L2

1

Processing of conﬁdenﬁal information in dlstnbuted systems by fragmentatlon

J.-C. Fabre* T. Perennou

LAAS-CNRS and INRIA, 7, avenue du Colonel Roche. 31077 Toulouse, France

Abstract

This paper discusses how object orientation in application design enables confidentiality aspects to be handted more easily than in ...

‘conventional approaches. The approach is based on the Fragmentation-Redundancy-Scattering technigue developed at LAAS-CNRS for
several years. This technique and previous developments are briefly summarized. The idea developed in this paper is based on object
fragmentation at design time for reducing data processing in confidential objects; the more non confidential objects can be produced at
design-time, the more application objects can be processed on untrusted shared computers. Still confidential objects must be processed on
non shared trusted workstations. Rules and limits of object fragmentation are discussed together with some criteria evaluating tradeoffs
between fragmentation. and performance. Finally, a distributed object-oriented support especially fitted for fragmented applications is bneﬂy

described.

Keywords: Confidential objects; Fragmentation-Redundancy-Scattering technigue; Fragmentation

L. Introduction and problem statement

Processing confidential information in a hostile environ-
ment is a difficult issue for which a number of conventional
solutions are now well understood. A first solution is to
process ciphered information; this solution is mainly

based on special ciphering techniques called privacy homo- -

- morphisms but, although attractive, it is limited in use and

“can be subject to simple intrusions as described in {1]. A -

much simpler solution, very costly and of course not realis-

tic, is to process clear information on tritsted and phys:callv_

protected non-shared computers. However, in today’s
systems architecture and heterogeneous environments, one
should benefit from powerful shared computers, some of
which being specialized for a given part of the application,
without making strong assumptions about their internal
security and surrounding environment.

In fact, distribution has long been perceived as a conflict-
ing paradigm as far as confidentiality is concerned. Actual

solutions to distributed security rely on protection mech-

anisms (notion of trusted computing base [2]); this means
that part of the system must be trusted.
Nevertheless, an efficient protection of confidential infor-
mation in a distributed architecture may be difficult with

* Comresponding author.

! This work has been partiaily supported by the ESPRIT Basic Research .

- Action 10.6362, PDCS2 (Predictably Dependable Computing Systems).

' systems,

‘standard computers and operating systems. .Actually, appli-

cations should take advantage of the distributed architecture
and its specialized components without endangering confi-
dentiality although the information is processed in clear.
The main challenge of the work reported in this paper is
to propose a new approach for designing such applications.

The proposed approach is part of a general technique for
handling both accidental and intentional faults in distributed
called Fragmentation-Redundancy-Scattering.
(FRS) [3.4] and described in Section 2.2. We concentrate
here on its application to confidential information: pro-
cessing, in which case the core aspect is fragmentation at
design time.

An application can be organized in such a way that only a
minimal part of the application needs a trusted execution
environment. According to well defined assumptions and
few mechanisms (Section 2), the rest of the application
can be executed on untrusted shared computers. This part
of the application can thus be replicated for fault tolerance®
and scattered without endangering confidentiality. .

The approach consists first in identifying during the

design phase the information which is confidential. Then,

_ the application can be divided into two parts: confidential
data processing and non confidential data processing
(Section 3). Minimizing confidential data pr_ocessing is the

* Whatever the type of fault, physical fault or sensitive information

- destruction.

*

main objective of the fragmentation process which .is

described in this paper. Using an object-oriented design,
the application is seen at each design iteration as a collection

of objects. The result of the fragmentation process is a new -

collection of objects, in which only few objects are confi-
dential and must be executed on trusted non-shared com-
puters (Section 4). The amount of costly non-shared trusted

resources is minimized, thus allowing more untrusted shared .

computers to be used. The method is very application-
dependent and of course in some situations the result may

be not satisfactory because of performance overheads. .

Quanticative and quglitative aspects of performance evalu-
ation are discussed (Section 5). Finally, we describe
FRIENDS (Flexible and Reliable Implementation Environ-
ment for your Next Dependable System), an object-oriented
support for distributed applications, providing fault-tolerance
and security mechanisms in a very flexible way. This type of
" runtime support provides appropriate facilities for the

implementation of fragmented object-oriented applications.

2. System environment and related assumptions
2.1. System architecture
The global architecture of the system is composed of

trusted user workstations and untrusted processing servers
(see Fig. 1). User workstations are non shared de:vic:es_3 with

weak cormputing and memory resources whereas processing’
servers. are shared computing resources where different

objects belonging to various applications can be executed
simultaneously in -an efficient way. The user workstations
are trusted computing resources in such a way that, accord-
ing to their protection mechanisms and surrounding physi-
cal environment, the probability of an intrusion during a
user session is very low. On the contrary, 's'hared_ processing

servers can he subject to non restrictive intrusions (passive, -

active, malicious attacks on memory segments, system and
temporary files, etc., even performed by privileged users,
namely ‘host administrators). These shared processing
servers can be specialized off-the-shelf computers of
various types with standard operating systems. Confidential
information is limited and only processed on few non shared
trusted workstations. S

Any user application is only activated from the user’s
trusted workstation and may involve the use of untrusted
processing servers for running parts of the application.

2.2. Background and previous work
The aim of the Fragmentétion—Redundancy-Scattering

technique is to tolerate simultaneously accidental and inten-
tional fanlts (i.c. intrusions). Both types of faults have to be

3 They also can be time shared devices: oniy one user session at a time and

no remote access during the user sessica at any abstraction level.

