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Adaptive Detection in Nonhomogeneous
Environments Using the Generalized Eigenrelation

Olivier Besson, Senior Member, IEEE, and Danilo Orlando

Abstract—This letter considers adaptive detection of a signal in a
nonhomogeneous environment, more precisely under a covariance
mismatch between the test vector and the training samples, due to
an interference that is not accounted for by the training samples,
e.g., a sidelobe target or an undernulled interference. We assume
that the covariance matrices of the test vector and the training sam-
ples verify the so-called generalized eigenrelation. Under this as-
sumption, we derive the generalized likelihood ratio test and show
that it coincides with Kelly’s detector.

Index Terms—Adaptive detection, covariance mismatch, gener-
alized eigenrelation, generalized likelihood ratio test, undernulled
interference.

I. PROBLEM STATEMENT

I N a conventional adaptive detection problem, it is desired to
detect the presence of a target signal, whose presumed array

response is , in a observation vector , contaminated by
Gaussian noise whose covariance matrix is unknown. Ad-
ditionally, it is assumed that training samples are available,
which share the same covariance matrix . When the environ-
ment is homogeneous, i.e., when , the reference detec-
tors are Kelly’s generalized likelihood ratio test (GLRT) [1], the
adaptive matched filter (AMF) [2], and the adaptive coherence
estimator (ACE) [3]–[5]. These detectors have been thoroughly
studied, and their performances are now well understood in this
canonical case, as well as in the practically important case of
steering vector mismatch (i.e., the actual array response differs
from ) or covariance matrix mismatch (i.e., ); see,
e.g., [6]–[9]. All detectors have to face a conventional tradeoff
between robustness to slightly mismatched signals and rejection
of unwanted signals, such as sidelobe targets or undernulled in-
terference. Indeed, assume that a signal is present with signature
. Then there are mainly two possibilities. Either is a perturbed

version of —which can occur, e.g., with non perfectly cali-
brated arrays—and then a detection should be declared, even if

, since there is a target in the look direction. Another pos-
sibility is that corresponds to a sidelobe target, in which case
no detection should be declared. The performance of Kelly’s
GLRT, the AMF, and the ACE have been assessed in the case
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of mismatched signals, and they behave quite differently. The
AMF, which is an energy detector, has excellent mainlobe sensi-
tivity but is highly sensitive to sidelobe signals. On the contrary,
the ACE that measures the angle between the received signal
and has excellent sidelobe rejection capabilities at the price
of a lower detection for slightly mismatched signals. Kelly’s
GLRT appears to offer an excellent tradeoff in terms of robust-
ness versus sidelobe rejection. Ideally, it would be highly de-
sirable to control the rate at which the probability of detection
falls when departs from . To this end, some strategies have
been proposed. Reference [10] proposes a blend of the GLRT
and the AMF; a single scalar sensitivity parameter is used to
control the degree to which unwanted signals are rejected. In
[11] and [12], the actual target’s signature is assumed to be-
long to a cone, whose axis is the presumed signature. The cone
angle is a user parameter that can be selected so as to ensure
the desired tradeoff between mainlobe sensitivity and sidelobes
energy rejection. Another solution is to use a two-stage detec-
tion scheme: the first stage uses a detection scheme that should
let pass most signals—so as not to miss a slightly mismatched
target signal—while the second stage is more selective and re-
jects signals that are deemed not to impinge from the look direc-
tion; see, e.g., [13] and [14]. A third solution consists in modi-
fying the hypothesis testing problem, so as to include a fictitious
signal under the null hypothesis, which is sufficiently far from

; see, e.g., [15] and [16]. Hence, if is too far from , no de-
tection will be declared.

However, the previous references consider the case where
and a single signal is impinging. In some situations,

such as undernulled interference, there might be an additional
signal in the test vector, which is not accounted for by secondary
data, resulting in , where is unknown. In [17],
we considered the following hypothesis testing problem:

(1)

where and are independent, zero-mean complex-valued
Gaussian distributed random vectors with respective covariance
matrices

(2)

where is unknown and arbitrary. In this letter, we propose
a modification of the detection problem (1), where and
are now constrained to satisfy the so-called generalized eigen-
relation (GER) [7], [18], which states that .
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In the case where , this amounts to enforce
that , i.e., that falls in a null of the asymp-
totic optimal beampattern. The GER was primarily introduced
by Richmond as a means to simplify the analysis of conven-
tional adaptive detectors in nonhomogeneous environments and
to derive closed-form expressions for the distribution of the cor-
responding test statistics. However, as convincingly argued by
Richmond, the GER, even though it is not likely to be perfectly
satisfied in practice, is a viable approach to modelling under-
nulled interference [7], [18].

