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Abstract 

This paper analyzes the static behavior of alveoled materials that is about to be developed for 
dynamic optimization of structural panels. It deals precisely with materials made of elliptical 
thin cells, filled with polymer material. The main contribution of the paperconsists in 
elaborating an analytical approach describing the material. The considered problem represents 
an unidirectional stress, the goal being to calculate the elastic energy and strain globally 
obtained in the material. The wall of the elementary cell is represented in accordance with the 
classical BRESSE's theory of thin beams, with specific adaptation for elliptical shape. The 
polymer material filling the cell is modelized with ABSI’s method of equivalence, which 
allows a direct approximation of various continuous media by equivalent spring segments. 
This method is presented and discussed for the present configuration, with its specific 
adaptation. The final result obtained by these analytical approaches is then compared to 
results from a finite element model. In spite of local differences between the analytical results 
and numerical computation, it appears clearly that the precision obtained by the proposed 
analytical approach is better than 95%, which is sufficient for this kind of material. Thus, the 
proposed analytical calculation and methodology allows robust and quick determination of 
material characteristics for elementary cells of such alveoled materials. The resulting laws can 
then be introduced into global models of a grid of cells. 
 
 
 
1. Introduction 
 

The goal of this paper is to propose 
an analytical modeling of alveoled 
material, considering the rigidity of an 
elementary cell. In fact, the material is 
composed of joined elliptical beams filled 
with an elastic material.This assembly is 
submitted to membrane stress, in order to 
analyze its stiffness. 
 

The originality of the approach 
consists in combining classical elastic 
methods for each component, in order to 
define a global behavior which can be 
implemented in a general model of such 
structural elements. 
 
 
 

The elliptical ring is calculated under 
Bresse’s assumptions,with integration of 
thin beam theory, and the elastic filling 
material is modeled through ABSI’s 
equivalence [1], representing orthogonal 
rigidities of the mesh, the stiffness being 
deduced from an energetic approach of 
strains. This kind of method, in the frame 
of MENABREA’s theorem, is finally used 
to determine the resulting deformation of 
the complete cell. Finite element modeling 
is used to validate each step of the 
methodology, and is presented in this 
paper. The final characteristics of the cell 
may eventually be used to 
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create a specific alveolar type which could possibly be
added to the available package of elements.

The approach presented in this paper is inspired by
the ring approach [2–6]. This analytical solution mea-
sures the deflection of a circular sprig under stress,
and also [7] presents an analytical solution of elliptic ar-
ches. The material studied in this article is a cellular
material, which can be studied by [8] under uniaxial
strength (see Fig. 1).

2. Analytical method

A schematic diagram of a ring is modeled in Fig. 2(a).
The ring is subjected to unidirectional load F in direction
y. Deformations of the ring are calculatedwithBRESSE!s
formulas. The ellipse deformation uses a modification of
BRESSE!s formulas for an elliptical curved beam.

BRESSE!s formulas are applied to a curved beam in
small displacement, and enable the calculation of the
rotation and the displacement of a point A when the dis-

placement and the rotation of point B (another point of
the curved beam) are known. These formulas are given
by LAROZE [9]. The first equation of BRESSE:

~x2 ¼ ~x1 þ
Z s2

s1

~My

EIy
þ

~Mz

EIz
þ

~Mt

GJ

 !

ds

The second equation of BRESSE:

~K1 ¼ ~K2 þ ~x1 # G1G2

$!
þ
Z s2

s1

~N
ES

þ jy

~T y

GS
þ jz

~T z
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 !

ds

þ
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~My

EIy
þ

~Mz
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" #

# GG2

$!
þ

~Mt

GJ
# CG2

$!
 !

ds

where ~xi is the rotation vector of point i, ~Ki its transla-
tion vector, and · is the vector cross product.

A finite elements model is created with the commer-
cial code SAMCEF. This model is used to validate the
theoretical model. The comparison between the two
models is realized with 10 cases.