Naﬁ shared irusted user workstations

Shared
Processing
- servers

Security
servers

Fig. |. System architecture and services.

considered in today’s distributed systems. The idea consists

'- in defining data fragments or data processing fragments in
" such a way that each individual fragment does not provide
. any significant information. Such fragments can thus be

scattered in a distributed system in a redundant (even repli-
cated) way to ensure availability and integrity. Our work:

" using FRS lead to several investigations and prototypes
-development in the past decade, in particular the storage

of confidential files and the design of security services,
which are described in the rest of the following sections.

| 221 Sforage of confidential files

This technique was first applied to the storage of confi-

~dential files (see Fig. 2) considered as unstructured informa-

tion (seen as string of bytes, e.g. UNIX files). Files are
divided into fixed size pages (16 kB), the last page being
completed by padding information. Then each page is
ciphered using a simple feedback mode ciphering technique,
a checksum is added at the end of the page, and verified
when the page is read (integrity centrol). Each ciphered
page is fragmented into a fixed number of fragments (16
fragments of 1 kB): the first byte of the ciphered page goes
into the first fragment, the second into the second fragment

- and so on. Lastly, all produced fragments are replicated and

scattered randomly among a large number of computers.
Scattering can be performed either in a centralized or in a
distributed fashion. Fragmentation, including ciphering and
naming of fragments, is based on a secret information, the

" fragmentation key that must be always available and .

securely ‘stored. Each fragment is given a unigue name

- (reference) produced by a one-way function with the follow-

ing parameters (file name, page number, fragment number,
fragmentation key). '

The notion of page enables just one page to be rebuilt on -
demand. The size of pages/fragments is arbitrary and can be
chosen 'to optimize the performance of the system. The
efficiency-of FRS does not rely on ciphering (the ciphering
algorithm is simple and fast) but on the difficulty of gather-
ing fragments belonging to a page and of putting them in the
correct order before cryptanalysis (16! possible permuta-
tions i.e. = 2 10"). _ '

With respect to other similar solutions, such as DA

*

{Information Dispersal Algorithm) [5], our fragmentation
technique is much less CPU-time consuming. The IDA tech-
nique optimizes disk space usage at the expense of a very
high computation time.

2.2.2. Security services , :

~ Then, the FRS technique was applied to security manage-
ment such as user anthentication and verification of access
rights (authorization). Authentication is based on smart-
cards and performed by a set of security sites. An authenti-
cation request is broadcasted to all security sites and each

security site locally authenticates the user. This local

decision is then broadtasted to all security sites and the
final decision is sent to the user workstatdion. A majority

of them must authenticate the user before the user can log '

into the system. In the end, the user obtains session keys,
" one for each security site, used for later requests to the
- security sites (cf. authorization). S e

Control .of permissions (authorization) is based on the

same principle. Any open request to ar object is sent to
- all security sites where the access is either accepted or
refused according to local information. A voting decision
is obtained and if the decision is "accept” the user obtains
information to access the object. In particular the. user
rebuilds the fragmentation key from a set of images. Actu-
ally, the storage of very confidential fine grain information
{(the fragmentation key, for instance) relies on a similar
technique to FRS, i.e. Shamir’s threshold schemes [6].

By comparison with systems where there is only one
security server, such as Kerberos, the security sites are man-
aged by different system administrators. Thus an intrusion
performed on a minority of security sites, even by system
administrators, do not break the security of the system.

2.2.3. Status and objective

Several prototypes have been developed and various
algorithms experimented. The last two prototypes of the
complete system axe operational on a network of Sun
IPX/TPC machine with SunOS and on a network of PC486

machine running the CHORUS micro-kernel. The services

Fragmentation

E.—"I

JI1 =
o0 *?

File Il
il -

Replicaﬁon

ciphering - distribution - NAMINE e

' Fragmenis
o il

developed on top of UNIX represent more than 30 000 lines
of C code, not including cryptographic libraries.

The objective was then o investigate the wse of such
ideas in a more general context, ie. for applications and
services handling confidential data in general. This can
also be understood as a consequence of the synthesis of our
experience in implementing specific services with FRS. In
doing so, an object-oriented approach emerged quite rapidly:
objects gather data and treatments and thus the confidentiality
attribute can be easily determined for individual objects, a
priori independently of the operations performed on them.
This was the first motivation for the use of object-oriented
principles and techniques in our developments.

" 2.3. Software arckitecture and system services

Applications are seen at runtime as a collection of dis-

~ tributed runtime units (active objects} interacting by

messages and owned by a unique user. The underlying run-
time system should enable active objects to be executed on
any processing unit and to communicate with sach other.

- The ideal runtime support can be an object-oriented runtime

layer, such as COOL [7], but better a fauit-tolerant execu-
tion support for objeci-oriented applications like FRIENDS
(see Section 6).

We also suppose that user authentication, authorization
mechanisms and key management are performed by security

‘services running on security servers as in [3,8] (see Fig. 3}.

When an application is activated by an authenticated user,
some active objects are loaded on the trusted user work-
station {confidential objects) and the others are loaded on
untrusted processing servers (non confidential objects).
Each active object is uniquely identified by a reference.
The set of objects (references) belonging to a single appli-
cation is only known at the trusted location. Active objects.
located on untrusted servers do not know each other even if
they belong to the same application. We then suppose that-

Antruders on processing servers are not able to identify

objects belonging to a given application. Any object invoca-

-tion is protected by authentication mechanisms (using

User Site

Fig. 2. FRS applied 1o the storage of confidential files,

*

i

Local (3 .
authentification

Authentication (7)
request

@ slobal decision

[y

F1g 3. Authentication.

public key authentacauon schemes for instance, e.g. [9])
thus preventing illegal invocation by intruders.

