
Introduction to Kalman filtering

Course key notes

Corrected exercises

Matlab training session

D.Alazard

September 2005 - version 0.0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12039062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


PAGE WITOUT TEXT



3

Contents

Introduction 5

1 Random signal in linear systems 7

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Backgrounds and definitions . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Characterization of random variables . . . . . . . . . . . . . . 9

1.2.2 Caracterization of multivariate random variables . . . . . . . . 11

1.2.3 Random signal (or process) . . . . . . . . . . . . . . . . . . . 14

1.2.4 Moments for random signal . . . . . . . . . . . . . . . . . . . 15

1.2.5 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.6 Spectrum in the s-plane . . . . . . . . . . . . . . . . . . . . . 17

1.2.7 White noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Transmission of random signals in linear systems . . . . . . . . . . . . 21

1.3.1 Time-domain approach . . . . . . . . . . . . . . . . . . . . . . 21

1.3.2 Frequency-domain (spectral) approach . . . . . . . . . . . . . 22

1.4 Matlab illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Kalman filter 27

2.1 Principle of Kalman filtering . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Kalman model . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.2 Assumptions: . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.3 Structure of an unbiased estimator . . . . . . . . . . . . . . . 29

2.2 Minimal error variance estimator . . . . . . . . . . . . . . . . . . . . 30

2.2.1 General solution . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.2 Kalman filter steady state . . . . . . . . . . . . . . . . . . . 32

2.2.3 Kalman filter tuning . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Corrected exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Introduction to Kalman filtering Page 3/74



4 Contents

2.3.1 First order system . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 Bias estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Discrete-time Kalman filter . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.1 Discrete-time Kalman model . . . . . . . . . . . . . . . . . . 44

2.4.2 A particular case: continuous-time plant with discrete-time

measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.3 Recurrent equations of discrete Kalman filter . . . . . . . . . 47

2.4.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5.1 Second order system: . . . . . . . . . . . . . . . . . . . . . . . 52

3 About physical units 55

References 57

A State space equation integration 59

A.1 Continuous-time case . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.2 Discrete-time case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B Transmission of random signals and noises in linear systems 63

B.1 Additional background: discrete random signals . . . . . . . . . . . . 63

B.2 Time-domain approach . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.2.1 Continuous-time case . . . . . . . . . . . . . . . . . . . . . . . 64

B.2.2 Discrete-time case . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.3 Frequency-domain approach . . . . . . . . . . . . . . . . . . . . . . . 68

B.3.1 Continuous-time case . . . . . . . . . . . . . . . . . . . . . . . 68

B.3.2 Discrete-time case . . . . . . . . . . . . . . . . . . . . . . . . . 69

C Matlab demo files 71

C.1 Function Kf t.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

C.2 Script file demoKalman.m . . . . . . . . . . . . . . . . . . . . . . . . . 71

C.3 Script file demoKalmand.m . . . . . . . . . . . . . . . . . . . . . . . . 73

Introduction to Kalman filtering Page 4/74



5

Introduction

This document is an introduction to Kalman optimal filtering applied to linear

systems. It is assumed that the reader is already aware of linear servo-loop theory,

frequency-domain filtering (continuous and discrete-time) and state-space approach

to represent linear systems.

Generally, filtering consists in estimating a useful information (signal) from

a measurement (of this information) perturbed by a noise. Frequency-domain fil-

tering assumes that a frequency-domain separation exists between the frequency re-

sponse of the useful signal and the frequency response of the noise. Then, frequency-

domain filtering consists in seeking a transfer function fitting a template on its mag-

nitude response (and too much rarely, on its phase response). Kalman optimal

filtering aims to estimate the state vector of a linear system (thus, this state is

the useful information) and this estimate is optimal w.r.t. an index performance: the

sum of estimation error variances for all state vector components. First of all, some

backgrounds on random variables and signals are required then, the assumptions,

the structure and the computation Kalman filter could be introduced.

In the first chapter, we remind the reader how a random signal can be char-

acterized from a mathematical point of view. The response of a linear system to

a random signal will be investigated in an additional way to the more well-known

response of a linear system to a deterministic signal (impulse, step, ramp, ... res-

ponses). In the second chapter, the assumptions, the structure, the main parameters

and properties of Kalman filter will be defined. The reader who wish to learn tun-

ing methodology of the Kalman filtering can directly start the reading at chapter 2.

But the reading of chapter 1, which is more cumbersome from a theoritical point of

view, is required if one wishes to learn basic principles in random signal processing,

on which is based Kalman filtering.

There are many applications of Kalman filtering in aeronautics and aerospace

engineering. As Kalman filter provides an estimate of plant states from an a priori

information of the plant behaviour (model) and from real measurement, Kalman

filter will be used to estimate initial conditions (ballistics), to predict vehicle po-

sition and trajectory (navigation) and also to implement control laws based on a

state feedback and a state estimator (LQG: Linear Quadratic Gaussian con-
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6 Introduction

trol). The signal processing principles on which is based Kalman filter will be

also very useful to study and perform test protocols, experimental data processing

and also parametric identification, that is the experimental determination of some

plant dynamic parameters.
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Chapter 1

Random signal in linear systems

1.1 Problem statement

Let us consider a state-space model of a linear and stationary plant:

{
ẋ(t) = Ax(t) + Bu(t) + Mw(t) (state equation)

y(t) = Cx(t) + Du(t) + v(t) (measurement equation)
(1.1)

where :

• x(t) ∈ Rn is the state vector of the plant,

• u(t) ∈ Rm is the deterministic input vector (known inputs: control signal,

...),

• w(t) ∈ Rq is the vector of unknown random signals (noises) that perturb the

state equation through the input matrix Mn×q (wx = Mw denotes also the

state noise),

• y(t) ∈ Rp is the measurement vector,

• v(t) ∈ Rp is the vector of random signals (measurements noise) perturbing

the measurement (it is assumed there are as much noises as measurements).

Example 1.1 The ”quarter vehicle” model used to study a car active suspension

can be depicted by Figure 1.1. The control device (piston, jack) allows a force u

to be applied between the wheel (with a mass m and a vertical position z) and the

body of the car (with a mass M and a vertical position Z). K and f denote the

stiffness and the damping of the passive suspension. k is the tire stiffness between

wheel and ground. Finally, w denotes the vertical position of the point of contact

tire/ground excited by road unevenness (rolling noise). Body vertical acceleration
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8 1. Random signal in linear systems
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Figure 1.1: Quarter vehicle model.

is measurement by the means of an inertial sensor (an accelerometer tacking into

account gravity g = −9.81 m/s2). The noise on this accelerometer is denoted v.

Let us denote δz et δZ small variations of z and Z around an equilibrium position

z0 et Z0 (equilibrium conditions are: w = 0, u = 0 and gravity effects are entirely

compensated by stiffness (k and K) compression). Then applying Newton principle

on both masses m and M , we get:

Mδ̈Z = K(δz − δZ) + f(δ̇z − ˙δZ) + u

mδ̈z = −K(δz − δZ)− f(δ̇z − ˙δZ)− u− k(δz − w) .

Let x = [δZ, δz, ˙δZ, δ̇z]T be the state vector, then the following state space repre-

sentation can be derived:

ẋ =




0 0 1 0

0 0 0 1

−K/M K/M −f/M f/M

K/m −(K + k)/m f/m −f/m


 x +




0 0

0 0

1/M 0

−1/m 0




[
u

g

]
+




0

0

0

1/k


 w

y =
[ −K/M K/M −f/M f/M

]
x + [1/M − 1]

[
u

g

]
+ v .

