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Abstract

The article uses complex fractional differentiation to design a controller
ensuring dynamic behavior of a control system. The proposed method uses
two contours called “performance contours” and constructed on the Nichols
diagram. The first contour is the common Nichols magnitude contour that
can be considered as an iso-overshoot contour. The second contour con-
structed thanks to complex fractional differentiation is a new contour de-
fined on the Nichols diagram and parameterized by the damping ratio. The
design method leads to the computation of a complex fractional order trans-
fer function whose open-loop Nichols locus tangents both performance con-
tours, thus ensuring stability margins and dynamic behavior. The method
is applied to a DC motor whose speed is controlled.
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1. Introduction

1.1. Motivations of the article

The article proposes an application of the complex fractional integrator
to control system design. Indeed, the compactness of fractional calculus is
used here to compute a controller with a method based on an optimisation
with few parameters. The aim of the control system is to ensure dynamic
performance.

Dynamic performance are well-known in the time-domain: the settling
time ts, the overshoot in percent O%, the damping ratio ζ. For a simple
second-order system, these characteristics are linked all together. The ques-
tion is to know whether it is possible to compute a controller that achieves
all three dynamic performance for any linear system whatever its order. As
many design methods are based on a frequency-domain approach, a method
that answers this question is researched in the frequency domain.

As it is well-known that the overshoot in percent is strongly correlated
to the resonant peak of he complementary sensitivity function (even if the
system is not a second order system), the overshoot in percent is easily
guaranted using frequency domain loop-shaping.

As it is well-known that the settling time is strongly correlated to the
closed-loop cut-off frequency and thus the open-loop gain crossover fre-
quency, the settling time is also easily guaranted using frequency domain
loop-shaping.

Concerning the damping ratio, it is generally not linked to the resonant
peak of he complementary sensitivity function for systems with an order
other than 2. Nevertheless it would be convenient to have an equivalent of
the damping ratio in the frequency-domain.

In this article, it is shown how complex fractional differentiation have
already been used to give an equivalent of the damping ratio in the frequency
domain. Then we propose a new method, also in the frequency-domain, to
compute a controller to ensure at the same time the overshoot, the damping
ratio and the settling time of the response of a control system whatever
the desired values of these parameters. This method is based on complex
fractional differentiation.

1.2. Specific contributions of the article
To develop the proposed method in the frequency domain, and more

particularly with Nichols locus, it is first of all necessary to have an equiv-
alent of the time-domain specifications in the frequency domain.
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It has been shown previously that, in the case of an unlimited rectilin-
ear open-loop Nichols locus, the magnitude peak, M t, is indicative of the
overshoot in percent O% [8],[12]. A Nichols diagram magnitude contour
can thus be considered as an iso-overshoot contour (see Appendix entitled
“Parametrization of a magnitude contour by the corresponding overshoot
in percent”).

Also, still in the case of an unlimited rectilinear open-loop Nichols lo-
cus, some new contours indicative of the closed-loop damping ratio ζ have
been built using complex fractional differentiation [8],[9]. The construction
method is summarized in Section 2.

The interest of these contours is that their application domain oversteps
this study context. We showed that these contours are valid, on the one
hand in the case of limited rectilinear behavior around the gain cross-over
frequency, and on the other hand, in the case of limited curvilinear behavior
with an admissible degree of concavity.

Both contours, the magnitude (or iso-overshoot) contour and the iso-
damping contour, define performance contours. To ensure dynamic perfor-
mance, this paper introduces a method to design an open-loop transfer func-
tion whose Nichols locus tangents both performance contours. To simplify
computation, complex fractional (or non integer) order transfer function
is used since it can be defined with few parameters. For minimum-phase
plants, the controller is then obtained from the ratio of this open-loop trans-
fer function to the plant transfer function. This way to obtain the controller
can be extended to unstable or non-minimum-phase plants, and also plants
with bending modes, and discrete-time problems [7].

1.3. Organization of the article
In Section 2, a geometrical construction method for a chart of isodamp-

ing contours is given, using complex non-integer integration [5],[13]. It uses
an envelope technique on the Nichols diagram for a set of segments of the
open-loop Nichols locus, which are called generalized templates, and each
providing the same closed-loop damping ratio. This section also introduces
the transfer function of a complex non-integer integrator which defines the
generalized template.