3 Conﬂdentialitj and object-orientation
- 3.1. Confidentiality in applications
The notion of confidential information relatesto the inter-

pretation an intruder can make about its semantics in a given
operational context. Information semantics may be con-

fidential depending on its value: for instance, a string of -

characters might be sufficiently meaningful in isolation to
be easily interpreted as a confidential information indepen-
dently of any usage in any program. But this is not always
the case; a numerical value (in the form of 32 contiguous
bits) is miost unhke}y to be interpreted as a confidential
information without any knowledge of ifs internal represen-
tation or of its usage in a given.application context. For
example, a real variable is a confidential salary information
if and only if it is associated to a. given person, period and
currency”. Moreover, this viewpoint is also true using a
much coarser granularity; for instance, let us consider a
medical record system where the information is classified
into two parts, administrative and properly medical. In this
quite simple example, confidentiality is preserved as soon as

the link between these two large fragments {(a pair of refer- :

ences) is retained on the trusted site.

- In these simple examples, we can see that structuring a
confidential information enables such information to be per-
ceived as a set of non coofidential items. The classical
approaches do not take into account any structuring of the
confidential information, often considered as a string of bits.
Our approach relies on a different viewpoint: at'a given

abstraction level in the design of an application, most

of the conﬁdential data processed can be percetved as a

- # Nevertheless, some ﬁne-gram objects are mherenﬂy confidential, like a -

session key for instance.

coﬂecuon of insignificant data items: only the links between_
such items reveal sensitive information to a potential
intruder. When the information is not structored (e.g.

 strings, UNIX files) confidentiality has to be maintained

through other solutions such as ciphering technigues,
threshold schemes i8], IDA [5] and FRS [3].

3.2. Objet model and confidentiality

Designing the application as a set of objects enables
confidentiality to be precisely identified in the application,
since, from a software engineering viewpoint, objects
abstract real entities whose semantics is well known {a per- -
son, a medical record, a bank account, a key}. The con-
fidentiality of an object is considered as a boolean function;
thus at any level of abstraction the set of application objects
can be easily divided into confidential objects (set C) and
non confidential objects (set NC), as shown in Fig. 4.

The architecture of the application is then composed of
confidential objects located on trusted workstations with refer-
ences to non confidential objects located on shared processing
servers; the non confidential objects do not communicate with
each other, but only with one or several confidential objects.

In our approach, the identification of confidential objects
starts from' early stages il the design. Such confidential

Trusted workstation |

~

Shared
processing
servers

- confidential objecis
O non confidential objects
== object reference

Fig. 4. Confidential and non confidential sets of objects.

-—*....O

design
iteration

Fig. 5. Confidential object transformation. -

-objects can be designed as a set of new objects, some of
which being non confidential. This idea leads to extract as
much as possible information and processing from the con-
fidential objects. In Fig. 3 the object O has been redesigned
as a set of new objects (O, Oy, O3, Oy, Os). The objective of
this transformation is to have the amount of data and/or

processing in the still gonfidential object Oy and O, much '

lower than in @. Only objects for which no useful substitu-
tion can be found process confidential information.

This approach can be generalized to multi-level security:
an application can be divided into secret cbjects (set §),
confidential objects (set C) and non confidential objects
~ {set’ NC), objects with a high level of classification being

re-designed as sets of objects with a 1esser classification
level. :

4. Fragmentation
Fragmentation is here an iterative design process and

provides the designer of a confidential application with a
general framework which is in fact a variant of a classical

object-oriented design (in our case similar to a hierarchica)

cbject-oriented design like HOOD [104). For the sake of
simplicity, we consider here as a-starting point of the frag-
mentation. process that the application is compesed of a
. unique confidential object which satisfies the functional
specifications. At each step of the design process, the
designer obtains a set of objects which satisfies the func-
tional specifications of the application at some abstraction
level. Confidential objects are identified within the current
set. As stafed in Section 3, a confidential information can
consist of related -items including non-confidential ones.
Such a structuring is used to design confidential objects as
a set of (new) objects including non confidential ones.
Among the objects thus produced, the confidential .ones
are examined at the next step. The process stops either
when no more object is confidential or when the granularity
 of confidential objects is minimal or when no substitution of
a confidential object is interesting with respect to confiden-
tiality (e.g. when all objects produced are confidential}.

Those points are developed throughout the rest of this
section: accurate definitions are given, then guidelines for
the substitution of confidential objects are discussed, and
finally the whole design is summarized using a more formal
expression.

4.1. Definitions

The following definitions will be used in the rest of this
paper.

Object name
Data

Operations

Fig. 6. Extensive representation of an object.
- 4

4.1.1. Objects

‘We consider here a simple object model, where an ob_)ect
encapsulates data and provides a set of operatons to
manipulate these data, its interface”. The interface of an
object x is denoted intf(x). The object’s data cannot be
accessed directly by other objects. Fig. 6 provides an
accurate graphical representation of an object which will
be used later in this paper. Confidential objects will be pre-
sented in grey._Let_ O be the set of objects thus defined.

4.1.2. Conﬁdent:ahty

As stated previously, objects abstract real entities, thus -
allowing the designer to decide whether an object is con-
fidential or not according to the specifications. Let C:0 —
{TRUE, FALSE} be the predicate charactenzmg confiden-
tial objects.

4.1.3. Subsnrut:on mechanism

Substitution 1s a désigner action that consists in replacmg
an object x by a non empty set of objects §, such that 5,
provides the same functionalities as x, which we denote by

" 5,.)% (this is read as §, substitutes for x).