(1.2)

This model is in the form of (1.1) with n = 4, m = 2, q = 1 and p = 1.

2

We recognize in matrices (A, B, C, D) of model (1.1) the well known state

space representation of the transfer between deterministic input u and measurement
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1.2 Backgrounds and definitions 9

y: 1 :

F (s) = D + C(sI − A)−1B .

The response of this model to a deterministic input u(t) over a time range t ∈ [t0, t]

and to initial conditions x(t0) reads :

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ) dτ (1.3)

y(t) = Cx(t) + Du(t) (1.4)

Proof: see appendix A where an illustrative exercise is also proposed.

What about the response of the model (1.1) to a random signal w(t) ?

To answer this question, it is required:

• firstly to remind how a random signal can be characterized from a mathemat-

ical (or stochastic) point of view,

• to state some assumptions on the stochastic properties of noises w(t) and v(t)

(gaussian white noise) to facilitate the determination of the response of model

1.1,

• to compute stochastic characteristics of the response (x(t) and y(t)).

The various definitions and background given below are extracted from refer-

ence [4] (chapter II and appendix A.I).

1.2 Backgrounds and definitions

1.2.1 Characterization of random variables

Let X be a random variable defined on the real space R. The probability dis-

tribution function F (x) associates, to each real value x, the probability of the

occurrence X < x. That is:

F : R→ [0 1] / F (x) = P [X < x] .

Properties:

• ∀x1 < x2, P [x1 ≤ X < x2] = F (x2)− F (x1),

• limx→+∞ F (x) = 1; limx→−∞ F (x) = 0.

1s stands for Laplace variable.
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10 1. Random signal in linear systems

• F (x) is a monotonous, increasing function, and can be continuous or discon-

tinuous depending on X has continuous or discrete values, respectively.

If F (x) is differentiable, then its derivative w.r.t. x is called probability density

function and is denoted p(x):

p(x) =
dF (x)

dx
soit : p(x)dx = P [x ≤ X < x + dx] .

To characterize a random variable X , one can also used the moments of this

variable. The first moment is called mean value or expected value. The second

central moment is called variance and is denoted varx = σ2
x where σx is the

standard deviation. That is:

• expected value:

E[X ] =

∫ +∞

−∞
x p(x) dx =

∫ +∞

−∞
x dF (x) , (1.5)

• k-th moment:

E[X k] =

∫ +∞

−∞
xk p(x) dx , (1.6)

• k-th central moment: 2

E[(X − E[X ])k] =

∫ +∞

−∞
(x− E[X ])k p(x) dx .

Full description of a random variable requires the characterization of all its

moments. But from a practical point of view 3-th and higher moments are not used

because they cannot be computed or derived easily. The (mathematical) interest of

normal (gaussian) random variable lies is the fact they are entirely defined by the

first and second moments. Indeed, let X a gaussian random variable with a mean

value m and a standard deviation σ, then:

p(x) =
1√
2πσ

e−
(x−m)2

2σ2 , E[x] = m, E[(x−m)2] = σ2 .

Example 1.2 [Uniform distribution] The probability density function of the random

variable X is constant between two values a and b with b > a.

E[X ] =

∫ b

a

x

b− a
dx =

1

b− a

[
1

2
x2

]b

a

=
1

2

b2 − a2

b− a
=

a + b

2

2Recall: varx = E[X 2]− E[X ]2.
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x

F(x)

a

1

0 b a 0 b x

1/(b−a)

p(x)

Figure 1.2: Probability distribution and density functions for a uniform distribution.

varx = E[(X − E[X ])2] =
1

b− a

∫ b

a

(
x− a + b

2

)2

dx =
1

b− a

[
1

3

(
x− a + b

2

)3
]b

a

⇒ varx =
1

3

1

b− a

(
b− a

2

)3

=
(b− a)2

12
.

2

Discrete random variable: If a random variable is defined on a set of N discrete

values xi, i = 1, · · · , N then the density function is no more used and one can directly

define the ”probability that X = xi” noted P (X = xi). The definition of moments

involves a discrete sum :

E[X k] =
N∑

i=1

xk
i P (X = xi) .

Example 1.3 The random variable X corresponding to a dice tossing:

P (X = i) =
1

6
, ∀ i = 1, · · · , 6 ; E[X ] =

21

6
; varx =

35

12
.

2

1.2.2 Caracterization of multivariate random variables

Let X = [X1, · · · ,Xq]
T a vectorial random variable with q components taking on the

values in Rq.

Probability distribution function

(i.e. the joint distribution of the q random variables Xi, i = 1, · · · q)

F (x1, · · · , xq) = P (X1 < x1 and X2 < x2 and · · · and Xq < xq) .
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12 1. Random signal in linear systems

Density function

p(x1, · · · , xq) =
∂qF (x1, · · · , xq)

∂x1 · · · ∂xq

.

Moments

Define x = [x1, · · · , xq]
T . Only the vector or first moments (that is the mean

vector) and the matrix of second central moments (that is the covariance matrix)

are considered:

• mean: E[X ] = [E[X1], · · · , E[Xq]]
T .

• covariance: Covx = E[(X −E[X ])(X −E[X ])T ]. The component Covx(i, j) at

row i and column j of this covariance matrix verifies:

Covx(i, j) =

∫

R2

(xi − E[Xi])(xj − E[Xj]) dF (xi, xj) .

The covariance matrix is definite, positive and symmetric.

Gaussian random vector with mean m and covariance ∆

p(x) =
1

(2π)q/2
√

det∆
e−

1
2
(x−m)T ∆−1(x−m) .

The gaussian random vector X with mean m and covariance ∆ can be build from

the normal gaussian vector N (that is the vector with a null mean and an unitary

covariance) in the following way:

X = m + GN

where G is such that: GGT = ∆.

Independence

Two random variables X1 and X2 are independent if and only if:

F (x1, x2) = F (x1)F (x2) .

An independence necessary condition is:

E[X1X2] = E[X1]E[X2] . (1.7)
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1.2 Backgrounds and definitions 13

Exercise 1.1 Lest us consider 2 independent random variables X1 and X2 with a

uniform density between −1 and 1 for each of this 2 variables. Define a new random

variable as Y = X1+X2

2
.

Compute E[Y ], vary and covx1,y the covariance matrix of the vector: (X1, Y)T .

Correction: From exercise 1.2, one can derive:

E[X1] = E[X2] = 0; varx1 = varx2 =
1

3
.

By definition: Y = (1/2 1/2)

( X1

X2

)
. Then :

E[Y ] = (1/2 1/2) E

[( X1

X2

)]
= 0 ,

vary = (1/2 1/2)E

[( X1

X2

)
(X1 X2)

](
1/2

1/2

)
= (1/2 1/2)covx1,x2

(
1/2

1/2

)

X1 and X2 are independent, thus: covx1,x2 =

(
1/3 0

0 1/3

)

⇒ vary =
1

6
.

In the same manner:

covx1,y = Gcovx1,x2G
T , with : G =

(
1 0

1/2 1/2

)

=

(
1/3 1/6

1/6 1/6

) .

Remark : At the cost of more tedious calculus, one can also give a full caracterization

of the random variable Y by its distribution function F (y) or density function p(y)

and then compute first and second moments:

F (y) = P

(X1 + X2

2
< y

)
= P (X1 < 2y −X2) =

∫

Dx2

P (X1 < 2y − x2)p(x2)dx2 .

