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ABSTRACT

This article presents a new method for supervised image clas-
sification. Given a finite number of image sets, each set corre-
sponding to a place of an environment, we propose a localization
strategy, which relies upon supervised classification. For each
place the corresponding landmark is actually a combination of
features that have to be detected in the image set. Moreover,
these features are extracted using a symbolic knowledge extrac-
tion theory, ”formal concept analysis”. This paper details the
full landmark extraction process and its hierarchical organiza-
tion. A real localization problem in a structured environment
is processed as an illustration. This approach is compared with
an optimized neural network based classification, and validated
with experimental results. Further research to build up hybrid
classifier is outlined on discussion.

Keywords. Supervised classification, Visual landmarks, Galois
lattices, Concept lattices, Computer vision, Localization.

1. INTRODUCTION

Characterizing and recognizing a place in a -structured or
not- environment, using only a set of views attached to
each place to characterize, is a difficult challenge to take
up for a machine (computer or robot) today. To do this, the
machine needs to find ”something” that 1. characterizes a
considered place, and 2. distinguishes it from the others.
This ”something”, under specific conditions, is called a
(visual) landmark. What is a landmark ? How to find it ?
And how to select it ?
This paper presents a new method to answer these ques-
tions. All the images issued from one place are regrouped
into a set. Thus, the machine has to recognize one origi-
nal place fromsomeimages of the associated set. At first,
during a learning stage, the relationships between sets of
images and features are structured and organized into a
hierarchy, through a formalism calledGalois Lattices, or
Concept lattices. The use of such mathematical structures

allows the machine to determine its own landmarks at-
tached to each place. Subsequently, once this initial char-
acterization has been performed, the machine is able in a
second stage to recognize the corresponding place thanks
to the landmarks it has learned.
The choice of the application we have done makes the
connection between one set of images and one room of
a structured environment. Thus we expect that there will
be more or less common properties between images of one
set. But the theory we have developed here considers only
sets of images without any restriction.
This paper is organized as follows: sections 2 introduces
landmarks, primitives and features; section 3 gives an out-
line of Formal Concept Analysis; sections 4 shows how
we use it to define and to build landmarks; section 5 ex-
poses the results of this approach on an experimental setup,
before conclusion and perspectives (section 6).

2. LANDMARKS, PRIMITIVES AND FEATURES

2.1. The classical notion of landmark in autonomous
mobile robotics

As defined in the Cambridge Dictionary, a landmark isa
building or place that is easily recognized, especially one
which you can use to judge where you are.This original
definition, applied to the mobile robotics field, has sev-
eral versions such as ”distinctive templates from one im-
age which can be readily recognized in a second image
acquired from a different viewpoint” [1], or more sim-
ply ”identifiable visual objects in the environment” [2].
Usually landmarks are not introduced according to a for-
mal definition but through some specific properties such
as ”easily distinguishable” [3] or ”locally unique” [3]. In
concrete terms, a landmark could be an object [4], a color
[5], interest points [6],etc. In our case, landmarks are not
restricted to one kind of elements, but could be a combi-
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nation of elements. For instance, a landmark of a place
A could be a”big blue object”, even if there is a”big
object” in the placeB and some”blue” in the placeC.
Nevertheless, it is essential that a landmark checks the two
following characteristics: first it should discriminate be-
tween locations, and second it should be stable to allow ro-
bust identification against variations of the observer posi-
tion and time [1, 7]. Several classifications of landmarks,
as static/dynamic [8], already exist, still we propose here
another classification based upon the learning ability and
the autonomy of the recognition system. We do separate
landmarks into three categories:

(i) fully pre-defined landmarks: the machine is given a
database of objects [4, 1, 9] which are ”just” to be
recognized;

(ii) partially pre-defined landmarks: such potential land-
marks are specified by a common structure. For in-
stance, in [10], the authors use planar quadrangular
forms (typically, posters) characterized with inter-
est points [11] and Hausdorff distance. Observa-
tions which could fit into the specified framework
are then dynamically chosen as landmarks;

(iii) non pre-defined landmarks: no hypothesis is assumed
about potential landmarks. The main approaches
with such landmarks are biologically inspired [12,
13, 14].

