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Detection in the Presence of Surprise
or Undernulled Interference

Olivier Besson, Senior Member, IEEE

Abstract—We consider the problem of detecting a signal of in-
terest in the presence of colored noise, in the case of a covariance
mismatch between the test cell and the training samples. More pre-
cisely, we consider a situation where an interfering signal (e.g., a
sidelobe target or an undernulled interference) is present in the
test cell and not in the secondary data. We show that the adaptive
coherence estimator (ACE) is the generalized likelihood ratio test
for such a problem, which may explain the previously observed fact
that the ACE has excellent sidelobe rejection capability, at the price
of low mainlobe target sensitivity.

Index Terms—Adaptive coherence estimator (ACE), adaptive
detection, covariance mismatch, generalized likelihood ratio test
(GLRT), sidelobe target.

I. INTRODUCTION

THE PROBLEM of detecting the presence of a signal of
interest embedded in noise is a fundamental one in many

applications and has been studied extensively in the literature
[1]. Given the 1 output of an array of sensors—referred
to as the primary data vector or the test cell—it amounts
to deciding whether or not a component with array response
vector is present, in addition to noise, whose covariance
matrix will be denoted as . In an adaptive detection sce-
nario, training samples , which share the same covariance
matrix , are assumed to be available, and used to infer the
noise covariance matrix in the primary data. Assuming that
the environment is homogeneous, i.e., , the gener-
alized likelihood ratio test was derived by Kelly [2]. Later,
the adaptive matched filter (AMF) was presented in [3]. First,
the GLRT for known is derived; next, the sample covari-
ance matrix obtained from the ’s is substituted for to
yield the AMF. Kelly’s GLRT and the AMF are considered
as “reference” detectors for this homogeneous environment.
Finally the adaptive coherence estimator [4] was introduced
in the case of a partially homogeneous environment for which

is only proportional to . It turned out that the ACE is
the GLRT for this problem [5], as well as the uniformly most
powerful invariant test [6].

Both detectors perform well in the homogeneous case but
incur a loss of performance in the presence of steering vector
mismatch (i.e., the actual array response differs from ) or co-
variance matrix mismatch (i.e., ), see e.g., [7]–[11] for
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thorough analyses of these detectors performance in the pres-
ence of both types of mismatch. A particular scenario of co-
variance mismatch which is of interest to us occurs when an
interference is present, and not accounted for by the secondary
data: this is the case when a sidelobe target is present or with un-
dernulled interference. This unaccounted interference may then
trigger a detection, which is an undesirable result as it corre-
sponds to a false alarm. Ideally, one would like a high sensitivity
to a target in the mainlobe, and capability to reject mismatched
signals. In order to meet these conflicting goals several strate-
gies have been investigated. For instance, a solution is proposed
in [12] which consists of a blend of the GLRT and the AMF;
a single scalar-sensitivity parameter is used to control the de-
gree to which unwanted signals are rejected. Another solution
is to use a 2-stage detection scheme, see, e.g., [13], [14], where
two successive tests should be passed before the presence of a
target is declared. For example, the adaptive sidelobe blanker
(ASB) of [13] consists of an AMF test followed by an ACE test.
The principle behind this choice is that the AMF possesses an
excellent target sensitivity while the ACE has excellent side-
lobe energy rejection capability. Hence, the 2-D ASB allows to
trade off target sensitivity versus sidelobe rejection capability.
A third alternative is to modify the hypotheses testing problem
so as to account for targets with response orthogonal to under
the null hypothesis. This is the principle of the adaptive beam-
former orthogonal rejection test (ABORT) of [15]. When there
is no target in the pointing direction but one in another (e.g.,
sidelobe) direction, the test will more likely incline towards the
null hypothesis, which is the desired result. In [16], a similar but
more general approach is taken, in which the steering vector is
subject to uncertainties.