For a given value y, we can write (see Figure 1.2):

P (X1 < 2y − x2) = 0, ∀ x2 / 2y − x2 < −1 ⇒ ∀ x2 > 2y + 1,

P (X1 < 2y − x2) =
2y − x2 + 1

2
, ∀ x2 / − 1 ≤ 2y − x2 < 1 ⇒ ∀ x2 / 2y − 1 < x2 ≤ 2y + 1,

P (X1 < 2y − x2) = 1, ∀ x2 / 2y − x2 ≥ 1 ⇒ ∀ x2 ≤ 2y − 1.
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14 1. Random signal in linear systems

And p(x2) = 1/2 if −1 ≤ x2 < 1, p(x2) = 0 else. Then 3:

• if y < 0 F (y) =

∫ 1

2y+1

0
1

2
dx2 +

∫ 2y+1

−1

2y − x2 + 1

4
dx2 + 0 =

(y + 1)2

2
,

• if y ≥ 0 F (y) = 0 +

∫ 1

2y−1

2y − x2 + 1

4
dx2 +

∫ 2y−1

−1

1

2
dx2 =

−y2 + 2y + 1

2
.

That yields to:

p(y) = y + 1 ∀y ∈ [−1, 0],

p(y) = −y + 1 ∀y ∈ [0, 1],

E[Y ] =
∫ 1

−1
y p(y)dy =

∫ 0

−1
y(y + 1)dy +

∫ 1

0
y(−y + 1)dy = 0,

vary =
∫ 1

−1
y2p(y)dy =

∫ 0

−1
y2(y + 1)dy +

∫ 1

0
y2(−y + 1)dy = 1

6
.

1−1 0

1

y

F(y)

−1 0

1

1 y

p(y)

Figure 1.3: Distribution and density functions of Y .

2

In the following, random variable (resp. signal) stands for both single (q = 1)

or multivariate (q components) variable (resp. signal).

1.2.3 Random signal (or process)

Given a random variable X , the random signal x(t) is a function of time t such

that for each given t, x(t) corresponds to a value (a sample) of X .

3Using conditional probabilities, one can also write:

F (y) =
∫

Dx2

0 p(x2|x2 > 2y + 1)dx2 +
∫

Dx2

2y − x2 + 1
2

p(x2|2y − 1 < x2 ≤ 2y + 1)dx2

+
∫

Dx2

1 p(x2|x2 ≤ 2y − 1)dx2 .
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1.2 Backgrounds and definitions 15

1.2.4 Moments for random signal

The second moment of a random signal is called the auto-correlation function.

Let w(t) be a random signal, then:

first moment: m(t) = E[w(t)] (1.8)

second moment: φww(t, τ) = E[w(t)w(t + τ)T ] . (1.9)

Remark 1.1 if w(t) is a vectorial (multivariate) signal with q components then

φww(t, τ) is a q × q definite positive matrix for each value of t and τ . The diagonal

terms are the scalar auto-correlation functions of each components and the cross

terms are the inter-correlation functions between components.

A centered gaussian random signal, that is a signal generated at each

instant from a sample of a gaussian random variable with a null mean value, is

therefore entirely defined by its auto-correlation function.

1.2.5 Stationarity

A random signal is defined to be wide sense stationary 4 if its mean is constant

(m(t) = m) and if its auto-correlation function depends only on τ (φww(t, τ) =

φww(τ)).

The quadratic mean or variance 5 of a stationary random signal is the auto-

correlation function value at the origin:

σ2
w = φww(τ)|τ=0

Exercise 1.2 A random signal b(t) is generated in the following way: from the

initial time t0 = 0, the signal b(t) is hold every dt seconds on the value (sample) of

a gaussian centered random variable X with a standard deviation σ; all samples xi

of the variable X are independent to each others. So: b(t) = xi ∀t ∈ [idt, (i + 1)dt[

(see Figure 1.4).

• Compute the mean m(t) and the auto-correlation function φbb(t, τ) of signal

b(t). Is b(t) wide sense stationary ?.

• Answer again previous questions assuming now that the initial instant is a

random variable with a uniform distribution between 0 and dt.

Solution keys:

4One can also defined the strict sense stationary (see reference[7]).
5or covariance matrix in the case of a vectorial random signal.
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16 1. Random signal in linear systems

b(t) 

0 

σ 

2 σ 

t 

dt 

−2 σ 

− σ 

0 10 dt 20 dt .... 

Probability
(−2 σ < b(t) < 2 σ)
=0.95 

Figure 1.4: Time domain response of a realization of random signal b(t).

• m(t) = E[b(t)] = E[X ] = 0, ∀t,
• φbb(t, τ) = E[b(t)b(t + τ)] = σ2 if t and t + τ are in the same time interval dt;

0 else (because the samplings are independent and centered).

• the auto-correlation function depends on t and τ ; so b(t) is not a stationary

signal. For instance, for t = i dt+ε (∀i, ∀ε ∈ [0, dt[) , the response of φbb(t, τ)

is plotted in Figure 1.5.

• if initial time t0 is now a random variable with a uniform distribution taking

value between 0 and dt (let b′(t) be this new random signal) then one can

consider in the previous calculus that ε has a uniform density between 0 and

dt:

φb′b′(t, τ) =
1

dt

∫ dt

0

φbb(i dt + ε, τ)dε

– for dt > τ ≥ 0, φbb(i dt + ε, τ) = σ2 iff 0 < ε < dt− τ , 0 else. That is:

φb′b′(t, τ) =
σ2

dt

∫ dt−τ

0

dε =
σ2

dt
(dt− τ) ∀τ / 0 ≤ τ < dt .

– for −dt < τ < 0, φbb(i dt + ε, τ) = σ2 iff −τ < ε < dt, 0 else. That is:

φb′b′(t, τ) =
σ2

dt

∫ dt

−τ

dε =
σ2

dt
(dt + τ) ∀τ / − dt < τ < 0 .
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1.2 Backgrounds and definitions 17

0

Figure 1.5: Autocorrelation function of signal b(t).

0−dt dt

Figure 1.6: Autocorrelation function of signal b′(t).

So φb′b′(t, τ) = σ2(1− |τ |
dt

) ∀τ ∈ [−dt dt], 0 else (see Figure 1.6) and depends

only on τ , b′(t) is now wide sense stationary.

2

1.2.6 Spectrum in the s-plane

Wide sense stationary random signals can also be characterized by their frequency-

domain representation called Power Spectral Density (PSD) or also their spec-

trum in the s-plane (the PSD is given by the spectrum where s is replaced by

jω). The spectrum in the s-plane of a Wide sense stationary random signal is the

bilateral Laplace transform of the auto-correlation function 6.

Φww(s) = LII [φww(τ)] =

∫ ∞

−∞
φww(τ)e−τsdτ . (1.10)

Power Spectral Density (PSD): Φww(ω) = Φww(s)|s=jω.

6The inverse bilateral Laplace transform inverse is defined by:

φww(τ) = L−1
II Φww(s) =

1
2π j

∫ +j∞

−j∞
Φww(s)esτds

Introduction to Kalman filtering Page 17/74



18 1. Random signal in linear systems

Remark 1.2 :

Φww(s) =

∫ ∞

0

φww(τ)e−τsdτ +

∫ ∞

0

φww(−u)eusdu

= Φ+
ww(s) + Φ−

ww(−s)

with :

Φ+
ww(s) = L[φ+

ww(τ)] and φ+
ww(τ) = φww(τ) if τ ≥ 0, φ+

ww(τ) = 0 else ,

Φ−
ww(s) = L[φ−ww(τ)] and φ−ww(τ) = φww(−τ) if τ ≥ 0, φ−ww(τ) = 0 else .