If a set of objects S, substitutes for an object x, the
services provided by x to the rest of the application must
be distributed among the objects in S,. The interface of x is
then either located in a unigue object in 84 or distributed
among several objects in §,. Throughout the rest of this
paper we adopt the first solution which corresponds to a
conventional object decomposition:

Vx € 0,5 Ix=
{Sx C O cooperatively provides the same services as x
3x' e85, intf(x) = (intf(x")

414 Subsntutab[e object
The substitution of a collection of objects for a conﬁdentlal '
object is usefu! when the following conditions axe satisfied:

- 1. non confidential new objects can be produced;

2. gathering such non confidential objects does not enable
the confidential object to be easily obtained;

3. processing in non confidential objects is heavy enough to
justify the substitution, so thar it is interesting to handle
part of this processing on untrusted sites and decrease the
load of the trusted site.

3 This definition does not preclude considering an object as an inssance of
a class, this class being part of an inheritance hierarchy from g Softwa.re
engineering viewpoint.

3

All these coalitions must be satisfied to consider a con-

fidential object as substitutable. For instance when dealing -

with the substitution of fine-grain objects such as integers or
strings the two last conditions are often unsatisfied. Such
objects must then be ciphered using conventional tech-
niques (e.g. strings) or be kept in the trusted area (e.g.
_ integers). Let $:0 — {TRUE, FALSE} be the predicate
characterizing substitutable objects. In summary:

Yx € 0, S(x)&
C(x}
x satisfies each of’the three preceding conditions

4.2, Substitution guidelines

This section discusses how the designer shouid perform
the substitution of a confidential object. From the confiden-
tiality viewpoint, the interest of substitution s to produce
non confidential objects. When identifying a confidential
object, the designer should answer the following questions:

1. Why is this object confidential?

2. How can it be structured and how does it perform the
provided operations?

3. Is this structuring suitable with respect to conﬁdenuahty
and/cr performance?

The first question should suggest part of the appropriate
structuring requested by the second question, while the third
one evaluates the usefulness of the prospective substitution,
particularly with respect to other solutions (including keep-
ing the object as a whole, i.e. a still confidential object). Tn

the following, we examine object substitution at early and

late stages of the design.

421 Early stages

At early stages in the design, objects represent complex
abstractions. In the example illustrated by Fig. 7, the
designer identifies x as confidential and providing an opera-
tion called F. Then lie determines that x is confidential

because it includes a relation between two objects y and z,’

_ both providing operations G and H. So he decides to design

x as an object x' holding two references to y and z and

describes the algorithm of F in terms of y and z, and their
operations G and f (see Fig. 7). This substitution is suitable

substitution

Fig. 7. Barly substitution. :

because the conditions defined in the previous section are
satisfied:

1. {cl) the confidential association has been broken ‘into

scparate items y an z which are not confidential;

2. (c2) gathering y and z does not provide any confidential
information because the link between them is a complex
algorithm F hidden in x’;

3. (c3) operauons provided by y and z are considered CPU-
time consuming.

After the substitution, the relation that makes x confiden-
tial is distributed among x','y and z, x" playing the role of a
kay; x' is theréfore confidential because it hoids the links
allowing to rebuild the confidential information.

4.2.2. Late stages

Later in the design, newly defined objects become closer
to the implementation level of the corresponding entity. The
structure of a confidential object should then appear to the
designer as an aggregation of data of simple types within .
the confidential objects, the operations being. series of simple

 instructions thus making the link rather weak with respect to

confidentiality. Fig. 8 illustrates this in terms of objects.
_The structuring might seem appropriate since the ‘+’

relating y and z remains hidden in x'. But if we pay more

artention to y and z, we can see that y. GET = y and z.

GET=1z because they have simple data types: y and z

remain in fact local to x” (see operation F). So this substi-
tution does not manage to extract y and 2 from x and in fact
x' == x: therefore this substitution is useless with respect to
the reduction of the amount of data in x.

Going back to the conditions of the previous section, the
‘+* operation relating y and z is a simple relation which
might be extrapolated by an intruder, which can invalidate
¢2. Mareover, operations provided by y and z are simple,
not CPU-time consuming SET and GET operations, Wthh
invalidates ¢3.

So why net considering such x (and more generally
objects dealing with fine-grain attributes) as always non
substitutable? Acmally, the granularity of the objects pro-
duced is not sufficient to answer the question. It depends on
the complexity of all the operations provided by y and 2: if

-they are' CPU-time consuming operations then it can be

interesting to run them on untrusted shared resources.
Going through the fragmentation process obviously leads

in most cases to fine-prain objects, so performance evalua-

tion is needed to state on the usefulness of a substitution.

“This issue will be discussed in Section 5.

substitution

Fig. 8. Late substitution.

LL

4.3. Formal description of fragmeniation

The process consists in producing recursively a set of
objects covering the functional and confidentiality aspects
of the specifications. It will be presented here in an algo-
rithmic form. At each step i = 0, A; is the set of objects not
treated yet. Each. step of the algorithm can be described as
foliows.

4.3.1. Fragmentation algorithm

Let Ay C O be the set of objects deducted from the func:-
ticnal specifications. $teach step i = O of the recursion, 4;
is partitioned in confidential objects, constituting a set C;,
and non-confidential objects, constituting the set NC,.

Ci=x& 4I1Cx)

NG =x € A{~C(x)

- Among the objects of C;, some are substitutable and others
not, according to the criteria defined in Section 4.1. The C;
set is therefore panltxoncd in §; and NS, defined as foliows.

