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ABSTRACT. The control of a hydraulic testing bench is presented by using both singular 
perturbations technique and Crone control (fractional robust control). The testing bench is 
constituted of a hydraulic actuator which deforms, with a required velocity, the uncertain 
mechanical structures to be tested. Thanks to the singular perturbations techniques, the plant 
can be linearized despite the uncertainty by using a simplified input-output linearization 
under diffeomorphism and feedback. The Crone control is used to reject remaining 
nonlinearities considered as perturbations and to control the actuator velocity while taking 
into account the parametric variations of the mechanical structures.  
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1. Introduction 

This paper presents the velocity control of a hydraulic actuator that is part of a 
testing bench for mechanical structures. The difficulty of this problem of control 
comes from the nonlinearity of the actuator and from the uncertainty on the model 
of the mechanical structure to be tested. The proposed control-system design is the 
CRONE control which is a frequency-domain based methodology to design robust 
linear controller using fractional differentiation. Considering the 
robustness/performance trade-off, the plant perturbations are taken into account by 
using fully-structured frequency uncertainty domains to obtain the least-
conservative controllers (Landau et al, 1995). 

 The strategy to control non linear systems with a linear control-system design 
comprises two steps (linearizing the system and computing the control law) and then 
leads to a control scheme with two feedback loops (Fig. 1) 

 

 
Non linear 

Physical system Control feedback  Linearization 
feedback 

 

Figure 1. Strategy of control  

The linearization feedback which transforms the nonlinear model of the actuator 
into a linear model can be achieved thanks to an input-output linearization technique 
(Isidori, 1989) (Krstic et al, 1995) (Fossard et al, 1997) (Lanusse et al, 2000). But 
when the plant under consideration is perturbed, the input-output linearization - that 
can be achieved only for one state - leaves the plant nonlinear for the other states. 
Previous works using this strategy have already been achieved (Banavar et al, 1998) 
(Lanusse et al, 2000) (Pommier et al, 2001). 

 In this article, another technique of linearization is adopted. The linearization is 
achieved thanks to the singular perturbation technique. This technique presents two 
advantages.  

First, by considering the electrohydraulic system as a two time-scales singular 
perturbed dynamic system, it is possible to compute a linearization feedback that is 
independent of the uncertain parameters of the mechanical structure to be tested. 
The obtained linear plant is thus available whatever the mechanical structure.  
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Secondly, the linearization feedback obtained with the perturbation technique is 
simpler to implement than the one obtained without considering a two time-scales 
dynamic system. As it is true that the perturbation technique is based on some 
assumptions, the linearization may not be totally achieved. The remaining plant 
nonlinearities are considered as perturbations that will be taken into account in the 
CRONE robust control loop at the same time as the uncertainty on the mechanical 
structure.  

The article is organized as follows. Section 2 reminds of the singularly perturbed 
system and explains how this technique can be used to simplify the input-output 
linearization. Section 3 presents the Crone control-system design method. Section 4 
first gives a description and a model of the electrohydraulic test bench. Then the 
singular perturbation technique is applied to the test bench and the input-output 
linearization is described. In section 5, the control of the testing bench is developed 
and realistic simulation results are given. 

2. Singular perturbation technique 

2.1. Definition (Fossard et al, 1997) 

A singularly perturbed dynamic system is a system where state equations can be 
written in the standard form: 
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where fsfs ,,R,R ffXX pq ∈∈  are regular vectorial functions in ε,,, fs uXX  and 
where ε is a small positive parameter (suffix s is for slow and f for fast). 

If ε is small enough, the system has two time-scales. The variation of velocity is 

different between Xs and Xf. Rewriting the equations with the time-scale 
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When ε→0, the velocity of Xs tends to 0 while the velocity of Xf  remains 
limited.  



2.2. Forced singular perturbations 

Writing a realistic physical system in a standard singularly perturbed form and 
separating the system into slow and fast variables can be complex from a 
mathematical point of view. In several practical cases, it is not possible to define a 
small parameter ε even though one knows through experience or through simulation 
that the system has indeed several dynamics, slow and fast ones. In such cases, the 
parameter ε  is formally introduced, multiplying the derivatives of fast state 
variables in order to be treated afterwards as a real perturbation parameter. This 
technique is called “forced singular perturbations” (Fossard et al, 1997). 