If the function φww(τ) is pair then Φ+
ww = Φ−

ww and the spectrum in the s-plane

Φww(s) is a function of s2 (that is, the PSD is real).

The initial value theorem of the mono-lateral Laplace transform allows the

variance to be computed directly from the spectrum in the s-plane:

σ2
w = φww(τ)|τ=0 = lim

s→∞
sΦ+

ww(s) .

2

Remark 1.3 : From the PSD, one can write:

φww(τ) =
1

2π

∫ +∞

−∞
Φww(ω)ejωτdω and σ2

w =
1

2π

∫ +∞

−∞
Φww(ω)dω .

The variance of the noise w is (with a factor 1/2π) the integral of the PSD in the

frequency domain.

2

Example 1.4 Let us consider again the signal b′(t) of section 1.2 whose autocor-

relation function is: φb′b′(t, τ) = σ2(1 − |τ |
dt

) (pair function). The spectrum in the

s-plane of this signal is:

Φb′b′(s) =

∫ ∞

−∞
σ2(1− |τ |

dt
)e−τsdτ = Φ+

b′b′(s) + Φ+
b′b′(−s) with:

Φ+
b′b′(s) =

∫ dt

0

σ2(1− τ

dt
)e−τsdτ

=
σ2

dt

{[
dt− τ

−s
e−τs

]dt

0

− 1

s

∫ dt

0

e−τsdτ

}
(integration by parts)

=
σ2

dt

{
dt

s
+

[
e−τ s

s2

]dt

0

}
=

σ2

dt s2

(
s dt + e−s dt − 1

)
.
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1.2 Backgrounds and definitions 19

Φb′b′(s) = σ2

dt s2

(
e−s dt + es dt − 2

)
.

Thus the PSD is:

Φb′b′(ω) = − σ2

dt ω2

(
e−jω dt + ejω dt − 2

)
=

2σ2

dt ω2
(1− cos(ω dt)) =

4σ2

dt ω2
sin2(

ω dt

2
)

Φb′b′(ω) = σ2 dt
sin2

(ω dt
2

)

(ω dt
2

)2
.

Φb′b′(ω) is plotted in Figure 1.7 7. From a practical point of view, the logarithmic

scale representation given in Figure 1.8 is preferred and highlights that the PSD

can be considered as constant for pulsations very lower than the sampling pulsation

2π/dt. This signal can be used as a white noise signal with a PSD R in a

given pulsation range if 2 π/dt is chosen very large w.r.t. this pulsation

range and if σ2 = R/dt (see next section).

2

0 −2π/dt −4π/dt 4π/dt 2π/dt ω 

Φ
b’b’

( ω) 

σ2 dt 

Figure 1.7: PSD for signal b′(t).

This frequency-domain representation of random signal is particularly useful to

study and characterized the transmission of random signals in stationary linear

systems (see section 1.3.2).

7It is recalled that limx→0( sin x
x ) = 1
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20 1. Random signal in linear systems

2π/dt 
4π/dt 

ω0 

Φ
b’b’

( ω) |
dB

−∞ 

20 log
10

( σ2 dt) 

Figure 1.8: PSD for signal b′(t) (logarithmic scales).

1.2.7 White noise

Lastly, a white noise is a random signal with an infinite variance and whose auto-

correlation function is proportional to a Dirac function (that is a constant PSD for

any pulsation ω). This profile expresses that two values of the signal, even sampled

at two very closed instants, are not at all correlated.

Central gaussian white noise w(t) and v(t) we are going to used in Kalman

filtering are then entirely defined by their respective PSD W (t) and V (t):

E[w(t)w(t + τ)T ] = W (t)δ(τ), E[v(t)v(t + τ)T ] = V (t)δ(τ) (1.11)

Matrices W (t) and V (t) become constant in the case of stationary gaussian white

noises. The normalized gaussian white noise is such that W (t) = Iq×q (q components

in the noise).

Remark 1.4 From a practical point of view, it is not possible to simulate, on a

numerical computer, a perfect continuous-time white noise characterized by a finite

PSD R (but with an infinite variance). The approximation proposed in example 1.2

(see Figure 1.8), which consists in holding, over a sample period dt (which must be

chosen very low w.r.t. the settling time of the system), a gaussian random variable

with a variance σ2 = R/dt, will be used. This approximation corresponds to the

”Band-limited white-noise” proposed in Matlab/Simulink).
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1.3 Transmission of random signals in linear systems 21

1.3 Transmission of random signals in linear sys-

tems

1.3.1 Time-domain approach

The assumptions:

• the model is linear (equation 1.1),

• and w is a centered gaussian white noise

allows to assert that the state x and the output y are also gaussian multivariate

signals and are therefore entirely characterized by first and second moments. The

following theorem will allow these characteristics to be computed. It is assumed

that the deterministic input u is null (u(t) = 0).

Theorem 1.1 let us consider the linear system:

˙x(t) = Ax(t) + Mw(t) . (1.12)

w(t) is a centered stationary Gaussian white noise with a PSD W . m(t0) et P (t0) are

the mean value and the covariance matrix of the initial state x(t0) (also a gaussian

random variable). Then x(t) is a gaussian random signal with:

• mean vector:

m(t) = E[x(t)] = eA(t−t0)m(t0)

• covariance matrix P (t) = E[(x(t) −m(t))(x(t) −m(t))T ] solution of the dif-

ferential equation:

˙P (t) = AP (t) + P (t)AT + MWMT . (1.13)

If the system is stable (all the eigenvalues of A have a negative real part), then

a steady state (stationary) response can be reached : Ṗ = 0 and P (t) = P

solves the continuous-time Lyapunov equation :

AP + PAT + MWMT = 0 . (1.14)

Proof : (see annex B.2).

Remark 1.5 If the output equation is considered without noise i.e. y(t) = Cx(t)

then the covariance matrix Py(t) of y(t) is:

Py(t) = CP (t)CT

(if the white noise on the measurement is considered i.e. y(t) = Cx(t) + v(t), then

the covariance of y is infinite).
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22 1. Random signal in linear systems

1.3.2 Frequency-domain (spectral) approach

Only the steady state is considered here.

Theorem 1.2 (Transmission of a white noise in the linear system) Let us con-

sider a stable linear continuous-time system defined by the transfer matrix G(s)p×q

between the input w and the output y. The steady state response y to a station-

ary random signal w, characterized by a spectrum Φww(s)q×q in the s-plane, is a

stationary random signal characterized by a spectrum Φyy(s) in the s-plane such

that:

Φyy(s)p×p = G(−s)Φww(s)GT (s) .

Proof : (voir annexe B.3).

In the case of a SISO (Single Input Single Output) transfer G, this result can

be depicted by Figure 1.9.

G(s)

Figure 1.9: SISO case.

Reciprocally : Let us consider a random signal w(t) with a given real 8

spectrum in the s-plane Φww(s), then the decomposition (such a decomposition in

not unique as it is shown in example 1.3):

Φww(s) = G(−s)GT (s)

where G(s) is the transfer gathering all the stable poles of Φww(s), allows to provide

a Marlov model of the signal w(t), i.e. a state space realization of the ”generator”

filter G(s). This state space realization is denoted (G(s) is assumed to be strictly

proper): {
˙xG(t) = AGxG(t) + BGb(t)

w(t) = CGxG(t)

where b(t) is a normalized gaussian white noise such that Φbb(s) = Iq×q.