Section 3 first shows how to use the charts of performance contours.
An analytic expression of each contour is provided, and the equations of
tangents to the contours are given. Then the open loop transfer is defined.
The study of this transfer leads to the computation of its magnitude and
phase and provides the equation of the tangent to its Nichols locus.



4 A. Oustaloup, V. Pommier, P. Lanusse

Section 4 describes a two-step method to compute an open-loop trans-
fer function whose Nichols locus tangents both performance contours. A
preliminary computation consists in computing the straight line which tan-
gents both performance contours, and called common tangent. Then, the
first step of the method is to render equal this common tangent to the tan-
gent to the open-loop Nichols locus at gain crossover frequency ωcg. This
step is conditioned by the hypothesis that the rectilinear part of this Nichols
locus is long enough to tangent both a magnitude contour and an isodamp-
ing contour. To check this hypothesis, some parameters which influence the
length of the rectilinear part of the Nichols locus must be chosen. To avoid
choosing them, the second step of the method proposes a different approach
to the problem. It leads to solve a nonlinear system by minimizing a cost
function under equality and inequality constraints and using the results of
the first step as initial conditions.

Finally, in Section 5, the proposed approach is applied to an electrome-
chanical system. The different steps of the computation to obtain an open-
loop transfer function whose Nichols locus tangents two required perfor-
mance contours are detailed. Then the controller is computed and imple-
mented. Experimental results are given.

2. Complex non-integer integration and isodamping contours

2.1. Generalized template and non-integer integration

The generalized template is an any-direction segment around the gain
cross-over frequency ωcg on the Nichols diagram. It is an extension of the
vertical template that represents a vertical segment around ωcg.

This vertical template is achieved using a real non-integer (or fractional)
integration order, n, which defines its phase placement at -n90◦ for the gain
crossover frequency ωcg (Figure 2). It is described by the open-loop transfer
function of a real non integer integrator:

β (s) =
(ωcg

s

)n
for ω ∈ [ωA, ωB], n ∈ R. (1)

By extension, the generalized template can then be characterized by a
complex non-integer integration order, n. The real part defines its phase
placement at −Re(n)90◦ for ωcg, and the imaginary part defines its angle
to the vertical (Figure 2). The generalized template is then a priori defined
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by the real part (with respect to imaginary unit i) of the open-loop transfer
function of a complex non integer integrator:

β (s) = Re/i

[(ωcg

s

)n]
for ω ∈ [ωA, ωB] , n ∈ Ci. (2)

The imaginary unit i of the integration order n (n = a + ib) is indepen-
dent of the imaginary unit j of the variable s (s=σ+jω).

A posteriori, to ensure |β(jωcg)| = 1 and so that the sign of the imaginary
integration order b has an effect on the sign of the phase slope of the Nichols
locus of β(s) at ωcg ( d

dlogω arg β◦ (jω) ω=ωcg
= −180

π ln (10) b tanh
(
bπ

2

)
), it

is necessary to describe the generalized template by the transfer function:

β (s) =
(
cosh

(
b
π

2

))sign(b) (ωcg

s

)a
(

Re/i

[(ωcg

s

)ib
])−sign(b)

. (3)

Note: The phase placement of the Nichols locus of β(s) at ωcg (arg β◦

(jωcg) = −a90◦) and the gain slope at ωcg ( d
dlogω |β (jω)| ω=ωcg = −20a)

depend exclusively on the real integration order a.

2.2. Generalized template envelope as isodamping contour

The easiest geometrical way to construct an isodamping contour is to
use an envelope technique. The contour is then defined as the envelope
tangented by a set of segments (Figure 3). On the Nichols diagram, each
segment of the set can be considered as the rectilinear part of an open-loop
Nichols locus that ensures the closed-loop damping ratio value correspond-
ing to the contour. The rectilinear part of the open-loop, around gain
crossover frequency ωcg is the “generalized template” of third generation
CRONE control (Section 2.1 and [10]).