2.1. Theoretical background

2.1.1. Ring approach
Consider a ring subjected to two equal and diametri-

cally opposed radial tensile forces F, see Fig. 2(a). The
ring radius is R, and the center point is O.

In this 2D problem, three parameters are present N,
Ty and Mz. This problem has one symmetric at axis
(x 0Ox), so T parameter is equal to zero at the point A
and C. One can also note the symmetry axis (y 0Oy)

Nomenclature

Notation
j small factor
k, l Lame!s constants
E elastic modulus
G shear modulus

I moment of inertia about z axis
D flexural rigidity of plate, D ¼ Eh3

12ð1$m2Þ
g flexion parameter, g ¼ 3 EI

l
q constant parameter, q = ESl

Fig. 1. Alveoled material.

(a) (b)

Fig. 2. (a) Circle with a constant load. (b) Reduced loading system of a semi-circular ring subject to a diametrical load F.
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consequently the bending moment of both point A and
C are equal, with C the bending moment.

This approach can be divide into two sections as
shown in Fig. 2(b).

Section one [AB] (0 < h < p/2)

N ¼ F
2 cosðhÞ;

T ¼ $ F
2 sinðhÞ;

M ¼ FR
2 ð1$ cosðhÞÞ þ C

2

64

Section two [BC] (p/2 < h < p)

N ¼ $ F
2 cosðhÞ;

T ¼ F
2 sinðhÞ;

M ¼ FR
2 ð1þ cosðhÞÞ þ C:

2

64

Considering the symmetry at points A and C, the sec-
tions SA and SB do not turn in the deformation, so the
first BRESSE!s equation is given by Eq. (1). And this
equation has only one unknown value C.
Z p=2

0

M dh ¼ 0

i:e:;

Z p=2

0

FR
2
ð1$ cosðhÞÞ þ C

! "
dh ¼ 0: ð1Þ

So; C ¼ $0:1817FR:

The second equation of BRESSE gives the displacement
at points A and B.

uA ¼ $0:068
R3F
EI

þ 0:25
1

E
$ j
G

# $
RF
S

;

vB ¼ 0:074
R3F
EI

þ 0:393
1

E
þ j
G

# $
RF
S

; ð2Þ

where w = h + p/2, x = Rcosh, y = R sinh and
j ¼ 8m2þ14mþ7

6ð1þmÞ2
.

2.1.2. Ellipse approach
Determination of displacement at the point with an

elliptic geometry is an improvement of BRESSE!s meth-

od. The ellipse is subject to diametrical load F, see Fig.
3(a), a the short axis and b the long axis.

The elliptical loop equation is defined by the follow-
ing Eq. (3).

x ¼ a cos t;

y ¼ b sin t:

%
ð3Þ

The curvilinear parameter is

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2sin2t þ b2cos2t

p
dt: ð4Þ

The BRESSE!s equations are modified in these configu-
rations, and in view of symmetry (see Fig. 3(b)), only
one quadrant can be considered as an originally straight
strut [AB], where t 2 [0;2 p].

N ¼ F
2

b cos tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2sin2tþb2cos2t

p ;

T ¼ F
2

$a sin tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2sin2tþb2cos2t

p ;

M ¼ Fa
2 ð$1þ cos tÞ þ C:

2

6664

Considering the same consideration that the Eq. (1) C is
determined by the first equation of BRESSE. And the
displacements are defined by the Eq. (5).

uA ¼
Z sB

sA

N cosw
ES

$ jT sinw
GS

$ ðyA $ yÞM
EI

ds

¼
Z sB

sA

N cosw
ES

$ jT sinw
GS

þ y
M
EI

ds

¼
Z p=2

0

N sin t
ES

þ jT cos t
GS

þ y
M
EI

! "
ds;

vB ¼
Z sB

sA

N sinw
ES

þ jT cosw
GS

þ ðxA $ xÞM
EI

ds

¼
Z sB

sA

N sinw
ES

þ jT cosw
GS

$ x
M
EI

ds

¼
Z p=2

0

$N cos t
ES

þ jT sin t
GS

$ x
M
EI

! "
ds: ð5Þ

These displacements of point A and B are calculated by
MATLAB script, with symbolic integration. The

(a) (b)

Fig. 3. (a) Ellipse with a constant load. (b) Reduced loading system of an ellipse subject to a diametrical load F.
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MATLAB script first calculates in the value of C, and
next the analytical values of N, T, and M are replaced
in the Eq. (5), and the integration on [0;p/2] gives the
value of uA and vB.