To help with the variables classifications, one can use the following definition of 
the “velocity” 

ixv  of a variable xi: 
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2.3. Application to the linearization by diffeomorphism and input-output feedback 

Taking into account two (or even more) time-scales can help with the analysis, 
simulation and control of a nonlinear system. Indeed by considering that some state 
variables are slow whereas other variables are fast, a global system can be separated 
into two subsystems (Fig.2). Thanks to this dynamic separation, slow variables are 
assumed to be constant for the fast subsystem and fast variables can be assumed as 
inputs for the slow subsystem. If the fast subsystem is nonlinear, it is then possible 
to compute an input-output feedback while considering only the fast state-variables 
and thus the feedback is simpler and more feasible.  

Of course, as the dynamic separation can not be totally obtained, the 
linearization is only achieved approximately. The remaining nonlinearities can then 
be considered as perturbations that must be rejected by using a linear feedback. 

 

         . 

Xf = ff(Xs,Xf) 
        . 

Xs = fs(Xs,Xf) 
Xf  u  Xs 

Fast system Slow system 

Xs 

 

Figure 2. Separation of a global system into slow and fast subsystems 
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3. CRONE control-system design method 

3.1. Principles 

CRONE (the French acronym of "Commande Robuste d'Ordre Non Entier") 
control-system design (Oustaloup et al, 1995) (Oustaloup et al, 1999, 1) is a 
frequency-domain based methodology, using fractional differentiation (Miller et al, 
1993) (Samko et al, 1993) (Oustaloup et al, 1999, 2). It permits the robust control of 
perturbed plants using the common unity feedback configuration. It consists on 
determining the nominal and optimal open-loop transfer function that guaranties the 
required specifications. While taking into account the plant right half-plane zeros 
and poles, the controller is then obtained from the ratio of the open-loop frequency 
response to the nominal plant frequency response. Three generations of Crone 
control-system design have been developed, successively extending the application 
fields. Crone control design has already been applied to unstable or non-minimum-
phase plants, plants with bending modes (Landau et al, 1995) (Oustaloup et al, 
1995), and digital control problems (Oustaloup et al, 1999, 1). In this paper, only 
the principle of the third generation is given. The interests of Crone control-system 
design are multiple. The use of complex fractional differentiation permits to define 
the open-loop transfer function with few high-level parameters. The optimization 
problem that leads to the optimal transfer function to meet the specifications is thus 
easier to solve. Moreover, Crone control design takes into account the genuine plant 
perturbation without over-estimation and then better performance can be obtained. 

3.2. Third generation Crone control-system design 

The third generation Crone method is based on a particular open-loop Nichols 
locus called a generalized template and defined by a any-direction straight line 
segment around open-loop gain crossover frequency ωcg (Fig.3). This generalized 
template is based on the real part (with respect to imaginary unit i) of complex 
fractional integration (Oustaloup, 1995): 
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with ji Cj  and Ci ∈+=∈+= ωσsban . In the Nichols chart at frequency ωcg, the 

real order a determines the phase placement of the template, and then the imaginary 
order b determines its angle to the vertical (Oustaloup et al, 2000). 
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Figure 3. Representation in the Nichols chart of the generalized template by an 
any-direction straight line segment 

In the version of third generation Crone control-system design used in this 
article, the open-loop transfer function defined for the nominal state of the plant, 
βo(s), takes into account the control specifications at low and high frequencies and a 
set of band-limited generalized templates around resonant frequency ωr. Thus βo(s) 
is defined by: 

( )
( )

∏
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ω+
ω+

ℜ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ω+
ω+

ω+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

ω
=β

+

+

−

++

+

N

N

b
b

k

k
k

a

k

k
n

N

n
N

-

k
kk

-

s
sC

s
s

ss
Ks

-

sign
i

1
i/

1

1

-
0 1

1
1

1
)1(

11
h

l

[5] 

where 

( ) ( )[ ]  11
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and 

[ ] 0kfor  2/1
1 ≠ωω= + kkkC . [7] 

K ensures a 0 dB gain of β◊(ωcg), the order nl fixes the steady state behavior of 
the closed-loop system at low frequencies, and the value of nh has to be chosen as 
equal to or greater than the high-frequency order of the plant. 