The closed-loop damping ratio characterizes the decrease rate of the
overshoot of the step response. It is given by the cosine of half the angle
formed at the origin of the complex plane by the complex-pole pair from
which this mode results. When a response has several oscillatory modes,
there are as many damping ratios as there are modes. The damping ratio
of the dominant mode is the one used to quantify the stability degree of the
closed-loop.

In this context, the complex-poles pairs from which the closed loop
oscillatory mode results, is the solution of the closed-loop characteristic
equation (1 + β(s) = 0) whose open-loop Nichols locus traces a generalized
template (i.e. an any-direction segment around frequency ωcg).
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Closed-loop dynamic behavior is essentially linked to the open-loop be-
havior around ωcg. So, determining a transfer function which describes
the generalized template is enough to establish the characteristic equation
indicating the dynamics, and thus the damping.

2.3. Analytic study of performance contours and of the
fractional open-loop transfer function

2.4. Magnitude contours
The analytic expression of a magnitude contour is determined from a

point M on the Nichols diagram P . If X and Y, expressed in degrees and in
decibels, are the cartesian coordinates of M , its polar coordinates (modulus
and argument) are respectively defined by:

ρ = 10
Y
20 and θ =

π

180
X. (4)

The affix of M , β(jω), can then be written:

β (jω) = 10
Y
20

[
cos

( π

180
X

)
+ jsin

( π

180
X

)]
. (5)

For a Nichols magnitude contour parameterized by M t and called ΓMt,
β(jω) is such that: ∣∣∣∣

β (jω)
1 + β (jω)

∣∣∣∣ = Mt. (6)

Using a more condensed form, ΓMt is defined by :

ΓMt =

{
M (X, Y ) ∈ P,

10
Y
10

1 + 2.10
Y
20 cos

(
π

180X
)

+ 10
Y
10

= M2
t

}
. (7)

The equation of the tangent to ΓMt at point (Xi, Y i) is deduced from
relation (7) and can be written:

Y = α1X + β1. (8)



DESIGN OF A FRACTIONAL CONTROL USING . . . 7

2.5. Isodamping contours
Isodamping contours result from a construction using the envelope tech-

nique (Section 2.2) and are thus only defined graphically. To define the
contours analytically, a polynomial equation is determined by interpolation
of graphical data of each contour.

The isodamping contour parameterized by ζ, and called Γζ is then de-
fined by the following equation:

Γζ : X =
2∑

j=0

fj (ζ) Y 2jwithfj (ζ) =
3∑

k=0

ajkζ
k, (9)

X and Y being the coordinates, always expressed in degrees and in decibels,
and ajk the coefficients given in Table 1:

j/k 0 1 2 3
0 -180.36 117.7 -74.316 40.376
1 -1.1538 3.888 -5.2999 2.5417
2 -0.0057101 0.0800962 -0.0060354 0.0016158

To use the same syntax as for a magnitude contour (relation 7), the
contour Γζ is defined by:

Γζ =



M (X, Y ) ∈ P, X −

2∑

j=0

fj (ζ)Y 2j = 0



 , (10)

The equation of the tangent to Γζ at point (Xi, Y i) is deduced from
relation (10) and can be written:

Y = α2X + β2. (11)

2.6. Open-loop transfer including generalized template
The aim of this section is to describe analytically, for a nominal plant,

the open-loop behavior which takes into account:
- the accuracy specifications at low frequencies;
- the generalized template around frequency ωcg;
- the plant behavior at high frequencies in accordance with input sensitivity
specifications for these frequencies.
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For stable minimum-phase plants, this behavior can be described by the
following transfer function (Figure 4):

β(s) = βl(s)βm(s)βh(s). (12)

• βm(s), based on complex non-integer integration, is the fractional
transfer function describing the band-limited generalized template (Section
3.3.1 & [11]).

• βl(s) is the rational transfer function of a order nl proportional-
integrator, whose corner frequency equals the low corner frequency of βm(s),
so that joining βl(s) and βm(s) does not introduce extra parameters. βl(s)
is defined by:

βl(s) =
(
1 +

ωl

s

)nl

. (13)

For accuracy specifications, nl has to be greater than or equal to the
relative order npl of the plant at low frequencies (ω<ωl).