This program also calculates the strain energy (Eq.
(6)).

Edef ¼
1

2

Z s2

s1

N 2

ES
þM2

EI
þ jT 2

GS

# $
ds ð6Þ

2.2. Validation of model

2.2.1. Numerical analysis
To validate the theoretical model, a comparison with

a finite elements model is presented below for various
configurations, and is studied using a commercial code
SAMCEF.

The finite elements model deformations are calcu-
lated with the linear module ASEF. The full model is
considered in this study. All models are meshed with
beam elements (.BEAM command in SAMCEF), and
the load is applied on the diametrically opposed nodes.
There are 200 elements and 401 nodes, and material
property is shown in Table 1.

Fig. 4 shows the definition of the section and the dif-
ferent parameters of the ellipse. The configuration stud-
ied is an ellipse with a long axis a and a short axis b. The
cross section has a thickness H and a width B. The ap-
plied load at the points B and D is equal to $1000N
for the full model.

In all cases, three configurations are studied ellipse
case, ring case, and numerical case. For the ring case,
the ring radius is R ¼ aþb

2 . These configurations can en-
able validation of the analytical model with two other
models. The numerical model allows the validation for
all cases. The ring case allow the validation of the
numerical case and the ellipse case for circular
configuration.

2.2.2. Results and discussion
Variations of models are summarized in Table 2.

Figs. 5 and 6 show the evolution of the relative error1.
In the ellipse model, it can be clearly observed in Fig.

5 a maximal relative error of 4.5%. The finite elements
model shows a good agreement with the theoretical
model. The theoretical model is a good approximation
of ellipse deformation.

The relative error for the ring model, see Fig. 6, has
good results in circular configuration. The maximal
error relative in these cases is less than 1% against the
finite elements model, and less than 1% against the
ellipse model. Nevertheless this model has results more
moved away of numerical deformation.

Table 6 gives the value of the rate of damping of the
ellipse under uniaxial stress. For a short fixed axis, the
rate increases with the rise of the long axis a.

3. Discrete method

In this part, an ellipse is filled with an elastic material,
see Fig. 7. This model is subject to a uniaxial stress.

The BRESSE!s formulas can be used with a curved
beam, but a different method is required for elastic-filled
ellipse.

A discrete method is used. The ellipse is made up of
eight springs. The elastic material is modeled with AB-
SI!s theory [1], which divides the plate on a trellis of
beams. The trellis is modeled with springs. Hence, an
ellipse filled with an elastic material can be modeled with
a trellis of springs.

An energetic method [10] is used to calculate the
deformation of the ellipse. This method is MENEB-
REA!s theory, in which the strain energy is determined
and a minimization is used to compute the values of
the displacement at the nodes.

3.1. Single ellipse

The single ellipse is made up of four springs and four
angular springs, see Fig. 8. The ellipses studied have
loads F applied at points B and D.

The potential energy of this model is

EPT ¼ C
4
ðhA $ hA0 Þ

2 þ C
4
ðhC $ hC0 Þ

2 þ C
4
ðhB $ hB0 Þ

2

þ C
4
ðhD $ hD0 Þ

2 þ k
2
ðLAB $ L0

ABÞ
2

þ k
2
ðLBC $ L0

BCÞ
2 þ k

2
ðLCD $ L0

CDÞ
2

þ k
2
ðLDA $ L0

DAÞ
2 $ FvD $ FvB ð7Þ

Table 1
Material property

Polyetherimide (PEI)

Elastic modulus (Pa) 3.1 · 1010

Poisson!s ratio 0.36

Fig. 4. Geometry of ellipse.