Si=x € Gl5(x)

NS =x &€ Gl-5(x)

We now consider only the following sets, which are a parti-
tion of A;. S is the set of elements of A; that are confidential
and substitutable. NS; is the set of elements of A, that are
confidential but for which no useful substitution can be
found. _

NC, is the set of non-confidential elements of A;. There-
fore Ai = Si U I\IS1 U .N'C'1

We substitute a set §, C O for each element x € 5, 1.
S,.ix, §. being functionally equivalent to x, i.e. the interface
and services provided by x are also provided by §,. The
algorithm then continues with A;,, defined as:

A= Uz

A, holds all the objects substituted for all the confidential
objects at step i: step i + 1 w111 therefore only study new
‘objects produced at step 1. .

" 4.3.2. Resulting sets cma' algorithm properties

A sufficient condition for termination is that no
more object is confidential or substitutable, ie. 3 = 0
Si=9. Let then A= Uizl A, C= UZINS and
NC= UIZ{NC, A is the whole set of objects whose
cooperation meets the application specifications, C is the
subset of still confidential objects, and NC the subset of

‘non-confidential objects. A = C U NC, C and NC being a-

. partition of A;

This condition is in fact always satisfied since the
granuiarity of confidential objects eventuaily becomes
very small, and then by definition objects become no

more substitutable since their interface comes down only

o SET/GET operations, which invalidates the condition
c3. At one extreme, going down to a single bit, the criteria
c2 and c3 are obviously not satisfied! More seriously, con-
ventional solutions must be used when confidential objects
are simple types of unsunctured data. This means that
finaily the application can include a large number ‘of
medium-grain or fine-grain objects® although large non con-
fidential objects can be produced during the early stages of
the design.

_ 5. Performance evaluation

We have shown in the previous secticns that a confiden-
tial application can be organized as a collection of objects,
some of them being non confidential. For the sake of clarity,
we consider here that the sets C and NC have been defined in

-~ a first step without considering performance aspects. Secuz-

ity is ensured as long as objects belonging to C are executed

- on the trusted user workstation (called PC i.e. some personal

computer in the rest of this section) in a physically secure
environiment. The non confidential cbjects can then be

executed on untrusted shared processing servers (called

servers in the rest of this section) without threatening the

" conffidentiality of the whole application. We discuss in the

following whether it is interesting or not from a perfor-
mance viewpoint to remotely execute objects of NC on an
unirusted server rather than on the PC.

The performance evaluation of a fragmented application
depends on several parameters related to both the applica-
tion (size of invocation/reply messages, method execution
time, objects implementation) and the system architecture

. (relative CPU power of PCs and processing servers, com-

munication throughout the network). The organization of
the confidential application in terms. of distributed objects
must respect some trade-offs between security (fragmenta-
tion), performance, cost and usage of the overall architecture,

" Remote execution of non confidential objects is interesting

in'several cases and for the non exclusive following reasons:

s When the communication overhead due to the coopera-
tion of objects produced by the fragmentation process.
.is balanced by the better performance obtained by
executing non confidential objects on powerful remote
computers (including computers with specialized
architectures);)
e when good parallelism is achieved among the non con-
fidential objects executed remotely;

o When flexibility and extensibility of the network con-

figuration and fair use of emsung shared resources are
also important goals;

+ When fault tolerance is a prime objective that must be
achieved through software-based fault tolerance tech-
niques (e.g. non confidential objects can be replicated).

% Tt can also be noticed that the more objects become fine-grain, the more
their semantics becomes difficult to obtain.

‘

e

Orly the first of these features can be evaluated quantita-
tively. However we believe that a qualitative evaluation of
other remaining features is of great interest from a pure
pragmatic viewpoint. These points are now discussed in
detail,

5.1. Quantitative aspects

- We suppose here in a first step that the architecture where

the implication is to execute is composed of a secure PC and
powerful servers, e.g. 10 times as powerful as the PC in a
first step. We discuss griteria for determining whether non
confidential objects should be run on the PC or on the server
and for evaluating the respective costs..

The execution of an object on the PC is almost immediate
* because it is not shared by several users; just few user
applications are simultaneously active in a time-sharing
system’. On the contrary the remote execution of an object
must include time spent on message passing and scheduling
on a multi-user processing server.

Just for easy understanding, the balance can be illustrated
by the simple following example; suppose that a method M
of an object O is invoked by message im (invocation mes-
sage} and results are returned by message rm (reply
~ message). Table 1 summarizes the results of an experiment
comparing z local vs. a remote execution of M. We denote
fims Tes 15y i the average times spent on transmission of im,
execution of M, system scheduling of this execution and
~ transmission of rm respectively. The letters t and 1 are
used for the PC and for the server respeciively. Times are
given in milliseconds.

Such values can be easily obtained by simulation or by
simply running the object locally on the user PC and also on
processing servers. They can also be evaluated vsing similar
techniques as those used for the evaluation of maximum
time execution of real time application [11]. In the experi-
ment the method example was runon a PC 486 DX2/33 with
UNIX SVR4 and on a Sun Sparc server S690 with SunQS
4.1. The transmission time values reported in the table
correspond to the average message time delivery between
applications on the (heavily loaded) Ethernet network of
workstations of our team for a message size of 1 kB {most
object invocation messages are short and can he sent within
such message). _ .