• βh(s) is the rational transfer function of a order nh low pass filter,
whose corner frequency equals the high corner frequency of βm(s), so that
joining βh(s) and βm(s) does not introduce extra parameters. βh(s) is de-
fined by:

βh(s) =
1(

1 + s
ωh

)nh
. (14)

If nph is the order of asymptotic behavior of the plant at high frequencies
(ω>ωh), order nh is given by nh ≥ nph, with nh= nph ensuring invariability
of the input sensitivity function with the frequency, and nh>nph ensuring
decrease.
2.6.1. Transfer function describing the band-limited generalized

template
For a band-limited generalized template, relation (3) must be replaced

by the more general expression:

βm (s) = K

(
1 + s

ωh

1 + s
ωl

)a

Re/i





(
C0

1 + s
ωh

1 + s
ωl

)ib′






−q′sign(b′)

, (15)

so that the phase placement of the generalized template at frequency ωcg

only depends on parameter a, the computation of the phase shows that Co

must be equal to:

C0 =

[(
1 +

(
ωcg

ωl

)2
)

/

(
1 +

(
ωcg

ωh

)2
)] 1

2

. (16)
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q’ is the smallest integer such that b′ verifies |b′| < min (|b1|, |b2|) with :

|b1| = π∣∣ln(C2
0 )

∣∣ and |b2| = π/

∣∣∣∣∣ln
[(

C0
ωl

ωh

)2
]∣∣∣∣∣ . (17)

K is computed to get a 0 dB gain at frequency ωcg.

3. Tangency of the open-loop Nichols locus to two performance
contours

3.0. Preliminary computation: equation of the common tangent
to two performance contours

The determination of the common tangent which tangents both a given
magnitude contour and a given isodamping contour, requires the analytic
expressions of each contour and of the equations of their tangent (relations
7,10, 8, 11). This common tangent can be defined by two points, M1(X1,Y 1)
and M2(X2,Y 2), and thus from four coordinates which are the solutions of
the system of equations:





10
Y1
10

1+2.10
Y1
20 cos( π

180
X1)+10

Y1
10

= M2
t

X2 =
2∑

j=0
fj (ζ)Y 2j

2

α1 = α2

β1 = β2

. (18)

The first two equations express that the points M1 and M2 belong
respectively to the contours ΓMt and Γζ (Figure 5), while the last two
equations express the equality of the tangents to these contours (8,11).

From the four solutions of (18), that is to say X1, Y 1, X2 and Y 2, the
equation of the common tangent can be written:

Y = αT (X −XT ) . (19)
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3.1. First step
The principle of the first step is conditioned by the hypothesis that the

corner frequencies, ωland ωh, must be far enough from each other so that
the rectilinear part of the open-loop Nichols locus (which defines the gener-
alized template) is long enough to tangent both a magnitude contour and
an isodamping contour. In this study context, it is possible to interpret the
generalized template as a part of the common tangent to both contours. The
first step consists in determining the parameters of the open-loop transfer
whose rectilinear part of the Nichols locus belongs to this common tangent,
or, in other words, whose tangent to the Nichols locus at frequency ωcg is
the same as the common tangent (Figure 6).

As the common tangent equation is characterized by two parameters,
only two parameters of the open-loop transfer function can be determined
using the equality of this common tangent with the tangent to the open-loop
Nichols locus. The others parameters need to be fixed. We choose to fix:

- the gain crossover frequency, ωcg

- the orders of the transfer functions βl(p) and βh(p), nl and nh

- the corner frequencies, ωl and ωh.
a and b′ are then computed by rendering equal the equation of the

common tangent to the open-loop Nichols locus at frequency ωcg :

a =
1

θcgh − θcgl

[ π

180
XT + nl

(π

2
− θcgl

)
+ nhθcgh

]
, (20)

while b’ is the solution of equation:

αT =
d|β (jω)|dB

d arg β◦(jω)

∣∣∣∣
ω=ωcg

. (21)

Finally, K, computed to ensure a gain of 0 dB at frequency ωcg, is defined
by:

20 log K = 10q′sign(b′) log(cosh2
(
b′ (θcgl − θcgb))

)
+ 10a log

(
1 + (

ωcg

ωl
)
2
)

− 10nb log
(

1 + (
ωl

ωcg
)
2
)
− 10(a− nh) log

(
1 + (

ωcg

ωh
)
2
)

. (22)
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3.2. Second step
Although the first step has the advantage of being programmed eas-

ily while giving satisfactory results, it has the disadvantage of requiring an
arbitrary choice of the corner frequencies ωl and ωh which may be incom-
patible with the performance requirements related to input sensitivity and
disturbance rejection.