Crone control design guaranties the robustness of both stability margins and 
performance, and particularly the robustness of the maximum M of the 
complementary sensitivity function magnitude. Let Mr be the required resonant 
magnitude peak of the complementary sensitivity function for the nominal 



7 

parametric state of the plant. An indefinite number of open-loop Nichols locus can 
tangent the Nichols magnitude contour of graduation Mr. Also, for uncertain plants, 
parametric variations lead to variations of M. Thus, an open-loop Nichols locus is 
defined as optimal if the generalized template around ωr tangents the Mr Nichols 
magnitude contour for the nominal state and if it minimizes the variations of M for 
the other parametric states. By minimizing the cost-function ( )2

max rMMJ −=  
where Mmax is the maximal value of resonant peaks M, the optimal open-loop 
Nichols locus positions the uncertainty domains correctly, so that they overlap the 
low stability margin areas as little as possible. The minimization of J is carried out 
under a set of shaping constraints on the four usual sensitivity functions. Once the 
optimal open-loop is obtained, the controller Cf(s) deduced from the ratio of βo(s) to 
the nominal plant function transfer is a fractional transfer function with fractional 
order. The design of the achievable controller consists in replacing Cf(s) by a 
rational controller Cr(s) which has the same frequency response. 

4. Electrohydraulic testing bench 

4.1. Description 

The testing bench is constituted of a electrohydraulic actuator connected to a 
mechanical structure (see Fig4). The electrohydraulic actuator must deform this 
structure with a velocity given in Fig.5. The actuator is a double-acting 200 mm 
stroke cylinder. A servo-valve fed with a hydraulic pump supplies a constant 
pressure. The mechanical structure is modeled by a mass-damper-spring set. The 
values of the structure’s parameters vary during the test since the structure is 
deformed. The variations are assumed to be slow compare to the control loop 
dynamic. The cylinder chambers are each fitted with a pressure sensor. Position, 
velocity and acceleration are provided by sensors on the piston rod. 

 
 

 

M 

c 

b 

tank Pr      supply Ps 

Servo-valve 

cylinder 
Mechanical 
Structure 

to be tested 

P1 P2 

V1  ,  So So ,  V2

Q1 Q2

Mo 

y, v 

 

Figure 4.  Electrohydraulic system connected to a mechanical structure to be tested 
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Figure 5. Piston rod velocity and trajectory 

4.2. Plant modeling (Cloy et al, 1980) 

The complete plant model is obtained from the models of the electrohydraulic 
servovalve, of the cylinder and of the mechanical part. All the notations are given in 
the table 1. 

Variable 
Names 

Variable definitions Values 

Ps supply pressure 240 bar 
Pr tank pressure 7.5 bar 

P1, P2  cylinder chamber pressures  bar 
PP1 hydrostatic bearings pressure 236 bar 
PP2 hydrostatic bearings pressure 212 bar 
B Bulk modulus 109 bar 

Q1, Q2 mass flow to the cylinder chambers from 
the servo-valve  

m3/s 

V1 , V2  cylinder chamber volumes  m3 
V0  cylinder half-volume  245.10-7  m3 
M0 cylinder rod mass  31.8 Kg 
S0 cylinder rod effective area 243.10-6 m² 
M mechanical structure mass  0, 40 or 80 Kg 
c mechanical structure spring  2000, 6000 or12000 N/m 
B mechanical structure viscous coefficient 86 N/m.s 
y cylinder rod position  m 
v cylinder rod velocity  m/s 
ka Amplification stage gain 0.38 m/A 
ωa Cut-off frequency of the amplification 

stage of the servovalve 
942 rad/s 

k3 Mass flow gain 4.5*10-5 (m3/s)/m 
λ Cylinder leakage coefficient 1.10-11 s-1 

λp hydrostatic bearings leakage coefficient 0,5.10-12 s-1 

Table 1. Notations 
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The electrohydraulic servovalve is composed of several stages whose main ones 
are the amplification stage and the flow stage. In the amplification stage, a spool is 
actuated by an electromechanical system with the input current u as control effort. 
This stage is modeled by the following transfer function: 
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sYi , [8] 

with yi the spool position, u the current input. 