Exercise 1.3 Let us consider again example 1.1 on the 1/4 vehicle model. Some

experiments in a real environment have shown the PSD of the rolling noise for a

vehicle at 90 km/h on a secondary road could be approximated by:

Φww(ω) =
ω2 + 104

ω4 − 1.75 104 ω2 + 108

8That is: a spectrum with only exponents of s2; that is: the correspondent auto-correlation
function φww(τ) is pair.
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1.3 Transmission of random signals in linear systems 23

a) Give the spectrum in the s-plane for w(t).

b) Give a Markov representation of w(t).

c) Compute the variance of w(t) (the signal is assumed to be centered).

Solution :

a) By definition: Φww(s) = −s2+104

s4+1.75 104 s2+108 .

b) A decomposition Φww(s) = G(−s)G(s) is:

Φww(s) =

(
102 + s

s2 − 50s + 104

)(
102 − s

s2 + 50s + 104

)
.

All the stable poles of Φww(s) must be gathered in G(s), that allows the de-

nominator of G(s) to be determined but there is no condition on the stability

of G(s) zeros. So there are 2 different filters that provide an output signal with

the spectrum Φww(s) when the input is a normalized white noise:

G(s) =
102 − s

s2 + 50s + 104
and G′(s) =

102 + s

s2 + 50s + 104

If G(s) is chosen then a Markov representation of w(t) is (an horizontal

companion form is proposed, for instance):





˙xG(t) =

[
0 1

−104 −50

]
xG(t) +

[
0

1

]
b(t)

w(t) = [102 − 1]xG(t)

. (1.15)

c) The variance can be computed in two different ways:

– from the spectrum in the s-plane and the initial value theorem (see remark

1.2):

Φww(s) =
1/50 s + 1/2

s2 + 50s + 104
+
−1/50 s + 1/2

s2 − 50s + 104
= Φ+

ww(s) + Φ−
ww(−s)

σ2
w = φww(τ)|τ=0 = lim

s→∞
sΦ+

ww(s) = 1/50.

– from the Markov model and the theorem 1.1: during steady-state, the

covariance matrix P of the state vector xG is the solution of the Lya-

punov equation:

[
0 1

−104 −50

]
P + P

[
0 −104

1 −50

]
+

[
0 0

0 1

]
=

[
0 0

0 0

]
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24 1. Random signal in linear systems

⇒ P =

[
10−6 0

0 10−2

]

⇒ σ2
w = [102 − 1]

[
10−6 0

0 10−2

] [
102

−1

]
= 1/50 .

2

1.4 Matlab illustration

The file bruit.m, given below, allows to illustrate the way to use Matlab macro-

functions to solve equation 1.3. This file also shows how to simulate, on a numerical

computer, such a colored noise from a pseudo-white noise generated with a sample

period dt. The Simulink file simule_bruit.mdl depicted in Figure 1.10 9 can be

simulated. Responses of pseudo-white noise b(t) and rolling noise w(t) are plotted in

Figures 1.11 and 1.12, respectively. These responses highlight that the variance of

w(t) est independent of dt (since the sampling pulsation 2π/dt is fast w.r.t the filter

G(s) dynamics) while the variance of b(t) is equal to 1/dt: one can see that this

variance tends toward infinity if dt tend to zero as the variance of a continuous-time

white noise is infinite (but the PSD of b(t) is independent of dt and is equal to 1).

The example B.1 proposed in appendix completes this illustration by a discrete-

time analysis (with a sampling period dt).

%=============================================================

clear all close all

% Filter definition:

G=tf([-1 100],[1 50 10000])

% State space realization:

[A,B,C,D]=ssdata(G);

% Variance determination using Lyapunov equation:

P=lyap(A,B*B’); var_w=C*P*C’

% ==> on can find the wanted result: variance=1/50.

% (standard deviation: sigma=0.14)

% Validation using a simulation: see SIMULINK file: simule_bruit.mdl

% Choice of a sampling period fast enough w.r.t. the filter dynamics (100 rd/s):

dt=0.0001;

% Simulation:

9Feel free to send an e-mail to alazard@supaero.fr with ”Introduction Kalman” for the subject
if you want a copy of the 2 files bruit.m and simule bruit.mdl.
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1.5 Conclusion 25

sim(’simule_bruit’);

% Results plotting:

plot(b.time,b.signals.values,’k’);

% Numerical computation of the variance of b(t):

var(b.signals.values) % One can find again: var_b=1/dt=10000.

figure

plot(w.time,w.signals.values,’k’)

% Numerical computation of variance of w(t):

var(w.signals.values) % One can find: var_w=1/50 (approximately).

% The sampling period is now multiplied by a factor 10:

dt=0.001;

sim(’simule_bruit’);

figure(1) hold on

plot(b.time,b.signals.values,’g-’);

var(b.signals.values) % One can find again: var_b=1/dt=1000.

figure(2) hold on

plot(w.time,w.signals.values,’g-’)

var(w.signals.values) % One can find: var_w=1/50 (approximately).

%=============================================================

b(t) w(t)

b

To Workspace1

w

To Workspace

−s+100

s  +50s+100002

G(s)Band−Limited
White Noise:

Noise power =1
Sample time=dt

Figure 1.10: SIMULINK file simule bruit.mdl for the rolling noise simulation.

1.5 Conclusion

Mathematical tools used to analyse continuous-time random signals and their trans-

mission in linear systems were presented in this chapter. The notion of gaussian

white noise was also introduced (this assumption is required in the Kalman filter

developed in next chapter). The interest of such gaussian (centered) noises lies in

the fact that they are entirely characterized by their autocorrelation function (or

their spectrums in the s-plane if they are stationary).

The reader will find in appendix B some additional developments for the anal-

ysis of discrete-time random signals.
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Figure 1.11: Responses of normalized white-noise b(t) (with dt = 0.0001 s: black;

with dt = 0.001 s: grey).
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Figure 1.12: Responses of rolling noise w(t) (with dt = 0.0001 s: black; with dt =

0.001 s: grey).
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Chapter 2

Kalman filter

2.1 Principle of Kalman filtering

2.1.1 Kalman model

We consider again the model presented at the beginning of chapter 1. This model

involves deterministic inputs u(t) and random inputs w(t) and v(t). So we will as-

sume that the model of the perturbed plant can be always described by the following

state space realization, also called Kalman model:
{

˙x(t) = Ax(t) + Bu(t) + Mw(t) state equation, x ∈ Rn, u ∈ Rm, w ∈ Rq

y(t) = Cx(t) + Du(t) + v(t) measurement equation, y ∈ Rp, v ∈ Rp

(2.1)

with the following assumptions:

2.1.2 Assumptions:

H1: the (A, C) pair is detectable, i.e. there is no unstable and unobservable eigen-

value in the model,

H2: signals w(t) and v(t) are centered gaussian white noise with Power Spec-

tral Densities (PSD) W and V respectively, that is:

– E[w(t) w(t + τ)T ] = W δ(τ),

– E[v(t) v(t + τ)T ] = V δ(τ)

– E[w(t) v(t+ τ)T ] = 0 (this last equality expresses the stochastic indepen-

dence of noises w(t) and v(t) : this assumption is introduced for reason

of clearness but is not required in the general formulation of Kalman

filter: the reader will find in reference [4] this general formulation taking

into account a correlation between state noise and measurement noise).
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28 2. Kalman filter

H3: V is invertible (i.e. there is as much independent noise sources as measure-

ments or each measurement is perturbed by its own noise 1).