Moreover, even if the open-loop Nichols locus tangency with perfor-
mance contours is well-ensured around ωcg, outside this zone the Nichols
locus may curve back across the contours.

Therefore, the second step aims to compensate these disadvantages. It
uses results from the first step, notably the coordinates of tangency points
M1 and M2.

♦ To avoid an arbitrary choice of ωl and ωh, the problem is set differently
by considering the frequencies ω1 and ω2 that are defined as the frequencies
such that the open-loop Nichols locus tangents the contours (Figure 6).
Instead of trying to render equal the tangent to open-loop Nichols locus at
ωcg and the common tangent to performance contours (first step), we can
try to render equal tangents to open-loop Nichols locus at ω1 and ω2 and
tangents to performance contours at M1and M2.

As M1 and M2 are both on performance contours and on the open-loop
Nichols locus, the coordinates of these points on the contours are equal to
gains and phases of the open-loop frequency response at ω1 and ω2. Thus:





Y1 = |β(jω1)|
Y2 = |β(jω2)|
X1 = arg β(jω1)
X2 = arg β(jω2)

. (23)

Also, as the open-loop Nichols locus tangents the performance contours
at these points, the slopes α of the tangents to the magnitude and isodamp-
ing contours are equal to the slopes ∆(ω1) and ∆(ω2) of the tangents to the
open-loop Nichols locus at frequencies ω1 and ω2, thus:

{
α = ∆ (ω1)
α = ∆ (ω2)

. (24)

Relations (23) and (24) constitute a set of six nonlinear equations. As
gain crossover frequency ωcg and orders nl and nh of transfer functions βl(p)
and βh(p) are fixed, the four parameters a, b′, ωl and ωh must be determined
to characterize completely the open-loop transfer. As frequencies ω1 and ω2
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must also be computed, a system of six nonlinear equations in six unknowns
is to be solved. It is solved using an optimization technique. As the aim
is to ensure open-loop Nichols locus tangency to both contours and above
all to guarantee equality, or at least near equality, of slopes, we chose to
minimize:

J = (∆(ω1)− α)2 + (∆ (ω2)− α)2 , (25)

under four equality constraints:

|β(ω1)| = Y1, |β(ω2)| = Y2, arg β(ω1) = Xd1 and arg β(ω2) = X2.
(26)

♦ To guarantee that the open-loop Nichols locus does not curve back
across the magnitude contour and the isodamping contour (that it must only
tangent), inequality constraints are added to the algorithm which computes
the open-loop transfer function parameters.

Concerning the magnitude contour: for each point (X,Y ) of the open-
loop Nichols locus, the closed-loop gain computed from relation (6) must be
inferior or equal to required peak magnitude.

Concerning the isodamping contour (Figure 7): for each point (X,Y ) of
the open-loop Nichols locus, abscissa X of the Nichols locus corresponding
to ordinate Y must be superior or equal to abscissa XΓς (relation 9) of the
point of the isodamping contour corresponding to the same ordinate Y .

3.3. Frequency responses requirements

So that the open-loop frequency configuration respects study condi-
tions used to validate Nichols magnitude contours as iso-overshoot contours
and to construct isodamping contours [8], this configuration must favor an
closed-loop oscillatory mode.

Thus, frequency responses in tracking mode and in disturbance rejection
mode must show clear resonance. For given peak magnitudes M t and M r

in tracking mode and in disturbance rejection mode, these responses must
show the best selectivity around resonant frequencies ωrt and ωrr(Figure
8).

Except within the zones of tangency to the magnitude contour and to
the isodamping contour, the open-loop Nichols locus must curve away as
much as possible from these contours.