In the sitwation depicted in this table, fragmentation is of

interest because performance of the fragmented application
is identical to the local execution.of the non-fragmented

application. The invocation is local on the PC, therefore
fim = Im = 0 ms; moreover the PC is not shared and only
the current application is active, therefore 7, = 0 ms. We

consider also that the mean transnlission time for the invo- -

cation and reply messages is the same: 7jp = Tup = i

Therefore the total execution times for t and 7 of the local

? A UNIX system with a single user for example,

Table 1

*Local vs, remote method execution of O.M

Time in Milliseconds Local execution Remote execution

Transmission of i tim =0 Tim = 10
Exectition te = B0 7. = 1O
Scheduling =0 7, =350
Transmission of rm Py =0 tm=10
Total execution time t= 80 =280

object invocation on a user PC and the remote object invo-
cation on a processing server are:

=1,

T= 2T+ 75+ T,
The difference between these response times is given by:
T—i=21,+Te+ 7, — 1
Running O.M on the server is interesting if 7 — ¢ = 0, 1.e. if
the remote execution is faster than the local one. Suppose
now that the execution time on the server (including

scheduling time) is proportiona! to the execution time on
the PC: IN7, + 75 = M.. As the server is supposed to be

" more powerful than the PC, we have A < 1 and therefore:

+

T,
r—t=0¢i, = -0

1-A

For instance, going back to the simple example given
A = 0.75; therefore it is interesting to run O.M remotely
only if ¢, is greater than 80 ms. For simple methods with
short execution time, and if we consider more powerful
computers {several orders of magnitude as powerful as the
user PC), the relative execution time obtained on the proces-
sing server (including the average scheduling time)
becomes negligible, i.e. 1 — A = | and therefore 7 ~ t =
0 @ 1, = 27y in this case, a non confidential object can be
executed remotely provided that the execution time of the

" method measured on the PC is greater or'equal to the round- -

trip time of invocation/reply messages. Using high speed
networks, this round trip time should be much lower than
some ms. Thus, objects whose average method execution
time is about a few hundreds us can be remotely executed
without any degradation in performance.

When considering processing servers with a specific
architecture (such as ‘massively paraflel computers) the
implementation of an object (matrix computation and
other complex numeric computations, image processing)
can also be very efficient. This can be true not only because
of the hardware architecture of the node but also according
to available software tools and libraries. This strengthen the
assumption I — A= 1. On the other hand, the designed
objects can be implemented 1o be run in parallel on several
nodes. For the above reasons, the scattered execution of the

* fragmented application is in some cases more efficient than

the local execution.

5

application § 11,01 colution

performance -

Trusted personal
user server (A}

- Trusted personal user PC &
untrusted shared servers (B)
O Trusied personal user PC{C)

cost of the
overall architecture

)

Fig. 9. Trade-offs between performance and cost.

52 Trade-o;_‘ﬁ‘ between cost and performance

We examine in this section several solutions that could be
investigated for running confidential applications and we
concentrate on qualitative evaluation aspects. The best solu-

“'tion in terms of performance (solution A) should be to only

use secured nonm shared (personal} powerful processing '

servers. This solution is very costly and the CPU usage
very low but it prevents using shared processing servers
on which intrusions can be performed. The worst solution
in terms of performance (solution C) is to only use personal
low cost user PCs in a secure environment for running sen-
sitive applications. The performance is very bad and, as in
the previous solution, the execution of the.application does
not take advantage of existing processing servers. The frag-
mented solution (solution B) lies in between. This solution
involves trusted personal user workstation at low cost and
several (existing) untrusted powerful processing servers.
This situation is iltustrated in Fig. 9.
~ From a performance viewpoint, solution B can provide
better results than solution C as soon as parallelism among

objects belonging to NC is.considered and the implementa- -

tion of specific objects is optimized. Solution B maximizes
the use of shared {(existing) computing power and reduces
‘the cost of the overall architecture (see Fig. 10).

Finally, solution B is of course more fléxible since adding

either trusted nsers PCs or processing servers can be done
independently according to the needs in terms of user
accesses to the system and in terms of computing power.
It is also possible to run replicated copies of remote objects
for fault tolerance purpose (using software-based tech-
niques} without endangering the security of an application.
Fault tolerance at the user station must be based on other

sharing of
processing
servers

o &
O @

cost of the _
overall architecture

Fig. 10. Trade-offs between performance and sharing.

solutions, e.g. based on stable storage. Fault tolerance is
thus provided with standard computers instead of more
costly specific fault tolerant computers. Finally, the flexibil-
ity of our solution may allow some degradation in terms of
performance to be acceptable. '

6. Implementation issues
The execation of such a fragmented appiication designed

as sets of distributed objects implies the use of an
appropriate runtime support for distributed objects. This

support must provide flexible means for running remote -

objects, for replicating objects according to various replica- -

tion strategies, and must also provide means to ensure
secure communications between application objects. The
first property of such a runtime support must be transpar-
ency of any mechanism for the user, either for distribution,
fault tolerance or security. All mechanisms required for a
given implementation of an application must be
independent from each other and composed easily on a

. case-by-case basis. Thanks to object-oriented methods and
" techniques, some rensability can be expected leading thus

new mechanisms to be derived from existing ones. None of
the existing solutions in dependable system design and

. implementation provide alt these properties at the same
time. The runtime system we are developing today is

based on a metalevel architecture which enables a good
balance of these properties to be obtained. This work lead
to the development of the FRIENDS system described in
this section. More details ¢an be found in {12].

6.1. Metaobject protocols

The essence of metaobject protocols (MOP) [13] is to

-give the user the ability to adjust the language impiementa-

tion to suit its particular needs. Metaobject protocols are

" based on reflection and object-orientation [14]. Reflection

exposes the language implementation at a high level of
abstraction, making it understandable for the user while
preserving the efficiency and portability of the default’
language implementation. Object-orientation provides an
interface to the language implementation in the form of
classes and methods so that variants of the default language
implementation can be produced in a simple way, using
specialization by inheritance. Instances of such classes are -
called metaobjects. The protocol rules the interaction
between objects and metaobjects. In class-based reflective
languages, the inmterface of the language implantation
generally comprises at Jeast instance creation and de}etlon,
attribute read or write access, method call.