Another motivation for studying the type of detection
problem described in (1) is that it can also be helpful to dis-
criminate between a slightly mismatched target signal and a
sidelobe target. Consider first the case where is arbitrary. If
a single signal with response is present, and if is not close
to , then it is likely that will be assimilated to , and thus,

will be in force. Therefore, we can expect this test to have
excellent sidelobe rejection capabilities. Indeed, we showed
that the GLRT for the detection problem (1) with arbitrary
is the ACE, which provided a new explanation of the behavior
of ACE. However, the price to be paid is a lower detection
capability of slightly mismatched signals. In order to remedy
this problem, introducing the constraint may
be a solution. Indeed, only those signals that are sufficiently
“far” from can be assimilated to , and therefore, one can
expect a better detection of slightly mismatched target signals.
In other words, enforcing the GER may offer a good tradeoff
between robustness to steering vector uncertainties and sidelobe
rejection capabilities.

In the next section, we derive the GLRT for the hypothesis
testing problem (1), assuming that the GER holds, i.e., that

.

II. GENERALIZED LIKELIHOOD RATIO TEST

Let denote the secondary data matrix.
Under the stated assumptions, the joint likelihood function of
and , under hypothesis , is given by [17]

(3)

where

(4)

with , , and

(5)

(6)

In (3), stands for the exponential of the trace of the ma-
trix between braces. We maximize the likelihood function (LF)
successively with respect to (w.r.t.) —under the constraint

— and w.r.t. under . In order to maximize
the LF w.r.t. , we need to maximize

(7)

under the constraint that . Let ,
, and let be an

orthonormal basis for . The GER constraint implies that
for some unknown vector . can thus

be rewritten as

(8)

Using arguments similar to those presented in [17], it can be
shown that

(9)
Let us now observe that

(10)

where and are the orthogonal projectors on and
, respectively. It ensues that

(11)

In order to obtain , we need now to maximize

(12)
with respect to . Using the readily verified fact that

(13)
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with

(14)

it follows that

(15)

from which we infer that satisfies the following implicit equa-
tion:

(16)

with

(17)

We now show that if satisfies (16), then and can be ex-
pressed as functions of and only. In order to determine ,
note from (16) that

(18)

Since from (14) , post-multiplying (18)
by leads to

(19)

Therefore, if satisfies (16), in (14) is necessarily given by

(20)

Accordingly, (16) yields

(21)
Pre-multiplying the previous equation by and post-
multiplying it by , and after simple calculations, it can
be shown that

(22)

where

(23)

Therefore, the matrix that maximizes is given by
(16), with and given in (20) and (22), respectively. Re-
porting this value in the LF, and after some tedious but straight-
forward derivations, we obtain

(24)

We need now to derive a simpler expression for (24) that in-
volves and only. For that, we notice that

Using the previous equation, it is not difficult to show that

(25)

Consequently

(26)

Under , the LF maximization is terminated. Under , it
remains to minimize . However, it is
known that [1]

(27)

and therefore the GLR is

GLR (28)

Finally, the GLRT is equivalent to

GLRT (29)

which is nothing but Kelly’s detector [1]. It is amazing to see
that Kelly’s detector, which is one of the most celebrated adap-
tive detectors, whose good properties and performances have
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been thoroughly studied, emerges as the solution of this new de-
tection problem. The result presented here partly explains why
Kelly’s detector performs well in the case of undernulled inter-
ference [7]. Moreover, as we intuitively discussed in the intro-
duction, it explains why it is less selective than ACE (in terms
of sidelobe rejection capabilities) but more performant for de-
tection of slightly mismatched signals, hence providing a good
solution for trading robustness against sidelobe rejection.

III. CONCLUSION

We considered a variation on our previous work [17] on adap-
tive detection in the case of a covariance mismatch due to an
interfering signal that contaminates the test vector but not the
training samples. In contrast to [17], where the interference’s
signature could be arbitrary, we assumed here it is such that the
generalized eigenrelation between and is satisfied. As we
discussed, this constraint may also help to offer a good tradeoff
between robustness to slightly mismatched signals and rejection
of unwanted signals. We showed that the GLRT for this problem
is Kelly’s detector, providing one more argument to use it.
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