Remarks:

• Although the whole theory of Kalman filter can be applied to the non-

stationary case (for the plant and the noises), we will assume in the following

that the plant and noises are stationary, i.e: matrices A, B, M , C, D, W are

V independent of time t.

• The mean of a random signal, which is also called a bias, is considered to be

deterministic and must be, if it is, extracted from noises w(t) or v(t) to meet

the assumption H2 (w and v are centered noises). For instance, if random

signal w(t) in state equation (2.1) is biased and if this bias E[w(t)] is known,

then the Kalman filter will be designed from the following model:



˙x(t) = Ax(t) + [B M ]

[
u(t)

E[w(t)]

]
+ M(w(t)− E[w(t)])

y(t) = Cx(t) + Du(t) + v(t)

.

The new state noise w̄(t) = w(t)−E[w(t)] is now centered. If the bias E[w(t)]

is unknown then it can be modelled as an initial condition on a new integral

state and the Kalman filter will allow this bias to be estimated (see example

in section 2.3).

• If noises are colored and characterized by spectrums in the s-plane then re-

sults of section 1.3.2 will allow the ”color” (or frequency response) of the noises

to be taken into account with a Kalman model augmented by the Markov

representation of these noises. For instance: if the spectrum in the s-plane

Φww(s) of the centered random signal w(t) in (2.1) is known, then the decom-

position Φww(s) = G(−s)GT (s) will allow a Markov representation of w(t)

to be determined, that is: a state space realization of G(s) (see example 1.3):
{

˙xG(t) = AGxG(t) + BGb(t)

w(t) = CGxG(t)

where b(t) is a centered random signal with a unitary de spectrum in the s-

plane

Φbb(s) = Iq×q (i.e. a normalised white noise).

The augmented model:



[
˙x(t)
˙xG(t)

]
=

[
A MCG

0 AG

] [
x(t)

xG(t)

]
+

[
B

0

]
u(t) +

[
0

BG

]
b(t)

y(t) = [C 0]

[
x(t)

xG(t)

]

1V is a positive definite matrix and W is a semi-definite positive matrix.
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2.1 Principle of Kalman filtering 29

meets now all the assumptions of the Kalman model.

In fact all the deterministic information it is possible to know in the system must

be gather in the model (i.e. ẋ = Ax + Bu, y = Cx + Du and matrix M). All

the random information must be gather in noises w(t) and v(t). The state noise

wx = Mw represents all the external perturbations (wind in the case of an aircraft,

road unevenness in the case of a car, ...) and/or also modelling errors or uncertain-

ties (difference, due to linearization, between the tangent model and the non-linear

model, neglected dynamics, ...): wx is an upper bound of all what makes that the

state does not evolve exactly as the deterministic model predicts (ẋ = Ax + Bu).

2.1.3 Structure of an unbiased estimator

A Kalman filter is a dynamic system with 2 (vector) inputs: the deterministic

control signal u and the measurement y, that is: all known signals of the plant. The

state x̂ (or the output) of this filter is an estimate of the state x of the plant.

Let:

˙̂x(t) = Af x̂(t) + [Bf Kf ]

[
u(t)

y(t)

]
(2.2)

= Af x̂(t) + Bfu(t) + Kfy(t) (2.3)

be the state space realization of this filter. Of course this filter must be initialized

with x̂(t0): the estimate of the state of the plant at the initial time t0.

Let us denote ε(t) = x(t)− x̂(t) the state estimation error and ε(t0) = x(t0)−
x̂(t0) the initialization error.

Substituting the equation (2.3) to the state equation of (2.1) and using the
measurement equation, we can write:

ε̇ = Ax + Bu + Mw −Af x̂−Bfu−Kf (Cx + Du + v)

= (A−KfC)x−Af x̂ + (B −Bf −KfD)u + Mw −Kfv

= (A−KfC)ε + (A−KfC −Af )x̂ + (B −KfD −Bf )u + Mw −Kfv . (2.4)

As noises w and v are gaussian and as the system is linear, on can state that

ε(t) is a gaussian random signal. We are going to characterize the mean (expected

value) of ε(t).

Unbiased estimator: first of all, we wish the estimator to be unbiased, that is:

• whatever the input profile u(τ) applied in the time interval τ ∈ [t0, t],

• whatever the initialization x̂(t0),
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we wish the estimation error mean tends towards 0 when t tends towards infinity.

As noises w and v are centered, we can write:

˙E[ε(t)] = E[ε̇(t)] = (A−KfC)E[ε(t)]+(A−KfC−Af )E[x̂(t)]+(B−KfD−Bf )u(t)

Then limt→∞ E[ε(t)] = 0, ∀ u(t), ∀ E[x̂(t)], if and only if:

Af = A−KfC, Bf = B −KfD (2.5)

and A−KfC is stable. (2.6)

Indeed, from theorem 1.1 (page 21):

E[ε(t)] = e(A−Kf C)(t−t0)ε(t0) and lim
t→∞

E[ε(t)] = 0 .

If (2.5) is used in (2.3), the Kalman filter realization becomes:

˙̂x = (Ax̂ + Bu) + Kf (y − Cx̂−Du) . (2.7)

We recognize, in the first term of the right-hand member of equation (2.7), the deter-

ministic model of the plant (Ax̂ + Bu). This model is used to predict the evolution

of the plant state from the current estimation x̂. This prediction is in fact an in-line

simulation of the plant model. This model being wrong, the prediction is corrected

(updated) with the difference between the measurement y and the prediction of the

measurement ŷ = Cx̂ + Du through the filter gain Kf . This difference y − ŷ is

also called the innovation. The block-diagram of such a filter (in the case D = 0)

is depicted in Figure 2.1. This structure ensures that the estimator is unbiased

whatever the matrices A, B, C, D of the plant and the gain Kf such that A−KfC

is stable (that justifies the assumption H1: the existence of an unstable and unob-

servable mode in the plant does not allow a stabilizing gain Kf to be determined

and so an unbiased estimator to be built).

2.2 Minimal error variance estimator

The gain Kf is computed according to the confidence we have in the model (this

confidence is expressed by the PSD W : the lower this confidence is, the greater W

must be) with respect to the confidence we have in the measurement (expressed

by the PSD V ...). If the model is very precise (W is very low) and if the measurement

is very noisy (W is very great) then the gain Kf must be very low (the prediction

is good). In fact, among all the stabilizing gains Kf , we are going to choose the

one that minimizes the variance of the state estimation error ε(t) ∀t (in fact

the sum of estimation error variances for all components of the state). We recall

(see previous section) that ε(t) = x(t)− x̂(t) is a multivariate (with n components),

centered (unbiased), gaussian random signal. The gaussian feature of this centered

signal allowes to state that if the variance of the estimation error is really minimized

then, x̂(t) is the best estimate of x(t).
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A
CZ+B

+

+
+

Kf
−

x

u

x

^

y

^
Kalman filter

Plant

Figure 2.1: Kalman filter block diagram (case D = 0).