In the flow stage, the spool slides in a sleeve which controls the flows provided 
to the cylinder chambers. To model these flows, the Bernoulli equation is applied 
between two points of the sleeve. 

The mass flow rate Q is thus proportional to PS Δ , where S is the effective area 
of the restrictions of the sleeve and ΔP the pressure-difference between the two 
points. Given that S is proportional to yi and that leaks can be neglected, the flow 
mass rates to each cylinder chamber, Q1 and Q2, are described by:  
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Moreover, the leakage are considered as laminar (with coefficient λ) between 
the two chambers and laminar (with coefficient λp) between each chamber and the 
hydrostatic bearings characterised by the pressures PP1 and PP2. So, the leakage mass 
flow rates are written: 
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The cylinder is modeled using the thermodynamic equation giving the pressure 

behaviour: Q
t
V
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B
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d
d , where B is the bulk isotherm modulus, and where V, P 

and Q are respectively: volume, pressure and mass flow rate in a cylinder chamber. 
For the electrohydraulic system under study, the mass flow rates are deduced from 
the mass flow rates to each chamber Q1 and Q2 given by relation  [9] and the 
leakage mass flow rates given by relation [10]. Volumes are: 

ySVVySVV 002001    and   −=+= , where S0 is the cylinder rod effective area and V0 
the half-volume. Thus the pressure behaviors in the two cylinder chambers are 
described by: 
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Concerning the mechanical part, the model is obtained from the fundamental 
dynamic equation: 
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where Ff  represents the Coulomb friction force (Fc), the static friction force (Fs) 
and the Stribeck friction force (with the coefficient vs) (Olsson et al, 1998) and 
expresses: 
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Finally, as the controlled output is the velocity v, the state-space model of the 
electrohydraulic system obtained from equations [1], [9] , [11] and [13] is: 
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This is a five-order nonlinear model where f1, f2, g and h are defined by: 
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where ki = ka*k3. 

4.3. Input-output linearization of the electrohydraulic testing bench 

4.3.1. Separation  into slow and fast subsystems 

The singular perturbation technique is applied in order to get a nonlinear fast 
subsystem and a linear slow subsystem which contains all the uncertain parameters. 

Let consider ( )T
i21f yPP=X  as the fast state-variable vector and 
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s yv=X  as the slow state-variable vector. This assumption is justified when 

computing the velocity of each variable with the help of the relation [3]: 
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For this subsystem, the output is the pressure-difference P1-P2. This output is 
also the input of the slow subsystem defined by: 
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4.3.2. Description of the system to be linearized 

The input-output linearization is achieved for the fast subsystem whose output Yf 
is the pressure-difference. In order to simplify the linearization, only the nonlinear 
behavior of the system is taken into account. The amplification stage dynamics is 
thus neglected and the input used is u*. So, the system to be linearized is defined 
by: 
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and u* defined in the figure 5. 

At this stage, the amplification stage dynamics has not been taken into account 
although it is not negligible. The final control input u is computed by using a band-
limited inverse model of the amplification stage behavior. This leads to the scheme 
of the linearization of the figure 6. 
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Figure 6. Scheme of the linearization strategy 



4.3.3. Input-output linearization under diffeomorphism and static feedback  

The input-output linearization (Isidori, 1989) (Krstic et al, 1995) (Fossard et al, 
1997) (Slotine et al, 2001) uses the Lie derivatives. The Lie derivative,

lffL , along 

ffl is given by:  

i
i1lf

lf1
lfsflfsf ),(),(

X
XXfXXL

∂
∂

∑=
=

n

i
. [35] 

ρ the relative degree associated with the output is defined by:  

{ }0if0,0if0  /  )inf( 11
g

lf2lflf1lf
<≠≥≠∈=ρ ρρ

i
-

i
- yyNl hLLhLL fgf . [36] 

Here, computation leads to ρ = 1. 