6.2, Structuring the operatirgg system

The architecture of the operating system is composed of '
several layers (see Fig, 11): (i) the kernel layer which canbe

sublayer user layer
metaohject : =
sublayer H libft_mo {fibsc_moEAfibgd_mofy
.| | other app.- = E .
dependent _ GDS H | system layer
subsystemn = »
[UNIX / Chorus | kernel layer

Fig. 11. Overall system architecture.

14

either a UNIX kemel or better a micro-kernel, such as
CHORUS [15], (i) the system layer composed of several
dedicated sub-systems, and finally (iii) the user laver
dedicated to the impilementation of applications.

The system layer is crganized as a set of sub-systems:
FTS8 (Fault Tolerance Sub-system), SCS (Secure Communi-
cation - Sub-system), and GDS (Group-based Distribution

- Sub-system). FTS provides basic services mandatory in
fault-tolerant computing, in particular error detection, con-
figuration management and 2 stable storage support. SCS
provides basic services that must obviously be implemented
as trusted entities (Trusted Computing Base) and include an
authentication server and also. an authorization server. GDS
provides basic services for implementing a runtime distri-
bution support for object-oriented applications where
objects can be replicated using group membership and
atomic multicast protocols.

The user layer is divided into two sub-layers, the applica-
tion layer and the metaobject layer controlling the behavior
of application objects. Some libraries of metaobject classes
for the implementation of fault-tolerant #nd secure distrib-
uted applications are implemented on top of the correéspond-

ing. sub-system and provide the user with mechanisms that

can be adjusted, using object-oriented techniques. Meta-
object classes for various fault tolerance strategies (based
on stable storage or replication), for various secure communi-
cation protocols, for handling remote object interaction, are
"now available and used in prototype applications.

6.3. Metaobjects and current status

In our application model, any runtime object is organized
using several levels: the first level or base-level (the appli-
cation object), several intermediate optional meta-levels
{metaobjects for fault tolerance and secure communication)
and finally the last meta-level responsible for handling
objects interaction. This structure of the application implies
-a sequence of interactions through the MOP as shown in
Figs 1l and 12. . ' . :

The metaobject classes have been developed using Open
C++, a preprocessor of C++ providing an adequate
metaobject protocol [16]. Fault tolerance mechanisms rely
on conventional techniques such as stable storage and

replication (passive, semi-active, active). Secure communi- -
cation can be obtained esing metaobject classes for cipher-
ing messages (confidentiality) but also for the verification of
cryptographic signature (authentication and message

integrity. Metaobject classes for fault tolerance mechanisms -

have been defined with an inheritance hierarchy: a set of

mechanisms (based on stable memory and passive replica- .
tion) have been developed and then factorized as basic

classes in a first step. Then, new mechanisms have been

obtained using inheritance from these basic classes (semi-

active replication strategies, for instance). _

Today our e}éperiments axe running on a network of
UNIX machines (Sun IPX/IPC under Sun©S 4) using the
xAMp atomic muiticast protocels [I7], "previously
developed in the Delta-4 project [18]. ‘All the metacbjects
have been used and combined in various ways in a prototype
application (distributed management of bank accounts). We
observed the flexibility provided by this approach, in
particular the possibility of changing mechanisms without
any impact on the application source code. Properties,
limits and performance of the FRIENDS -system are stiil

under evaluation. Nevertheless, these first experiments

are very satisfactory and the performance overheads are
reasonable; the extra cost due to multiple metalevel indirec-
tions is negligible with respect to the cost of multicast
communications. ' : '

The implementation of a second version of the FRIENDS
system on d micro-kernel platform based on CHORUS is
under way. The flexibility provided by micro-kemel tech-
nology at the operating system level is complementary to
the flexibility provided by metaobject protocols at the
language level. Services described in Section 2.2 can easily
be integrated in this architecture as a new sub-system, the
FRS sub-system, FRIENDS is an attractive rontime support
for distributed object-oriented applications in general for

Fig. 12. Base and meta-level interzction,

3

which dependabi.lity is of high interest, and i particular for
runaing fragmented applications designed using the
approach developed in this paper. ' '

7. Conclusion

We have shown in this paper that the object-oriented
approach to application design enables confidentiality to

be easily taken into account since objects abstract real -

entities having clear semnantics; it is thus easy to- decide
whether an object is confidential or not. Looking more care-
fully to-the question why is an object confidential often leads
to perceive a confidential information (object) as a collec-
tion of non confidential items (sub-objects). Confidentiat
objects can thus be substituted for a collection of sub-
objects, some of which being non confidential.. Links

- between sub-objects are kept within still confidential objects -

for which a trusted computing environment is required.
Non-confidential ohjects can be. executed on shared
unitrusted processing servers. Since the notion of object
gathers both data and processing, our solution provides
security of data processing in distributed systems.

The performance aspect is one key aspect of object frac'-
mentation. A priori, object fragmentation can be done inde-
pendently of performance aspects, since the aim is first to
encapsulate confidential processing within few confidential
objects. The recursion ends as soon as object substitution is
not useful from a confidentiality viewpoint (Fragmentation).
Performance aspects come into place when the placement of
obiects has to be decided (Scattering). Remote execution of
non confidential object replicas (Redundancy) is sound
when it does not lead to high degradation of performances;

_communication overheads {on high speed LANS) are then
balanced by the high computing power of processing

servers. The recent and futvre advances in network technol- -

ogy will make this assumption more and more realistic. As a
side effect, simple objects should be executed remotely
without any performance degradation. Moreover, consider-
ing parallelism between non confidential objects in the
implementation of the application, but also for some par-
ticular application objects implemented on specific architec-
tures, some gain in performance can be expected.