Our approach deals with the last category: we want the
machine to choose the most relevant landmarks in an au-
tonomous and dynamic way. Notice the connection be-
tween landmark localization and supervised classification.
When the landmark is predefined the classifier is designed
by hand using expert knowledge about robustness of ob-
ject shape and so on. In case (iii), the landmark is de-
fined through a learning process which is similar to learn-
ing a supervised classifier. An important difference still
remains between landmark-based localization and super-
vised classification: in our case, if a landmark is not found
in the current image, the robot visual system is requested
to provide additional information to the localization sys-
tem through a new picture. This ”no answer” event de-
creases classification error. We will develop the landmark
selection process further in this paper according to a learn-
ing approach, still we will keep the ”no answer” event.

2.2. Primitives and Features

Different pictures are extracted from each room of the
environment; thus, a set of images is attached to each
room. From these different pictures,primitives are ex-
tracted to buildfeaturesof images, to help the robot to find
propertiesof each place. We do distinguish feature from

properties by the fact that features are attached to images,
whereas properties are attached to the place. Three kinds
of primitives are extracted from the different pictures:

• structural primitives: segments with their size and
orientation (they are issued from polynomial con-
tour extraction), interest points [15], . . . ;

• colorimetric primitives: extraction of red, green, blue,
cyan, magenta or yellow pixels with joint histograms,
objects, contrast, . . . ;

• photogrammetric primitives, issued from pixels in-
tensity: contours, texture,etc.

From all these primitives, features are extracted in all set
of images. Notice that our definition of feature is ex-
tensive and includes any potential feature, whatever it is
present in an image or not. For instance, with colorimet-
ric primitives, potential features could be”there is some
yellow here” or ”there is such texture”. Notice that we
include features that are invariant against rotation, transla-
tion and scaling. For instance, using segments (primitives)
extracted from contours, one feature could be:”there is a
large number of identical (orientation and size) segments”
(Typically, this feature may be issued from a bookcase that
is present in the considered place).
Let us also note that our system is ”open”, that means that
any other (visual or not) feature could be included to in-
crease efficiency of our learning process.

2.3. Raw display of visual information

Once all primitives are extracted from images and features
are detected, information is organized into a look-up table,
that displays the presence or not of a feature in an image
(see figure 1).

 Feature 1 Feature 2 Feature 3 Feature 4 Feature f Feature Nf
Image 1.1 X X
Image 1.2 X X X
Image 1.3

X
Image 1.N1
Image 2.1 X
Image 2.2 X X X X X
Image 2.3 X

Image 2.N2
… … X X

Image p.1 X
Image p.2 X X
Image p.3

X
Image p.Np

Place 1

Place 2

Place p

Figure 1: Visual Information Look-Up Table.

3. FORMAL CONCEPT ANALYSIS

Galois -or concept- lattices have been widely used in Ar-
tificial Intelligence in the past 20 years. This theory has
been developed asFCA: Formal Concept Analysis, and



several lattice building algorithms appeared since then,
more and more efficient [16]. Still few concrete applica-
tions recently appeared mainly in data mining topics such
as machine learning [17, 18] or in the aeronautic field [19].
We outline here an application to localization in the au-
tonomous mobile robotics field.

3.1. Mathematical Formalism [20, 21]

Definition 1 A lattice is defined as an ordered set in which
any couple of elements has a least upper bound (lub) and
a greatest lower bound (glb). A complete lattice is a lat-
tice where any set has a lub and a glb.

For instance, the setP(O) of all subsets of a setO ordered
by the inclusion⊂ is a complete lattice.