Considering the system described by the relation  [29], the decoupling term 
Δ(Xs,Xfl) used in the input-output linearization is thus given by: 
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and the compensation term Δo(Xs,Xfl) is given by:  
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Then the state feedback defined by 

[ ]),(
),(

1),(* lfso
lfs

lfs XXΔ
XX

XX −α−= lYkeu
Δ

, [40] 

k =7.108 and α = 2.103, transforms the nonlinear system into the linearized 
system: 

0
)(

α+
=

s
ksH  . [41] 

Usually, the input-output linearized behavior is defined by the transfer function 
of a ρ-order integrator. Here, the state feedback is more than a simple input-output 
linearizing feedback since it also contains a part of the tracking feedback. Parameter 
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α is also used to avoid that the nominal ρ-order integrator system becomes a system 
with right half-plane poles if the actual nonlinear plant is perturbed. Parameters α 
and k are computed so that the frequency response of H(s) is comparable to the first-
order linear model of the nominal nonlinear plant. 

Finally, to achieve the description of the input-output linearization, the next 
equation gives the band-limited inverse model of the amplification stage: 

1

1
5000

)(*
)(

a
+

ω

+
=

s

s

sU
sU . [42] 

Whereas the linearization is all the better than the inverse model is not too 
quickly band-limited, the inverse model must not be band-limited in too high 
frequency for the input signal u not to be too sensitive to noise. 

4.3.4. Advantages of the proposed input-output linearization 

The first advantage of designing the linearization on the fast subsystem without 
taking into account the amplification stage dynamic and the mechanical load is that 
the relative degree is smaller than the one obtained with the linearization on the 
global system (ρ equals to 1 instead of 4). So the input-output feedback is simpler 
and easier to implement. The other advantage is that this feedback does not depend 
on the main uncertain parameters (M, c and b). The input-output linearization of the 
nonlinear part of the system is almost perfect and thus the behavior of the new 
system to be controlled is independent of the operating points. 

5. Control of the testing bench 

5.1. Scheme of the control system 

The scheme of the control system (Fig.7) includes two feedback loops: 

–  is a feedback for the input-output linearization. The aim of this 
linearization is to cancel the nonlinear behavior of the actuator. 

–  is a velocity feedback since velocity is the output to be controlled. This 
robust loop must be designed while taking into account the parametric 
variations of the mechanical structure. 
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Figure 7. Scheme of the control system 

5.2. Control design 

As the control system will be digital, and as Crone design, used for the robust 
outer-loop, is a continuous frequency-domain approach, the digital control-design 
problem is transformed into a pseudo-continuous problem using the z and w 
transforms. The bilinear w-transform is defined by: 

w
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1
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2
tan sTv , [43] 

and permits the easy calculation of the frequency response of a z-domain transfer 
function as: 

( ) ( )zFvF =j  with sj Tez ω=  [44] 

Here the sampling period is Ts = 0.2 ms. 

The Crone open-loop transfer function to be optimized is: 
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where f(w) is a function that takes into account the two plant right half-plane zeros 
closed to v = +1 which appeared when the bilinear w-transformation has been 
applied. 

Here, optimization uses 1== −+ NN , so a set of three band-limited generalized 
templates is used. The behavior of the open-loop transfer function at low and high 
frequencies is fixed with: nl = 0 and nh = 4. The required resonant peak Mr chosen 
for the nominal plant is 1dB and the constraints on the sensitivity functions are 
defined from: 

– the maximum plant input (100mA),  
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– the Fourier transform of the required trajectory. 

The constraints on the sensitivity functions are thus given by: 

– the maximum magnitude Tmax of the complementary sensitivity function set at 
1 dB,  

– the maximum magnitude Smax of the sensitivity function set at 6dB. 

– the maximum magnitude CSmax of the input sensitivity function set at 5dB. 