2.2.1 General solution

So we seek Kf minimizing:

J(t) =
n∑

i=1

E[εi(t)
2] = E[εT (t)ε(t)] (2.8)

= trace E[ε(t)εT (t)] (2.9)

= trace P (t) . (2.10)

P (t) = E[(x(t)− x̂(t))(x(t)− x̂(t))T ] is the estimation error covariance matrix.

Returning (2.5) in (2.4), the evolution of ε(t) is governed by the following state

space equation:

ε̇(t) = (A−KfC)ε(t) + [M −K]

[
w(t)

v(t)

]
, (2.11)

with:

E

[[
w(t)

v(t)

]
[wT (t + τ) vT (t + τ)]

]
=

[
Wq×q 0q×p

0p×q Vp×p

]
δ(τ) .

The theorem 1.1 (page 21) can be applied and allows to conclude that the estimation

error covariance P (t) is governed by the differential equation:

Ṗ (t) = (A−KfC)P (t) + P (t)(A−KfC)T + [M −Kf ]

[
W 0

0 V

] [
MT

−KT
f

]

= (A−KfC)P (t) + P (t)(A−KfC)T + MWMT + KfV KT
f . (2.12)

To minimize trace P (t), it is sufficient to minimize trace ˙P (t) ∀ t :

∂(trace ˙P (t))

∂Kf

= −P (t)CT − P (t)CT + 2KfV
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⇒ Kf (t) = P (t)CT V −1 . (2.13)

From(2.13) and (2.12), we get:

Ṗ (t) = AP (t) + P (t)AT − P (t)CT V −1CP (t) + MWMT . (2.14)

This Riccati differential equation must be integrated from t0 to t and must be

initialized with P (t0) that expresses the confidence we have in the filter ini-

tialization x̂(t0):

P (t0) = E[(x(t0)− x̂(t0))(x(t0)− x̂(t0))
T ] .

The gain Kf is then computed from P (t) and equation (2.13). The Kalman filter

is thus an un-stationary system.

Equations (2.7), (2.13) and (2.14) constitute the continuous-time Kalman fil-

ter equations and must be integrated from initialization x̂(t0) and P (t0). The in-

tegration of (2.14) and the computation of Kf (t) (2.13) can be performed in-line

or off-line. In the last case, the time-law Kf (t) must be uploaded in the on-board

computer. From a practical point of view, the implementation of the Kalman filter

will be performed in discrete-time on a numerical computer. The Kalman filter

state equation (2.7) can be discretized (integration using rectangular (Euler or

trapezoidal (Tustin approximations, ..., if only the steady state behavior is consid-

ered). One can also prefer to directly design the Kalman filter in discrete-time (see

section 2.4.2). Lastly, all the filter equations are defined by the data of the problem,

that is, the set of matrices A, B, M , C, D, W and V .

2.2.2 Kalman filter steady state

During the steady state (that is: once the transient response due to initialization

error is finished), the estimation error becomes a stationary random signal (this is

the case for all signals in the block diagram of Figure 2.1). So we can write:

Ṗ (t) = 0 .

P is a constant positive definite matrix (the covariance of the state estimation er-

ror in steady state) and is the only positive solution of the algebraic Riccati

equation:

AP + PAT − PCT V −1CP + MWMT = 0 (2.15)

The filter gain Kf = PCT V −1 becomes also stationary.

On can easily verify (from the steady state of Lyapunov equation (2.12)) that

the positiveness of P implies the stability of the filter, that is all the eigenvalues of

A−KfC have a negative real part.
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The reader will find in [1], a general method to compute the positive solution of

a Riccati equation. From a practical point of view, keep in mind that such solvers

are available in most softwares for computer-based control design: macro-function

lqe of Matlab or Scilab control packages. This function provides directly P and

Kf from matrices A, B, M , C, D, W and V (see also macro-function care and

kalman under Matlab).

2.2.3 Kalman filter tuning

For a given model (matrices A, B, M , C, D), the filter gain Kf and its evolution as

a function of time depend only on:

• W : the ”confidence” we have in the state equation,

• V : the ”confidence” we have in the measurement,

• P (t0): the ”confidence” we have in the initialization.

In steady state, if the system and the noises are stationary, the Kalman gain Kf

is constant and its value depends only on W and V .

Furthermore, the gain Kf and the estimation error response ε(t) depend only on

the relative weight of P (t0) w.r.t. V (during the transient response) and the relative

weight of W w.r.t. V (during the steady state). Indeed, it can be easy to check that

the gain Kf (and so the filter) does not change if these 3 tuning matrices W , V and

P (t0) are multiplied by a scaling factor α. But keep in mind that the estimation

error covariance P will be multiplied by α. So the designer must be sure that these

3 matrices are realistic if he wants to use P (t) to analyse the estimation quality and

conclude for instance: the probability for the i-th component of the state xi(t) to be

between x̂i(t)− 2
√

P(i,i)(t) and x̂i(t) + 2
√

P(i,i)(t) is equal to 0.95 (gaussian variable

property). From a practical point of point, the Kalman filter must be validate on

a validation model which takes into account realistic measurement noises and a

modelling, as accurate as possible, of all the disturbances (non-linearities, external

perturbations,...) that have been overvalued by a state noise w(t) in the Kalman

model also called synthesis model. Such a validation model cannot be used as

synthesis model for 2 reasons: fisrtly, it does not generally fulfill the assumptions

H1, H2, H3 and secondly it will lead to a too much complex Kalman filter from

the implementation point of view.

Whatever the tuning, one can check that the Kalman estimation error covari-

ance P (t) is always lower than the covariance propagated in the state equation (that

is without using measurement and governed by Ṗ = AP +PAT +MWMT ) and the

estimation error covariance of the output yp (without noise: yp = Cx+Du), that is:

CP (t)CT , is always lower that the measurement noise covariance (which is infinite
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in the continuous-time case !! but this property is also true in the discrete-time case

where the measurement noise covariance is finite, see section 2.4). So it is always

better to use ŷp = Cx̂ + Du rather than the direct measurement y to estimate the

real output yp of the plant.

The designer could use the following trade-off to tune qualitatively the estima-

tion error time-response.

Influence of P (t0) ./. V : during the transient response, the initial estimation

error ε0 will be corrected as faster (and the Kalman gain will be as greater) as

P (t0) is greater w.r.t. V . But the estimate will be affected by the measurement

noise because we have a good confidence in this measurement.

Influence of W ./. V during the steady state, the gain Kf will be as lower, and

the estimation response will be as smoother, as W is weaker w.r.t. V (we have

confidence in the model). But, if the plant is subject to a perturbation which has

been under-estimated by this too weak choice of W , the estimate x̂ will not track

the real state x or will have a too long updating time. Furthermore the estimation

error covariance P will not be representative of this phenomena.

These behaviors will be illustrated in the following example. Although this is a

first order example, it allows to highlight general trade-offs that can be encountered

on more complex applications (continuous or discrete-time).

2.3 Corrected exercises

2.3.1 First order system

Statement: let us consider a stable first order system

G(s) =
1

s− a
with a < 0 .

The measurement y of the system output x is perturbed by a white noise v(t) with

a unitary PSD. The input of this system is subject to an unknown and variable

transmission delay (the maximal value of this delay is denoted T ). For the design of

the Kalman filter we want to perform on this system, this perturbation (unknown

delay) will be roughly modelled by a white noise w(t), with a PSD W , independent

of v, acting directly on the input signal according to Figure 2.2.