In this letter, we focus on a situation where the test vector
may contain an interference which is not accounted for by
the training samples, resulting in , where
is unknown. The classical hypotheses testing problem is thus
modified to account for this situation. The main result of this
letter is to show that the ACE is the GLRT for this detection
problem. Therefore, this result provides a theoretical explana-
tion of the observed fact that the ACE has excellent sidelobe
rejection capabilities.

II. GENERALIZED LIKELIHOOD RATIO TEST

As explained previously, we consider the problem of de-
tecting a signal of interest in the presence of: 1) colored
noise with covariance matrix and 2) an interference as-
sociated with an unknown steering vector , using training
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samples whose covariance matrix is . Formulated mathe-
matically, this amounts to deciding between the following two
hypotheses:

(1)

with the following statistical assumptions:
• are independent, zero-mean complex-valued Gaussian

distributed random vectors with covariance matrix

(2)

• is a zero-mean complex-valued Gaussian distributed
random vector with covariance matrix

(3)

Furthermore, we assume that is independent of the ’s.
Note that we choose to absorb the interference power in
and do not assume that has a given norm.

• is the array response for the pointing direction and
denotes the deterministic and unknown amplitude.

We let denote the secondary data matrix.
Under the stated assumptions, the joint likelihood function of
and , under hypothesis , is given by [1]

(4)

where under , , 1, stands for the trace
of the matrix between braces and

(5)

is the sample covariance matrix. In order to derive the GLRT,
one must maximize the likelihood function with respect to
(w.r.t.) all unknown parameters, namely , under , and ,

, under . Let us first observe that

(6)

(7)

so that can be rewritten as

(8)

where

(9)

does only depend on (and possibly ). In order to maximize
the likelihood function w.r.t. , we need to maximize

(10)

where . For the sake of convenience, let us
introduce the quantities , , and

, so that the logarithm of can be rewritten as

(11)

Differentiating w.r.t. yields

(12)

Setting this derivative to zero implies that is proportional to
, i.e., . In order to obtain , let us first observe that,

with , and . Hence,
in (11) can be rewritten as

(13)

where we emphasize the dependence towards . Differentiating
the previous equation w.r.t. yields

(14)
Therefore, the derivative in (14) is null when such that

(15)

With given by (15), it can be readily verified that

(16)

and therefore in (15) corresponds to a maximum of . It
follows that the maximizer of is . Reporting this
value in (10), and using (15), it ensues that

(17)

which implies that

(18)

In order to obtain , we need now to maximize

(19)
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with respect to . It is straightforward to show that

(20)
Setting the previous derivative to zero, it follows that the maxi-
mizer of must satisfy

(21)

Therefore, the solution is necessarily of the form

(22)

where should be chosen so that (21) is fulfilled. However, with
of the form (22), it can readily be shown that

(23)

Using the previous equation along with (21)–(22), it ensues that
the value of for which (21) holds true is

(24)

and the corresponding covariance matrix is

(25)

It can readily be verified that for any ,
and, hence, in (25) is the maximizer of . Additionally,
with the matrix of (25), one has ,
and and are constants which do not depend on

. Gathering these results, we finally obtain

(26)

Under , the likelihood function has been maximized under
all unknown parameters. Under , it remains to minimize

. However, it is well known [2] that

(27)

Consequently, the GLR is

(28)

and the GLRT is equivalent to

(29)

which is exactly the ACE!

Theoretical and numerical performance analysis of the ACE
detector for arbitrary covariance mismatch can be found in [10].
When and satisfy the so-called generalized eigenrelation,
i.e., when -which, in the case
amounts to -, closed-form expressions for the dis-
tribution of the ACE test statistic are derived in [9]. These two
references also provide analyses of and comparisons with the
AMF and the GLRT.

III. CONCLUSIONS

In this letter, we considered the adaptive detection of a signal
when there exists a covariance mismatch between the test cell
and the training samples, due to a surprise or undernulled
interference. We showed that the ACE is the GLRT for such
a problem. This result thus shades a new light on the already
observed fact that the ACE has excellent sidelobe rejection
capability.
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