Fig.8 shows the optimal open-loop Nichols loci. The optimal parameters 
position the frequency uncertainty domains to minimize the variation of the M 
resonant peak. Then maximal value of sensitivity functions are Tmax = 0.93 dB and 
Smax = 4.35 dB. The optimal resonant pseudo-frequency is 0.03 (equivalent of ω = 
300 rad/s) and optimal parameters are as following: 

0005.01 =−v ; 001.00 =v ; 3.01 =v ; 7.02 =v ; 11 =−a ; 01 =−b ; 38.00 =b ; 5.01 =a ; 01 =b . 

 

Figure 8. Optimal open-loop Nichols and uncertainty domains 

The synthesized pseudo-continuous rational controller obtained for the velocity 
feedback is a seven-order filter: 
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The digital controllers C(z-1) is obtained from C(v) using the inverse w-transform 
defined above. 

5.3. Simulation results 

So that the simulation is nearer to reality as possible, the nonlinear friction force 
of the hydraulic cylinder is modeled by a 700N static friction, a 500N Coulomb 
friction and a Stribeck parameter vs equal to 0.5m/s. Moreover, by refering to some 
sensors data-sheets, noises have been added on measures: 

– for the acceleration, noise is 0.24mg and thermal zero offset is 2 mg/°C; 

– for the pressure transducers, noise is 60000 Pa and thermal zero offset is 
12000 Pa/°C; 

– for the displacement transducer, thermal zero offset is 0.075mm/°C. 

– for the velocity transducer, noise is 0.1 mm/s and thermal zero offset is 0.55 
mm/s/°C. 

Fig.8 presents the simulated output v with the Crone controller for the nominal 
and extremal parametric states of the mechanical structure. This result is compared 
with that obtained with a PID controller computed to have the same gain cross-over 
frequency and the same lowest overshoot than the CRONE controller. The PID 
controller is defined by: 
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with vi =0.003,  vf = 0.3, v1 =0.0252,  v2 = 0.0357 and with Co computed to have a 
gain of 0 dB at the gain cross-over frequency, so Co = 0.128. 

As the Crone approach permits to manage phase-margin and also other stability 
margins as gain-margin, magnitude peaks,...for plants with right half-plane zeros 
while taking into account the plant perturbations, the Crone controller gives better 
results since the overshoot varies less than with the PID (Fig.9): the overshoot 
varies from 4% to 9% with the Crone controller and from 4% to 15% with the PID 
controller.  
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Figure 9. Simulated controlled output for three states of the mechanical structure 
with the Crone controller (a) and with a PID controller (b) 

 
As it is well known that the derivative action of the PID controller may lead to 

robustness problem, another PID is designed only using its integral and low-pass 
parts (v1 = v2 and Co = 0.107). In this case, the overshoot varies from 9% to 15% 
(Fig. 10). The variation is lower but it seems that it is not possible to guaranty a low 
overshoot (it seems that the maximal overshoot can not be less than 15%). 
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Figure 10.  Simulated controlled output for three states of the mechanical structure 
with a PID controller without derivative action 

In the case of maximal values of the mechanical structure parameters, Fig.11 
shows that the plant input u is less than 100 mA. Thus, the plant is not too much 



solicited. For other loads, plant inputs are similar. One can also notice that the noise 
on this input is a consequence of the noises added on the measures. 
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Figure 11.  Plant input with the CRONE controller for the maximal values of the 
mechanical structure parameters. 

A further simulation is achieved to verify the behaviour of the control system 
faced with a quick variation of the stiffness parameter. The initial value of the 
stiffness is 12000N/m and its final value is 2000N/m. Fig.12 shows that the 
perturbation is better rejected with the CRONE controller than with the PID 
controller. 
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Figure 12. Simulated controlled velocity (--) with a quick variation of the stiffness 
parameter (__) for the CRONE controller (a) and the PID controller (b) 
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6. Conclusion 

Singular perturbation technique can be used successfully in the control strategy 
of a hydraulic testing bench whose some parameters are uncertain. It allows to 
simplify the plant control linearization and the remaining linearities are considered 
as perturbations. Crone control-system design (based on fractional differentiation) is 
finally implemented to reject perturbations and to obtain good performances despite 
the uncertainties. Final results demonstrate the efficiency of the proposed control-
system design method.  

 In a more general context, the method proposed in this article can be applied to 
any nonlinear and uncertain system with two time-scales dynamics. 
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