+
+ s − a

1 +
+

u x y
vw

Figure 2.2: Kalman synthesis model.
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Questions:

a) Set up the Kalman model for this problem and compute the Kalman filter,

to estimate the state (or output) x of the plant. Give results as a function

of a, W and P0 (the initial estimation error variance). Study the asymptotic

behavior of the filter gain Kf when W tends towards 0.

b) Build a simulator using Matlab/Simulink (involving a validation model with

a real transmission delay T ) in order to analyse the influence of parameters W

and P0 on the estimation error response ε(t) = x(t)− x̂(t) and on its variance

P (t).

Numerical application:

• a = −1, x0 = 20, x̂0 = 0,

• T = 0, 0.1, 0.5, 1(s) (these various values will be tested),

• u(t): square signal with a magnitude of 10 and a period of 5 s,

• dt = 0.01 s (integration step for the simulator).

c) What do you propose to improve the estimation quality in the case of an

important and known delay T (for instance: T = 1 s) ?

Correction: Question a): the Kalman model is:

{
ẋ(t) = ax(t) + u(t) + w(t)

y(t) = x(t) + v(t)
(n = 1; m = 1; p = 1),

with E[w(t)w(t + τ)] = Wδ(τ), E[v(t)v(t + τ)] = δ(τ) and E[v(t)v(t + τ)] = 0.

The first step in the determination of the Kalman filter consists in solving the

differential Riccati equation (2.14) which is a scalar equation in this case:

Ṗ (t) = 2aP (t)− P (t)2 + W

The reader will find in general mathematics formulae hand-book ([6]) a general

method to solve such a differential equation. This method consists in:

• looking for a constant particular solution (because the coefficients of the dif-

ferential equation do not depend on time t). This solution corresponds in fact

to steady-state solution p = p∞ which must solve:

P 2
∞ − 2aP∞ −W = 0 .

The only positive solution is P∞ = a +
√

a2 + W ,
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• looking for a general solution of the form:

P (t) = P∞ +
1

z(t)
.

The expansion of Ṗ (t) leads to:

ż(t) = 2
√

a2 + Wz(t) + 1 .

The integration of this differential equation using the varying constant method

gives:

z(t) =
1

2
√

a2 + W

[
e2
√

a2+W (t−t0) − 1
]

+ e2
√

a2+W (t−t0)z0

where t0 is the initial time and z0 = z(t0) is the initial condition on z(t) :

z0 =
1

P0 − P∞

where P0 is the initial condition on P (t). Let us denote k = 2
√

a2 + W , then:

P (t) = P∞ +
k(P0 − P∞)

(P0 − P∞)(ek(t−t0) − 1) + kek(t−t0)

= P∞ +
k(P0 − P∞)

ek(t−t0)(P0 − P∞ + k) + P∞ − P0

.

Lastly: Kf (t) = P (t).

If W = 0 then P∞ = a + |a| = 0 if a < 0 (stable system)

⇒ lim
t→∞

Kf = 0 .

Once the initial error is corrected, only the model is used to estimate x. This is

logic because the model is assumed to be perfect when W is set to 0. That property

holds only if the system is stable. Indeed, if the system is unstable (a > 0) then:

⇒ lim
t→∞

Kf = 2a .

This is the value of the gain which allows the filter dynamics to be stable while

minimizing the effect of the measurement noise on the estimation error variance.

Question b): the Matlab/Simulink simulator is depicted in Figure 2.3. The

various parameters used in this Simulink file (simuKalman.mdl) are written in this

Figure. The Matlab function Kf_t.m used to implement the non-stationary gain

Kf is given in appendix C with the script-file demoKalman.m to declare the various

parameters and to plot results 2. Different simulation results are presented in Figures

2.4 to 2.8 :
2Thanks to send an email to alazard@supaero.fr with ”Introduction Kalman”” for the subject

if you wish a copy of these files.
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• Figure 2.4: The confidence P0 in the initialization is not at all representative

of the initial estimation error which is in fact very important (ε0 = x0 − x̂0 =

20). The transient response to correct this initial error is thus long and the

estimation of x ±2σ (with σ(t) =
√

P (t)) does not allow to frame the real

value of x during this transient response.

• Figure 2.5: If this confidence in the initialisation is degraded (P0 = 100),

this transient response becomes more faster. The measurement is now more

exploited by the filter. The estimate is therefore a little bit noisy during this

transient response. In steady state, this estimate becomes smoother because

we are confident in the model (W is low). One can note that the estimate

is unbiased. Lastly the estimation is good because in this simulation, the

validation model (with T = 0) coincides exactly with the Kalman synthesis

model.

• Figure 2.6: If now a 1 s delay is taken into account in the validation model,

the (good) confidence we have in the synthesis model (W = 1) does not allow

to be representative of real model errors. The filter is confident in a wrong

model and does not use the measurement enough: this filter has a very long

reaction time.

• Figure 2.7: If now it is specified that the model is not so good (W = 100), the

filter is more confident with measurements: the estimate is more sensitive to

the measurement noise but have a good reaction time.

• Figure 2.8 (answer to question c)): if now the delay is known (T = 1 s), it

is possible to take this delay into account in the Kalman synthesis model in

two different ways: firstly in propagating this delay in the prediction equation

or secondly (what it is proposed here: see file demoKalman.m) in using a Pade

filter in series with the model.
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v

u x

y

Start time: 0s  Stop time: 10s

SIMULATION PARAMETERS

Solver: ode4 (Runge Kutta)
Fixed step=dt

Transport Delay 
Time Delay=T

output

To Workspace
StructureWithTime

Signal
Generator

Scope

MATLAB
FunctionKf_t

1
s

Integrator
Initial Condition=0

c

a

b

Clock

Band−Limited
White Noise:

Noise power=V;
Sample Time=dt;

x’ = Ax+Bu
 y = Cx+Du

1/(s+1)
A=−1;B=1;C=1;

D=0;X0

Figure 2.3: SIMULINK file simuKalman.mdl for the Kalman filter simulation.
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−40

−30

−20

−10

0

10

20

30

40

50
y(t)
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xhat(t)
xhat(t)+2 σ
xhat(t)−2 σ

Figure 2.4: Simulation with P0 = 1, W = 1, T = 0.
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Figure 2.5: Simulation with P0 = 100, W = 1, T = 0 (zoom around the transient

response) .
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Figure 2.6: Simulation with P0 = 100, W = 1, T = 1.
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Figure 2.7: Simulation with P0 = 100, W = 100, T = 1.
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Figure 2.8: Simulation of the stationary Kalman filter designed on a model taking

into account a second order Pade approximation of the delay (W = 1,

T = 1 s).
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2.3.2 Bias estimation

Statement: a vehicle is moving along an Ox axis. The velocity ẋ and the position

x of this vehicle are measured. These measures are denoted vm and xm, respectively.

The measurement xm is perturbed by a centered gaussian white noise v(t) with a

unitary PSD V = 1 (m2/Hz) : xm(t) = x(t) + v(t).

The measurement vm is biased by a signal b(t) which can be modelled as a step

function with a unknown magnitude b0: vm(t) = ˙x(t) + b(t).

From these 2 measurements vm et xm, we want to built a Kalman filter to estimate

the position x(t) and the bias b(t).

1) Find the state space equations of the Kalman model with x and b as state

variables, vm as input variable, xm as output variable.

2) Draw a block diagram representation of this model.

In fact the bias b(t) can derive with time. To take into account these variations, it

is assumed that the time-derivative of the bias is perturbed by a white noise w(t)

with a PSD W = q2 (independent of v(t)):

˙b(t) = w(t) .

3) