%|  103% 3% 50%

Table 1 : Critical load : comparison between analyital models and FE

In the case of simple shape functions, it is gidesio express the critical strength with an anedyt
function. It is the case of linear model, whichrpits to recover the expressions of load and wagthegiven by
Léotoing symmetrical buckling model (eq 2). In thther cases, the problem of minimisation becameptexm
and need to be solved by numerical calculation.

Table 1 shows that linear model can lead to 100%r&rThe hypothesis of linearity is only validardomain in
which wavelengths are greater than thickness ofolé @>2.h).

Even if it does not perfectly represent the fiefddsplacements (figure 3), the cubic model pernuts
have a good precision (5% in the studied domatn¥ simple to use, and can easily be implantea software

like Excel. The critical load is obtained by mingation of the load in function af:

_TEl, b 1°G,’h® +1357°G *h* A°E, +28807°G_h’A*E,” + 63004°E,°

F
A2 15 h7{4200°E,.” +520°E °G h? + 'G *h*



For small values ok/h, it is necessary to consider a more complexesfiapction : for example, a 2-piece cubic
spline. The calculation of polynomials and crititzdd becomes complex, but transverse displaceraemtsetter
estimated (fig 2).

Taking account of the longitudinal displacementhia core (dy) permits to recover the form of displacements

given by finite elements analysis, and improvdtkelbit the critical strength calculation.
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Figure 2 : dv. displacement shape function in the foamAE5mm, h=20 mm)

Influence of structure components

From the energetic approach, it is possible tordetee precisely the influence of structure compdsen
by analysing the energy stored in skin and cor&jnation ofA.
Figure 3a shows the distribution of energies in t¢bee : the energy due to normal stress becomds ihig
comparison to shear energy for high wavelengthsskortA, it is necessary to consider shear in the core.
Figure 3b shows the distribution of the energigs/ben skin and core, and their evolutions wheméreases.
Generally, energy in skin decreases whéncreases.
In the core, it is the opposite : Xfis short, only a local region under the skin isa@rned by the perturbation.
WhenA increases, the perturbation spreads to a largereand the energy increases.
An evolution of E provokes an evolution af and the critical effort in the same direction. Twolution ofA is

significant, whereas the variation of the effon ¢ small.
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Figure 3 : (a) Repartition elastic energy in the ce

(b) Evolution of energies with E

If the core thickness (h) is important, it is pb#sito show, with the 2-piece cubic spline mode#tt
energy in core is linear with. Stress in the skin is then thickness indepen@entmetallic, or through thickness
homogeneous skins). Contrary to the classic magillts (eq 1), when core thickness is small, thesstcan

vary strongly with the thickness of skin (fig 4).
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Figure 4 : Skin thickness influence on critical stess in skin (h=20 mm)

EXPERIMENTS

Compression tests have been achieved on simpiettes, to correlate experiments, analytical model
numerical method (finite elements), and to imprtheephenomenon comprehension.
The chosen structures are represented on figurEh&y are thick and short sandwich beams, made of a
polyurethane foam core, covered by glass fibberegpuky resin skins. The introduction of the comgpresload

is made by steel pieces at the extremities. Toystuel effect of skin curvature, three differentrskurvatures are



tested : C-type (0.75 mm offset), D-type (1.5 mmy &-type (2.5 mm). Plane skin structures are E-typ

specimens.
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Figure 5 : structures tested

Material characterisation

Characterisation of foam core and skin were made.
The foam is slightly anisotropic £10 Mpa, E,~=12 Mpa, G=6 Mpa. Tensile rupture stress is about 0.7 MPa.
The characteristics of glass-epoxy tissue a2 )00 Mpa, G=3000 Mpa, for a 0.16 mm theoretical thickness.

The glass tissue is manually impregnated with epesin.

Tests

Tests have been achieved on a traction-compressachine, with an adapted set-up which permits sorasthe
applied compression load direction.

During tests, displacement is imposed (0.5mm/mir)e acquisitions allows to get the applied loack th
displacement, and deformations at the centre df skio (gages).

Specimens whose skin is made of one or two pliegass have been tested.

Results



For plane skin specimens, tests show that for dnégsue skin, debonding is local, and a forafigkin in the
foam can be observed on a few specimens (fig 6). two-plies skin structures, debonding is globél :
immediately propagates (less than a microsecowndpahe specimen length, even if displacemenbigpsd.

For curved skin structures, forcing never appeaugture is a debonding of the skin, which can eitieslocal
(one-ply) or global (two-ply) (fig 6). Debondingesas to appear at the middle of the skin lengthewearrvature

is the highest.

After eliminating non-valid tests, dispersion ofpture load values is under 25%, which is reasonable
considering the specimen production method, andigpersion observed on rupture load in the foam.

In all cases, rupture load increases with the #kokness, but decreases when curvature increases.

The deformation versus load diagram of plane sgetsnens is linear till the rupture (fig 8), anaks like the
compression diagram of a single skin (the foam goonodulus is only about 10 Mpa). This permits tp et
rupture is due to an instability : the local bungliof the skin.

For curved skins, deformation is not linear withdo The rupture phenomenon is different. When Inarkases,

bending in the skin increases immediately, up fdure (fig 8).

Figure 6 : rupture of the specimen

COMPARISON : TESTS - ANALYTICAL MODEL - FE MODELLIN G

Plane specimen

The calculation of critical load with the analgtionodel, while representing skin only by a glasd a

resin epoxy tissue gives results lower than expamisr Indeed, when skins are thin, the contributbrihe



rigidity of the resin interface between skin andrfois non negligible, since it increases in a megfnl manner
the bending rigidity.