Definition 2 A contextK is a triple (O,F , ζ) whereO
is a set ofobjects, F is a set ofattributes and ζ is a
mapping fromO ×F into {0, 1}.

In our application, objects are images taken by the robot,
attributes are features and the mappingζ is defined by
ζ(o, f) = 1 if and only if featuref is present in image
o. The graph of this mapping is the look-up table of figure
figure 1.

Definition 3 Given a contextK = (O,F , ζ) let us define
two mappings fromP(O) intoP(F) and fromP(F) into
P(O) using the same notation′ by the formula

∀A ⊂ O,A′ = {f ∈ F | ∀o ∈ A, ζ(o, f) = 1} (1)

∀B ⊂ F ,B′ = {o ∈ O | ∀f ∈ B, ζ(o, f) = 1} (2)

These mappings are called theGalois connectionsof the
context;A′ is called thedual ofA, similarlyB′ is called
thedual ofB.

Clearly,A′ is the set of common attributes to all objects
of A, andB′ is the set of objects which share all attributes
belonging toB.
The properties of the Galois connections can be found in
[22]. Let us recall the basic following properties:

Property 1 A1 ⊂ A2 ⇒ A′
2 ⊂ A′

1

Property 2 A ⊂ A”

Property 3 A′ = A”′

We are now able to state the definition of a concept:

Definition 4 Given a contextK = (O,F , ζ), the pair
C = (A,B) is called aconceptofK if and only ifA′ = B
andB′ = A.

Definition 5 A is called theextent of the conceptC and
B is called its intent. One notesA = extent(C) and
B = intent(C).

The set of all concepts of a contextK is denotedL(K)
or simplyL if the context is clear. One proves [21] the
following theorem:

Theorem 1 Let C1 = (A1,B1) andC2 = (A2,B2) be a
couple of concepts, thenC1∨C2 = ((A1∪A2)”,B1∩B2)
andC1 ∧ C2 = (A1 ∩ A2, (B1 ∪ B2)”) are concepts.

This result may be extended to any setI of concepts. We
shall noteCI = (AI ,BI) =

∨
i∈I Ci and similarlyCI =

(AI ,BI) =
∧

i∈I Ci

Thus, the set of conceptsL when it is endowed with the
order relation⊂ of its extents is a complete lattice and we
can set:

Definition 6 The complete latticeL(K) of concepts of the
contextK is called theGalois lattice or theconcept lat-
tice.

3.2. Lattice Building Algorithm

Concept lattice building algorithms are divided into two
families: incremental algorithms and non-incremental al-
gorithms. See [23] for a complete description. The most
appropriate algorithm for our application is theNorris al-
gorithm [24] (the complexity isO(|O|2.|F|.|L|) with |L|
the number of concepts [23]). It is practically efficient
to process middle size problems with time constraints for
this application in spite of the worst-case exponential com-
plexity as shown in paragraph 5.4.

3.3. Finding Landmarks with Concept Lattices

From now on, we shall use the term ”Concept Lattice”.
The extent of a concept is an object subset that is com-
pletely defined by a set of attributes that are simultane-
ously checked by the elements. The intent of a concept is
a set of attributes that are a maximal characterization of an
object set.
The context in our application being defined with a set of
images (objects), a set of features (attributes), and a map-
ping, here the presence or not of a featuref in an image
i, the general lattice is built and landmarks are extracted
thanks to the following definition:

Definition 7 Given a contextK = (O,F , ζ) and a sub-
set of objectsA ⊂ O. A subsetB ⊂ F is said to be a
landmark ofA if and only if

• B′ ⊂ A.

• B” = B,



By this way, a landmark is a combination of features of
a concept (intent) that respects the above conditions. The
complete process is detailed in next section.
Let us note that the first property (B′ ⊂ A) could be
enough to define a landmark. However,B′ would not
always correspond to a specific subset of objects, so the
combination is not optimized. Thus, to avoid an explosion
of possibilities, and to restrict the number of landmarks to
a minimal number, it is necessary to fit with concept in-
tents. The choice of concept as the basis element to build
classification rules is hoped to provide robustness to clas-
sification and to improve generalization properties.