1 The relative error is %error ¼ wu$wo
wo

, where wo is the displacement
of the finite element model.
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where k is an equivalent rigidity of a beam, during a ten-
sile test, k ¼ ES

l .
An energetic method is used, but the angular spring

(C) is an undefined constant. So the theoretical model
(the ellipse model) is used to recover the deformation,
and the potential energy.T
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Fig. 6. Evolution of ring relative error.

Fig. 7. Schematic ellipse with elastic material.
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An identification between these models gives the va-
lue of the C parameter. All parameters of the discrete
model are defined and can be used in the next stages
of calculation.

3.2. Ellipse filled with elastic material

3.2.1. ABSI!s theory
ABSI!s theory allows the transformation of plates

into a trellis of beams. The condition of equivalence be-
tween the real body and the fictive body (trellis of
beams) is the equality of strain energies.

Consider a real body with an applied load, where uk is
the displacement on the xk axis (x1, x2, x3). The strain
tensor is

eij ¼
1

2

oui
oxj

þ ouj
oxi

! "
:

The strain density Uo is given by

Uo ¼
1

2
kðeiiÞ2 þ leijeij: ð8Þ

Consider a bar [AB], with a length of l, and with a nor-
mal stress N. So the relation, which relates uniaxial
stress and strain, is

N ¼ ES
Dl
l
¼ ESe;

where S is the beam section, e the unit strain. The strain
energy W 0 is

W 0 ¼ 1

2
ND ¼ 1

2
ESle2 ¼ 1

2
qe2:

The bar [AB] is schematized in Fig. 9. The unit strain e
of the bar is described by

e ¼ ou01
ox01

¼ ai
oui
oxi

ouj
oxj

¼ aiaj
ouj
oxj

¼ aiajeij;

where ai is the cosine director of x01; u
0
1 ¼ aiui. Pointing

out bi the sine director of x02, an other equation is given by

ou02
ox01

¼ biaj
oui
oxj

:

The strain deformation is described by

W 0 ¼ 1

2
Nel ¼ 1

2
ESle2 ¼ 1

2
qe2 ¼ 1

2
qðaiajeijÞ2: ð9Þ

The geometry of the bar is modified, point A is clamped,
and a load is applied at point B (Fig. 10). The deflection
D is related to the applied load F by

F ¼ 3EI
l3

D: ð10Þ

So the strain energy W00 is given by

W 00 ¼ 1

2
FD ¼ 3

2

EI
l

D
l

! "2

¼ 1

2
g

D
l

! "2

:

The geometry is modified with adding a rotation h on
the bar, see Fig. 11. So the deflection BB 0 is equal to

BB0 ¼ ou02
ox02

l ¼ Dþ hl ¼ ajbi
oui
oxj

:

The strain energy is described by Eq. (11)

W 00 ¼ 1

2
g ajbi

oui
oxj

% h
! "2

: ð11Þ

So the total energy of bar [AB] is the sum of Eqs. (9) and
(11)

W AB ¼ W 0 þ W 00

Fig. 9. Schema of the bar [AB].

Fig. 10. Schematic clamped bar.

Fig. 8. Discrete model.
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3.2.2. Application of ABSI!s theory
Consider the strain on axis x3 (ei3 = 0), so the strain

density is

Uo ¼
1

2
kðe11 þ e22Þ2 þ l ðe11Þ2 þ ðe22Þ2 þ 2ðe12Þ2

h i
:

The problem is studied in planar strain condition. In or-
der to include this model in the discrete model ([1]), the
elastic material is a rhomb, Fig. 12. This model consists
of bars and a rigid body (point H).

The bars in the outline of rhomb only work under
normal stress. Their strain energies are given by the
Eqs. (12) and (13). On the bars [AD] and [BC] the cosine
directors are a1 = cosa and a2 = sina and the sine direc-
tors are b1 = % sina and b2 = cosa. So

W 0
AD ¼ W 0

BC

W 0
AD ¼ 1

2
qAD½e11cos2aþ e22sin

2aþ 2e12 sin a cos a'2:

ð12Þ

For bars [DB] and [AC], the strain energy is given by

W 0
CA ¼ W 0

BD

W 0
CA ¼ 1

2
qAC½e11cos2aþ e22sin

2aþ 2e12 sin a cos a'2:

ð13Þ

The diagonal bars work in flexion, so their energies in
compression are given by the following Eq. (14).

W 0
HA ¼ W 0

HB ¼ 1
2qHAðe11Þ

2

W 0
HC ¼ W 0

HD ¼ 1
2 qHCðe22Þ

2

(

ð14Þ

and Eq. (15) gives their energies in flexion

W 00
HA ¼ W 00

HB ¼ 2gHB
gHD

gHDþgHB

# $2

ðe12Þ2;

W 00
HC ¼ W 00

HD ¼ 2gHD
gHB

gHDþgHB

# $2

ðe12Þ2:

8
><

>:
ð15Þ

The equality of strain energy W gives

W ¼ AUo;

W ¼ 2W 0
AD þ 2W 0

AC þ 2W 0
HB þ 2W 0

HD þ 2W 00
HB þ 2W 00

HD:

ð16Þ

The energy Uo is given by Eq. (8), and the others ener-
gies are equal to Eqs. (12)–(15).The identification be-
tween these equations gives the value of the constant
parameter q.

qAD ¼ kA
4sin2acos2a

;

qHA ¼ A
2 kþ 2l% k cot g2að Þ;

qHD ¼ A
2 kþ 2l% ktg2að Þ:

8
><

>:
ð17Þ

So the ABSI!s model can be added to the discrete model,
and the new model is schematized on Fig. 13.

The ABSI!s springs constants (on the Fig. 13) are

kAD ¼ qAD

ð
ffiffiffiffiffiffiffiffiffi
a2þb2

p
Þ3
;

kHA ¼ qHA
a3 ;

kHD ¼ qHD
b3

:

8
>><

>>:

And the a angle is equal to a ¼ arctanðbaÞ.

Fig. 12. ABSI!s rhomb. Fig. 13. Ellipse with elastic material.

Fig. 11. Schematic clamped bar with a rotation.
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3.2.3. Discrete model
The deformation of the discrete model uses MENEB-

REA!s theory. The strain energy is given by Eq. (18).

EPT ¼ C
4
ðhA % hA0 Þ

2 þ C
4
ðhC % hC0 Þ

2 þ C
4
ðhB % hB0 Þ

2

þ C
4
ðhD % hD0 Þ

2 þ k þ kAD
2

ðLAB % L0
ABÞ

2

þ k þ kAD
2

ðLBC % L0
BCÞ

2 þ k þ kAD
2

ðLCD % L0
CDÞ

2

þ k þ kAD
2

ðLDA % L0
DAÞ

2 þ kHA
2

uC þ kHA
2

uA

þ kHD
2

vD þ kHD
2

vB % FvD % FvB: ð18Þ

The parameter C, being a parameter of a mechanical
characteristic of the single ellipse, is calculated with
Eq. (7) and the ellipse analytical-model.

The displacement of nodes are calculated by a mini-
mization of the potential energy. These calculation are
carried out using a MATLAB script.

3.3. Numerical analysis

To validate the discrete model, comparisons with the
SAMCEF models are presented below in different con-
figurations. In this part, the materials are given in Table
3. The ellipse studied has a long axis (a), a short axis (b)
and a load of %1000N.

The linear module ASEF is used to calculate the
deformation. All models are meshed with surface mesh.
The model is shown in Fig. 14.

Table 3
Material properties

PEI Elastic material

Elastic modulus (Pa) 3.1 · 1010 2.3 · 107

Poisson!s ratio 0.36 0.46

Fig. 14. Finite elements model with elastic material. T
ab

le
4

D
is
p
la
ce
m
en
t
re
su
lt
s
(i
n
m
m
)

C
as
es

1
2

3
4

5
6

7
8

9
10

a
8

8
8

8
10

10
10

10
12

12
b

6
8

10
20

6
8

10
20

20
6

H
4

4
4

4
4

4
4

4
4

4
B

4
4

4
4

4
4

4
4

4
4

S
A
M
C
E
F

u a
3.
63

·
10

%
2

5.
42

·
10

%
2

7.
37

·
10

%
2

1.
72

·
10

%
1

4.
92

·
10

%
2

7.
40

·
10

%
2

1.
01

·
10

%
1

2.
45

·
10

%
1

3.
25

·
10

%
1

6.
34

·
10

%
2

v b
6.
56

·
10

%
2

7.
39

·
10

%
2

8.
09

·
10

%
2

1.
00

·
10

%
1

1.
05

·
10

%
1

1.
19

·
10

%
1

1.
30

·
10

%
1

1.
59

·
10

%
1

2.
38

·
10

%
1

1.
58

·
10

%
1

v b
/u

a
1.
81

1.
36

1.
09

0.
58

2.
13

1.
61

1.
28

0.
65

0.
73

2.
49

E
lli
p
se

u a
4.
40

·
10

%
2

6.
14

·
10

%
2

8.
12

·
10

%
2

2.
01

·
10

%
1

6.
09

·
10

%
2

8.
52

·
10

%
2

1.
13

·
10

%
1

2.
82

·
10

%
1

3.
72

·
10

%
1

7.
88

·
10

%
2

v b
6.
92

·
10

%
2

7.
32

·
10

%
2

7.
84

·
10

%
2

1.
04

·
10

%
1

1.
14

·
10

%
1

1.
21

·
10

%
1

1.
28

·
10

%
1

1.
66

·
10

%
1

2.
52

·
10

%
1

1.
73

·
10

%
1

v b
/u

a
1.
57

1.
19

0.
96

0.
52

1.
87

1.
42

1.
13

0.
60

0.
67

2.
20

8 Y. Gourinat, V. Belloeil / Materials and Design xxx (2005) xxx–xxx

ARTICLE IN PRESS



The model has 560 elements and 1921 nodes. The
elastic material is merged with the ellipse. The load is ap-
plied on the line of nodes (Fig. 14).

3.4. Results and discussion

The MATLAB script is used to calculate the defor-
mation. The displacement results are summarized in Ta-
ble 4. Figs. 15 and 16 show the evolution of the relative
error for uA and vB.

Fig. 15 shows the relative error of the displacement
uA. The maximal value of error is 25%. In Fig. 16 the
maximal value is 10%.

The discrete model is a good prediction for a ellipse
with an elastic material. And this model can be im-
proved with more numbers of springs for the character-
ization of a single ellipse.

Table 4 also gives the rate of damping. The rate is
important when the long axis a is bigger than the short
axis b.

4. Conclusion

This work presents the development and the valida-
tion of two models. These models are compared with fi-
nite element models. The primary conclusions are:

1. The theoretical model for the ellipse has less than 4%
of relative error compared to the finite element
models.

2. A plate can be modeled by a trellis of beams with
ABSI!s theory.

3. An ellipse filled with elastic material can be modeled
by a discrete model, and gives 25% of maximal rela-
tive error.

From this study, it can be concluded that a discrete
model can model ellipse deformation. However, an
improvement of the discrete model with more than eight
springs is considered, and a discrete model of an ellipse
trellis is also considered.

This computation clearly shows that such a simple
analysis remains useful, as it allows a reliable approach
to complex materials, by an energetical method. These
kinds of elliptical materials are certain to be used more
and more, not only for their static equivalent properties,
but also in dynamics. Consequently, the general energet-
ical approach proposed in this paper can be easily ex-
tended to dynamic modeling, by addition of kinetic
energy, and eventually dissipation power. The distinc-
tion between linear and nonlinear rheology is then as-
sumed by quadratic criteria on energies and powers in
relation with velocities.

In addition, a similar methodology is suitable to
take into account membrane shear stress in such alve-
oled reinforced materials, and also transverse deflec-
tions including plate bending and transverse shear
force flows.
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