Also, the average slope of Nichols locus at frequency ωcg must not be
slight. Indeed, if this slope is represented by a generalized template charac-
terized by real order a and imaginary order b, the slope of the gain diagram
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around ωcg equals −6a dB per octave (Figure 9). Thus, considering tem-
plate tangency to a performance contour (a Nichols magnitude contour or
an isodamping contour), a slight slope of the template leads to a low value
of a (Figure 10), and so to a gain slope (Figure 9) too slight to ensure:

- a value of |β (jω) / (1 + β (jω))|dB near enough to 0 at frequencies
inferior and close to ωcg (Figure 8a). |β (jω)| must thus be high compared
to 1 (Figure 9).

- a value of |1/ (1 + β (jω))|dB near enough to 0 at frequencies superior
and close to ωcg (Figure 8b). |β (jω)| must thus be low compared to 1
(Figure 9).

4. Application to an electromechanical system

4.1. Experimental plant
A test bench developed by the CRONE team of the LAP in 1995 is used.

It is constituted of two identical parts with a rigid link between them. Each
part is a DC motor driving a inertia disk. The output to be controlled is
the shaft velocity provided from a quadrature encoder giving 10000 count
per turn. When a single motor generates a torque, the transfer function of
the plant which gives the velocity is:

G(s) =
9092

(1 + 0.0047s)(1 + 96s)
. (27)

The two time constants of the model are far from each other since one
is electrical and the other mechanical.

4.2. Performance specifications
In the time domain, the dynamic specifications are:

- O% overshoot in percent around 20 to 25%
- ζ damping factor around 0.7, with a tolerance of ±5%
- ωcg gain crossover frequency equal to 10 rad/s.

The control law being designed in the frequency domain, such specifica-
tions must be translated into two performance contours. For the overshoot
O%, the value of the peak magnitude M t must be determined so that a
Nichols contour parameterized M t may be the iso-overshoot contour pa-
rameterized O%. A 20 to 25% overshoot corresponds to a value of M t of
2dB (see Appendix). For the damping factor ζ, we only have to consider
the isodamping contour of parameter ζ.
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4.3. Tangency of the open-loop Nichols locus to two performance
contours

♦ Preliminary computation
The coordinates of the tangency points resulting from the solving of the

system of equations (18) are:
- (-130.46◦ ; 7.48dB) for M1 on the Nichols magnitude contour
- (-123.85◦ ; 4.1dB) for M2 on the isodamping contour.
These values lead to the numerical tangent equation: YdB = −0.444(X◦−

113.62).
♦ First step
Gain crossover frequency (ωcg= 10 rad/s), orders (nl = 2 and nh=3) of

βl(s) and βh(s), and corner frequencies (ωl = 1 rad/s and ωh =100 rad/s)
are fixed. It is then possible to determine the other parameters of β(s):

a = 1.11 ; b′ = 0.635 ; q′ = 1 and K = 18.21.

♦ Second step
This step uses the coordinates of the two tangency points of M1 and

M2 of the first step to establish the nonlinear system of six equations (rela-
tions 23 and 24). It also uses the values of the open-loop transfer function
parameters to initialize the algorithm to solve this problem. Gain crossover
frequency ωcg, orders nl and nh of the transfer functions βl(s) and βh(s),
and corner frequencies ωl and ωh, do not change with respect to the first
step. The algorithm thus gives several open-loop transfer functions respect-
ing the specifications. The one giving the highest corner frequency ωl favors
disturbance rejection of the perturbation, and the one giving the lowest
corner frequency ωh minimizes the effect of measure noise. For reasonable
compromise, the selected solution is the one with the lowest ratio ωh/ωl.

The open-loop transfer function is then characterized by:

a = 0.9675; b′ = 0.305; q′ = 4;K = 13.76;ωl = 0.98rad/s and ωh = 46rad/s.

Figure 12 shows the obtained open-loop Nichols locus and we can verify
its tangency to performance contours parameterized by M t and ζ.
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4.4. Controller
The controller transfer function results from the ratio of the open-loop

transfer function to the plant transfer function. Its expression is a com-
plex non-integer transfer function. The design of the achievable rational
controller consists in replacing this complex non-integer controller by an
integer (or rational) order controller which has the same frequency response
[10].

The discrete-time controller is obtained using Tustin transform with a
sampling period of 5ms:

C(z) =
2.4892.10−8z2 + 4.9784.10−8z + 2.4892.10−8

z2 − 2z + 1
+

9.94125z + 9.94125
z − 1

+

0.0557z2 + 0.0083z − 0.0474
z2 − 1.6408z + 0.6759

− 0.5435z + 0.5435
z − 0.7183

− 2.148z + 2.148
z − 0.9969

.

(28)

4.5. Experimental results
Figure 13 shows the step-response to a reference input signal of mag-

nitude 20,000 (2 turn per second). Measured value of the overshoot is 25%.
The specification concerning a required overshoot of 20 to 25% is thus re-
spected.

The damping factor is evaluated from the highest half-angle at the ori-
gin formed by the complex-poles pair of the fractional closed-loop transfer
function. Computation of complex-pair poles [11] leads to ζ = 0.72, thus a
relative error of 2.85% compared to designed damping factor, ζ = 0.7.

4.6. Conclusion
The first part of this article (Section 2) presents the method for con-

struction of isodamping contours by the envelope technique. This technique
uses segments obtained using complex non-integer integration.

Section 3 gives the formalism used in the design of the control law, in
particular the equations of the tangents to the performance contours and to
the open-loop Nichols locus.

Section 4 defines the frequency-domain design method using tangency
relations between the performance contours and the open-loop Nichols locus.
The first step of this method is conditioned by a constraint on the open-
loop behavior at low and high frequencies. The second step of the method
relaxes this constraint which can be prejudicial to performance at low and
high frequencies.
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Finally the example given in Section 5 shows the validity of the method.
In a robust context, this method could be extended to frequency-domain

robust design methods (QFT, CRONE,...) to limit either the upper value
of the closed-loop overshoot or the lower value of the closed-loop damping
ratio. In a QFT design [2],[3],[4], an overshoot contour or an isodamping
contour can be graphically extended by taking into account the shape of the
plant frequency uncertainty domains (called templates in a QFT design).
In a CRONE design [7],[9], these contours can be used directly.
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Appendix

Parametrization of a magnitude contour by the corresponding
overshoot in percent

The overshoot in percent O, between 0 and 1, which characterizes the
Nichols magnitude contour may be given by the closed-loop first overshoot,
where the closed-loop corresponds to the Nichols locus of a generalized tem-
plate tangent to this contour. It is written:

O = an2 + bn + c, (29)

with numerical values:

a = 79.195; b = −138.507 and c = 59.528, (30)

the integration order n (between 1 and 2) –nπ/2 being the abscissa of the
tangency point.

Given that an n order generalized integrator leads to a magnitude peak
of the form [13]:

Mt =
1

sin nπ
2

, (31)

it is possible to express n according to M t:

n =
2
π

arcsin
1

Qa
, (32)

with
π

2
< arcsin

1
Qa

= n
π

2
< π since 1 < n < 2, (33)

then, including this expression in that of the overshoot:

O = a

(
2
π

arcsin
1

Qa

)2

+ b

(
2
π

arcsin
1

Qa

)
+ c. (34)

This relation provides a formula of O which permits a Nichols magnitude
contour to be parameterized directly by an overshoot value from parameter
M t expressed in decibels.
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FIGURES

Figure 1: Elementary control loop structure

Figure 2: Representation of the vertical template by a vertical segment in
the Nichols diagram and of the generalized template by a segment with any
direction in the Nichols diagram
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Figure 3: Envelope defining an isodamping contour in the Nichols plane

Figure 4: Different parts of the open-loop Nichols locus
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with  α = α1 = α2  and   β = β  1 = β  2

ΓM t

Γζ

M1(ω1) Y1

Y2

X 1X 2

M 2 (ω 2)

Figure 5: Common tangent to performance contours
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performance  contoursΓMt
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Figure 6: Illustration of the first step

Figure 7: Coordinates concerning the isodamping contour
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Figure 8: Gain diagrams in tracking (a) and regulation (b)

Figure 9: Open-loop gain diagram around ωcg
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Figure 10: Templates tangent an isodamping contour: their slight slope
leads to a low value of a

Figure 11: CRONE team test bench
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Figure 12: Open-loop Nichols locus tangenting a magnitude contour and an
isodamping contour

Figure 13: Experimental results
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