4. BUILDING A LANDMARK-BASED
CLASSIFIER

In this section, we do expose the complete reasoning first
to extract landmarks from a set of images, and second to
label an image to a set.
Let us detail our basic application. We have at our dis-
posal a set of images from a structured environment. Each
image is labelled by the room from which it was shot.
Our objective is to provide a mobile robot equipped with a
camera a decision rule to allow it to find its localization in
a topological map1. It is basically a supervised classifica-
tion problem. The decision rule is provided by a maximal
partial landmark. Note that we are in a typical learning
situation. The decision rule is extracted from a set of la-
belled examples, the learning base of images. This rule is
formalized for each set by concepts that shall be defined
as maximal landmarks. Some images of the learning set
may escape from the decision rule. Thus, due to the image
preprocessing (primitive extraction) and the complexity of
the environment, learning failing may occur.
There are actually two phases: the first phase deals with
landmark extraction (learning phase), and the second phase
deals with the use of these landmarks to find the place
a new image comes from (generalization phase). Let us
give first some definitions useful for our particular appli-
cation.

4.1. Formal Definitions in a Partitioned Context

Given a contextK = (O,F , ζ), a partition(Oθ)θ∈Θ of
the object set is available. So We have:

O =
⊕

(θ∈Θ)

Oθ

Definition 8 θ is called asiteandΘ the set of sites.

1A topological map of a structured environment is a graph for which,
most of the time, a node is a room and an edge is a connection between
two rooms [25]

More generally, a semantic label can be considered instead
of a site in a general classification context.

4.1.1. Landmarks

Definition 9 LetBθ be a subset ofF . Bθ is said to be a
landmark of a siteθ if and only if

• B′

θ ⊂ θ.

• B”
θ = Bθ,

A landmark is thus a set of attributes for which the simul-
taneous presence is effective in some image of the site to
characterize.

4.1.2. Full Landmarks

In particular, if the landmarkBθ is a set of attributes present
simultaneous inall images of the site,Bθ is called a full
landmark.

Definition 10 Bθ ⊂ F is said to be afull landmark of a
siteθ if and only if

• B′

θ = Oθ

• B”
θ = Bθ,

4.1.3. Maximal Landmarks

If a full landmarkBθ = O′

θ exists, it is sufficient to define
a decision rule for localization with respect to siteθ. Of
course, that issue does not occur very often in practical
applications. If there is no full landmark, it is interesting
to limit the number of landmarks by introducing maximal
landmarks.

Definition 11 A maximal landmark B̂ is a landmark of
minimal intent in a set of landmarks of a given site .

4.1.4. Coverage

The coverage of a site by a landmark or a set of landmarks
specifies if every image of the site contains some of land-
marks or not.

Definition 12 let {Bθ,i}i=1...Nθ
be theNθ landmarks of

a siteθ. This site is said to becovered, or the landmarks
cover the site, if and only if⋃

i=1...Nθ

{B
′

θ,i} = θ

If there is a full landmark in a site, the coverage is obvious.
If not, the set of mages from a site may not be covered by
landmarks. Note that if such a full coverage exists, it is
provided by maximal landmarks.



4.2. Learning Phase: Extracting the Landmarks

The first step is to extract primitives from each image.
The algorithms used to do this are quite classical. For
instance, to obtain segments, the contours are extracted
with a Canny-Deriche algorithm, then they are approxi-
mated with polynomial figures. Eventually segments are
extracted by a fusion process. Other primitives are found
through image color or texture segmentation.
The second step is to find features with these primitives,
and to fill up the look-up table. The third step is the build-
ing of the associate lattice. The last step is to ”read” the
lattice,i.e. to select landmarks attached to each class (each
place). Let us detail this last process.
Following the strict definition of a landmark, the general
lattice is built and concepts are put into a hierarchy. Con-
sidering all concepts{Cθ} relative to a siteθ, i.e. all con-
cepts whose extent are made with images from the site
θ (and only from this site), landmarks are intent of these
concepts. We precise the definitions from previous sec-
tion:

Definition 13 A landmark-concept relative to a classθ
is a concept whose extent are made with objects belonging
toOθ.

Definition 14 A landmark of a classθ is the intent of a
landmark-concept relative to a classθ.

Definition 15 Considering the set of all landmark-concepts
relative to a classθ, a maximal landmark-conceptsis a
landmark-concept whose extent has no no parent in the
considered object setOθ.

Definition 16 A maximal landmark of a classθ is the
intent of a maximal landmark-concept relative to a class
θ.

The general algorithm of the landmark selection method
is presented figure 2.

1. Extract primitives from each image
2. Determine the presence or not of features and Fill

up the cross table
3. Build the corresponding lattice
4. For each placeθ,
4.1 select landmark-concepts,
4.2 read concepts from landmark-concepts,
4.3 select maximal landmarks.

Figure 2: General Algorithm of the Landmark Selection
Method

4.3. Generalization Phase: Image (or Object) Classi-
fication

Once the landmarks selected, we consider now a new im-
age issued from any place. Primitives and attributes are
extracted from this image. Two cases should be consid-
ered:

• if the image contain at least one landmark of a class
θ and no landmark of any other classθ′ 6= θ, then
the image is classified in the classθ;

• if no landmark is included in the image or if sev-
eral landmarks, from several class, are included, the
classifier gives no-response. In this case, the lattice
has to be updated.

5. EXPERIMENTATIONS AND RESULTS

Different experimentations have been managed to confirm
our approach. The general frame of these experimenta-
tion is the navigation of a robot in a structured (human)
environment. The goal, for the robot, is to extract visual
landmarks with the aim to locate itself in view.
66 potential features could be detected in our images: num-
ber of pixels of the primary and secondary colors grea-
ter than 1000, black, white and colored small, medium
and big objects detected thanks to morphological opera-
tors, bio-inspired color contrasts such as black-white, red-
green and yellow-blue contrasts, small, medium and large
oriented (12 directions) segments issued from image deriva-
tion.
The first experimentation consists on aclassicalclassifi-
cation process: some images from four different classes
have been analyzed to build the classifier. Next this clas-
sifier has been tested with other images from the same
places. This approach is validated through a comparison
with an optimized neural network. Next, a real robotics
experimentation have been processed to fit closely with
our general research context. Finally, an experimentation
has been carried out with a much bigger context.

5.1. Image Classification

First, we state results in terms of image classification with
landmarks. 177 images have been taken for the learning
stage, in four different places of the laboratory environ-
ment. The feature extraction process gives a177 × 66
look-up table. The corresponding 5265 concept lattice is
computed in 25 seconds on a Spark 100 machine. For the
four classes, 883 concept-landmarks are extracted, there
is no full landmarks and 42 maximal (partial) landmarks
are kept : 9 for the first place, 8 for the second one, 17 for
the third one, and 8 for the fourth one (see table 1).



Place Ldks Full Ldks Maximal
Ldks

Place#1 194 0 9
Place#2 316 0 8
Place#3 291 0 17
Place#4 82 0 8
Total : 883 0 42

Table 1: Learning Phase : Landmarks Extraction.

During the generalization phase, 32 images are issued from
the place #1. These images aredifferentfrom those of the
learning phase. Landmarks are searched on all images: 1
image contains 2 ambiguous landmarks (one of the place
#1, one of the place #3) and 14 no landmark ; 16 images
contain only landmarks of the place #1, and 1 image con-
tains a place #4 landmark. There is thus a response rate
of 53.1%, an absolute well situated image rate of 50% on
all images, more important a relative well situated image
rate of 94.1% on (well or not) located images, an absolute
error rate of 3.1% and a relative error rate of 5.88%. The
results of the full analysis for all places are displayed on
table 2.

Place NI NR NGR NFR
Place#1 32 17 (53.1%) 16

(94.1%)
1
(5.88%)

Place#2 50 13 (26%) 12
(92.3%)

1 (15%)

Place#3 31 10 (32.3%) 10
(100%)

0 (0%)

Place#4 38 20 (52.6%) 19
(95%)

1 (5%)

Total : 151 60 (39.8%) 57 3 (5%)

Table 2: Generalization Phase using Landmarks: Results
(NI : Number of Images, NR : Number of Responses,
NGR : Number of Good Responses, NBR : Number of
False Responses).

Let us note that the classification rule has been tested with
the learning set of images to assess the equivalent of learn-
ing error. Of course, by definition, for each place, there
is no landmark from another place, however the response
rate is not 100% (88%, 43.1%, 85.7% and 54.8% for re-
spective places #1, #2,#3 and #4) : there are some images
with a posteriorino useful information,i.e. images whose
features are shared with some pictures of other sets.

5.2. Comparison with a Optimized Neural Network

Comparison with a classical neural network classification
under MATLAB has been processed to appraise our ap-

proach on the same data basis. To improve neural network
results, several experimentations with different architec-
tures have been computed to obtain the best network as
possible.
The optimized network is composed of 66 neurons in the
first layer (corresponding to our 66 features), 66 neurons
in the middle layer and 4 neurons (corresponding to the 4
places) in the last layer. The training function is a Back-
propagation gradient training with an adaptive learning
(taingda ), with an hyperbolic tangent sigmoid transfer
function for each layer of the network. Other comparisons
have been done with different number of layers, different
number of neurons in the middle layer, different training
process and/or different transfer functions, but with worse
results. The Levenberg-Marquardt and Bayesian regular-
ization algorithms fail due to the high number of entries.
With the number of 700 training epochs, the smallest learn-
ing rate is4.10−2 and more significantly the smallest error
rate (false response compared to all response) we obtained
is 5% on the learning set of images, and 30% on the testing
set. . .
More over, the variability of responses of a network is very
different from one learning process to one another, with
the same learning database. Best results cited above are
reached once on five or six tries.
To fit with our technique and to have comparable results
(see table 3), a program has been developed to allow the
neural network to give some ”no-responses”. In a practi-
cal way, the classification answer is validated if and only
if the difference between the greatest probability to be in
one place and the second greatest probability to be in an-
other place is above a threshold, that is adjusted to have
the same rate of no-responses.

Place NI NR NGR NFR
Place#1 32 17

(53.1%)
17
(100%)

0 (0%)

Place#2 50 17
(26%)

17
(100%)

0 (0%)

Place#3 31 14
(45.2%)

10
(71.4%)

4
(28.6%)

Place#4 38 12
(31.6%)

10
(83.3%)

2
(16.6%)

Total : 151 60 54 6 (10%)

Table 3: Generalization Phase using a Optimized Neural
Network.

5.3. Mobile Robot Localization

This experimentation has been done with a real mobile
robot in our laboratory. There is also four places in this
process but they are different from the previous experi-
mentation. Yet, features are identical. The strategy here



is different : during the learning phase and the general-
ization phase, the robots moves alone with its own speed,
and images are issued from a continuous flow of images
(”continuous” means here that the robot do not jump from
one place to another, there is some ambiguous transition
zones, difficult to classify).
The robot moves thus over the structured environment;
295 analyzed images give a295 × 66 look-up table, the
lattice of which is built with 8020 concepts. A total of 649
landmark-concepts are extracted and 48 of them are iso-
lated to be maximal partial landmarks (17 from the place
#1, 16 from the place #2, 9 from the place #3 and 6 from
the place #4).

NI NR NGR NFR
Results : 161 54 50 4 (8%)

Table 4: Result with a real mobile robot experimentation.

During the generalization phase, the robot move also over
the same environment. 161 images are analyzed, 50 are
well located in their respective place, and 4 no. The global
error is thus 8%, and the response rate is 33.5%. The rea-
son of such alow response rate is that the robots moves
through a white corridor, that has very few features and
landmarks, and a lot of white imagespollute the analysis
rate. However, the number of (well or not) located images
has no impact on our application : either the robot may
give an answer (the place it is) with an heuristic based on
all image responses of the considered set (passive vision
process), or the robot may look by itself for landmarks by
moving around (active vision process). This is one of our
next working orientations.

5.4. Experimentation with a bigger context

Another experiment has been carried out with a higher
number of features. The use of the HSV color space al-
low us to divide the whole spectrum into as many bands
as wanted, and by this way we have increased the num-
ber of feature up to 153. With a Pentium4 (2.4GHz) PC,
under 850 images, the lattice update time process is in-
ferior to the image analyze time process (half a second
about). After 850 images, time processes are quite similar
(contrary to the image analyze process, the lattice update
time process depends on the image itself and the extracted
features), and after 1100 images, the update process is
longer if new images appear. In a place already visited,
new combinations of features become scarce, so the up-
date time process decreases. However, in a bigger envi-
ronment, other techniques have to be implemented. A pos-
sible way to reduce the processing time is to split the en-
vironment representation into local lattices. For instance

a lattice may cover a place and its topological neighbors.
We are currently investigating this approach.

6. CONCLUSION AND PERSPECTIVES

In this paper, a new original supervised classification me-
thod has been developed to classify imagesw.r.t. to the
place they have been taken. This method is strongly based
on visual landmarks, anybody oranythingneeds to locate
oneself.
Our algorithms have been validated first through real im-
ages issued from four different places of a structural envi-
ronment, second through a comparison with an optimized
neural network that gives lower quality results with a lot
of instability, and finally through a real experimentation
with a autonomous mobile robot.
In this last case, a lot of heuristics could be developed to
improve results, especially in introducing local constrains
such as connected -or not- places, probabilities of transi-
tion, etc. However, our objective here was to validate our
algorithms in the worst case,i.e. in a pure classification
problem without anya priori knowledge.
Our system is open,i.e. other attributes from any cap-
tor could be used, or high-level attributes depending on
the final purpose (e.g.”rectangles” for building in outside
urban scenes). Thus we may incorporate ”partially prede-
fined landmark” in the sense of paragraph 2.1. Such an ap-
proach will be probably needed to process more complex
tasks such as outdoor localization in partially unknown
environment. However, in our applicative context, it was
not necessary and this is worth to be noted.
Four main directions will lead our further research pro-
gram. First, we have to improve our primitives and fea-
tures, in order to obtain a more stable and wider range of
landmarks for the different classes. Second, we have to
find a way to associate a symbolic classifier such as the
Concept Lattice classifier we developed herein and a nu-
merical classifier such as Neural Network to improve re-
sults. Indeed, results from these two techniques seem to
be complementary, and probably Galois lattices could pre-
process a neural network classifier through pre-selecting
features. Afterwards, it would be valuable to introduce re-
cent classification techniques such as ”support vector ma-
chines”. Classification failures occur often on topological
boundaries of the sites. Support vector techniques are sup-
posed to help getting a more robust classification. Notice
that the concept of margin is closer in its spirit from our
”no decide” symbolic classifier. It is also important to in-
vestigate unsupervised classification methodologies to in-
duce the creation of new classesi.e. nodes of the topolog-
ical map.
Support vector techniques are supposed to help getting a
more robust classification and/or to induce the creation of



new classesi.e. nodes of the topological map. Finally, in a
more applicative way, our goal is to allow a robot to build
a topological map of structured -or not- environment, in a
fully autonomous process.
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[22] M. Boyer, Induction de ŕegularit́es dans une base de
connaissance, application au phénom̀ene bruit/Ĝene
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