SEM (Scanning Electron Microscope) observationsniterto reveal the state of this interface (figFFdam core
is made of cells, so that the surface is unsteadgn at a 1 mm scale. The resin used to impredhatglass
tissue enter the open cells at the surface, andkineis then made of a 0.16 mm glass tissue plusnsteady
resin layer. It is difficult to control both theitkness of this layer, and its geometry, and thénnot possible to
have a precise estimation of skin bending rigiditfickness measured during the test is between rasand

0.40. Calculations are achieved with a minimal amdaximal interface thickness.

Table 2 shows a few results for experiments, aitalytnodel and EF linear buckling calculations. Tiesin

interface thickness is taken in account. Calcutetigive a minimal and a maximal buckling load. Ekpental

results are between these values.

l 1000 pPm |

Figure 7 : skin and interface SEM analysis

Plane skin FE Analytical model Experiments
structures Resin thicknesg load Resin thickness load
- - 0.20 mm 2260 N
2-plies 0.28 mm 2670 N 0.28 mm 2600 N | 2500 to 3000 N
0.40 mm 3450 N 0.40 mm 3075 N
0.16 mm 1400 0.16 mm 1400
1-ply 0.24 mm 1750 0.24 mm 1740 1250 to 1500 N
0.34 mm 2240 0.34 mm 2180

Table 2 : buckling load — comparison between FE, aiytical model and experiments

For plane specimens, a non linear finite elementslefling of the structure permits to confirm thapture
appears in a buckling mode. The FE load versusrahafiion graph (fig 8) shows that behaviour is linep to

the buckling load. Deformation is measured with eémgat the middle of the skin. Gage 1 on a sidéhef



specimen, gage 2 on the other side. Skin debonslidge to a local rupture of the foam, in tractéom shearing,
under a stress concentration due to buckling.

Results from FE model are slightly superior to gl model results, because analytical model cha¢dake in

account the boundary conditions.

One ply B-type specimen Two plies E-type specimen
(plane skin) fcurved skin)
deformation (x10e6) deformation (x10e6)

-EEIEIEI -1300 -1000

-G000 -4000 -2000 -500
—B09 gage E01 gagel
— B9 gage? 5312 gagef
————— fage
SH g:gz; EF 0.26 mm resin /
EF 0.40 i
—EF 016 mm resin mmm re=in 4000

AS00 oo
= SR

load (H) load (H)

Figure 8 : load versus deformation graph — experimas and FE

Curved skins

To understand the phenomenon that rules the rupiutgs case, a finite elements analysis is redlis
Linear buckling calculations show that the curvatimcreases the critical buckling load (about 5%hiese
cases), whereas experiments show that rupturedeerdase. The rupture is not due to buckling.
The mean rupture values for 2-plies specimensigemdn table 3. B-type is a plane skin specimeme 6thers

are curved skin specimen.

B-type C-type D-type E-type
Rupture load 2800N 2515N 2125N  1670|N

0.75mm| 1.5mm | 2.5 mm
offset offset offset

curvature 0

Table 3 : Two plies specimens - evolution of ruptwe load with curvature

Non linear EF calculations, with linear materiaksrpits to show that rupture occurs when stresshesais
limits in the foam. Figure 8 show that behavioun@-linear. Bending appears in the skin when oadeases,
and stress concentrations appear in the foam figr@-10). The stress is the highest under the, skithe middle

of the specimen. Figure 10 representsdhetress in the foam versus applied load, at thigak point. This



diagram shows that, for the tested specimen, tesiess limit (about 0.7 MPa) is reached in trarfdoefore
buckling appears. Debonding is due to tensile fogpture.
To improve the structure, it is possible to usenfagith highest rupture limits. Rupture load canim@eased up

to critical buckling load.

G, stress (MPa)
7.19-001

5.52-001.

B.05-007 2
5.48-001 |

4.91-001

- i 4.34-001.
7.1%-1 MPa [ | I N 37001

3.20-001
2.63-001

2.06-001

1.49-001
9.18-002

3.49-002

Figure 9 : g, stress concentration in the core (two plies specén, 0.32mm resin)
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Figure 10 : o, stress vs applied load at critical point of the fam core (two plies, 0.26 mm resin)

Limitations



The analytical model can only be used for planedséch structures, and only take in account
symmetrical buckling. It is therefore necessaryéoify that the buckling mode is not antisymmeti@ritical
load would then be lower.

The rigidity of skin is a dominant factor in thelmaation of the buckling. For thin skins, it isettefore
important to estimate the influence of the integfaand to take it in account if necessary.

The analytical model doesn't take in account freclength, and boundary conditions. To estimiaite t
influence, EF calculations have been achieved wifferent length. With the shortest structures, King

happens for 5 to 10 % superior loads.

CONCLUSION

The analytical model, based on an energetic methadl original shape functions, permits better
estimations of the buckling loads, deformations atréss in the core that classic models. It peraitgpod
representation of deformations in the score, ewenshort wavelengthsA€h). The model can be used with
composite skins. It permits to visualise the infice of the different components of the structure.

Finite elements calculations and tests allows tmate the model, and permit to underscore the ssigeto take
in account the resin interface, between core amdtskhave a valid estimation of buckling loads.

The model presents some limitations. The boundangitions are not taken in account in the analyticadel.
Critical loads calculated with the model might beer@stimated for configurations where the structangth is

high (L>3\). It is however interesting to note that in angeaesults are conservative.

Tests achieved on curved structures show thaptiemomenon is different and more complex when
skins present a curvature. The curvature increlaserétical linear buckling loads, but the weak naeitel
properties of foam can lead to rupture before reachuckling. This can decrease the structure tasie and

decrease the rupture load. When designing suctistes, the choice of foam used for the core isre&.
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