Finally, from a system architecture viewpoint, the
“proposed approach to the design of sensitive application
provides more flexibility than other solutions. The system
architecture can be organized as a set of low cost secured
non shared workstations, one for each user, and a set of high
performance shared processing servers. The latter com-
puters can be off-the-shelf computers without any specific
features with respect to security or to fault-tolerance (just
software-based mechanisms). The two types of computing
units can be added independently according to the needs.

We concenirate today on the design and implementation

of flexible runtime supports for dependable object-oriented -
- applications in general, and fragmented applications in par- -

ticular. Our recent work based on the use of metaobject
protocols lead us to develop the FRIENDS system which
provides, as far as we know from our first experiments, a
good balance of the expected properties for bu11dmg faul
and intrusion-tolerant chstnbuted systems.

Acknowledgements

The authors wish to thank very much Brian Randell from
the University of Newcastle-upon-Tyne (UK) who partici-
pated in the elaboration of these ideas during the numerous
discussions on the subject.

References

111 Ronald L. Rivest. Len Adleman, Michael L. Dertotizos, On Data
Ranks and Privacy Homomorphisms. In Richard A. Demillo, David
D. Dobkin, Anita K. Jones, Richard J. Lipton (Editors), Foundations
of Secure Computation, Academic Press, 1978, pp. 169-179. .

[2] NCSC, Trusted Network Interpretation of the Trusted Computer Sys-
tern Evaluation Criteria. Technical Report NCSC-TG-005, National
Computer Security Center, July 1987.)

[3] Yves Deswarte, Laurent Blain, Jean-Charles Fabre, Intrusion Toler-
ance in Distributed Computing Systems. In: Proc. 1981 IEEE Com-
puter Soc. Symp. on Research in Security and Privacy, Oakland, CA,
May 1991, I[EEE Computer Society Press, pp. 110-121.

" [4] Jean-Charles Fabre, Yves Deswarte, Brian Randell, Designing Secure

and Reliable Applications using FRS: An Object-Odented Approach.
In: Proc. st Eurcpean Dependable Computing ‘Conference (EDCC-
1), Lecture Notes in Computer Science 852, Berlin, Germany, 1994,
Springer-Verlag, pp. 21-38.

[5] Michael O. Rabin, Efficient Information Dispersal for Security, Load
Balancing and Fault Tolerance. JACM 36(2) (1989) 335-343.

[6] Adi Shamir, How to Share a Secret, Commumcauons of the ACM
2211 (1979) 612-613.

{7] Redger Lea, James Weightman, Supporting Object-Criented
Languages in a Distributed Environment: The COOL Approach. In:
Proc.. 5th Technology of Object-Oriented Languages and Systems
Conference, Sania Barbara, CA, USA, 1991, Prentice Hall, pp. 37-47.

18] 1. G. Steiner, €. Neuman, J. L. Schiller, Kerberos: an Authentication
Service for Open Network Systems. In: Proc. USENIX Winter Conf
Dallas, TX, February 1988,

{9] B. Taylor, D. Goldberg. Secure Networking in the Sun Environment.
in: Proc, USENIX Summer Conference. Atlanta, GA, 1986, pp. 28~
37.

{i0] Peter Robinson, Hierarchical Object-Oriented Design, Prennce Hall,
1992.

[¢1] H. Kopetz, A. Damm, C. Koza, M. _Mulazzam. W. Schwabl, C. Senft,
R. Zainlinger, Distributed Fault-Tolerant Real-Time Systems: The
MARS Approach. IEEE Micro 9(1) (1986) 25=2(.

[12] Jean-Charles Fabre, Tanguy Péremmoy, FRIENDS — A Flexible Archl-
tecture for Implementng Fault Tolerant and Flexible Distributed
Applications. In: Proc. 2nd European Dependable Computing Con- -
ference (EDCC-2), Taormina, Italy, September 1996.)

[13] Gregor Kiczales, Jim. des Riviéres, Daniel G. Bobrow, The Art of the
Metaobject Protocol, MIT Press, 1991.)

{14] Patti Maes, Concepts and Experiments in Computational Reflection,
In: Proc. 2nd Conf. on Object-Oriented Programming Systems, .
Languages, and Applications (OOPSLA’ET), Orlando, FL, October
1987, ACM Press, pp. 147-135.

[15] M. Rozier, V. Abrossimov, F. Armand, I. Boule M. Gien, M.
Guillemont, F. Herrmarm, S. Langlois, P. Léonard, W. Neuhauser,

o . . R

Overview of the CHORUS Distributed Operating Systems, Technical [17] Luis Rodrigucs, Paulo Verissimo, xAMp: A Protocol Suite for Groap

Report CS-TR-90-25, Chorus Systames, 1590 Communication, In: Proc, 11th IEEE Symp. on Reliable Distribwed
[16] Shigeru Chiba, Takashi Masuda, Designing an Extensible Distributed . Systemns (SRDS-11}, Houston, TX, October 1992, pp. 112-121.
Language with Meta-level Architecture, In: Proc. 7th European Con- [18] David Powell. Distributed Fault Tolerance — Lessons Learnt from
ference on Object-Oriented Programming, Kaiserslautern, Germany, Delta-4 IEEE Micro 14(1) (1994} 36-47.
Tuly 1993, Springer-Verlag, Lecture Notes in Computer Science 707, . : :
pp. 482=-501. , : ' o) s
R 4

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

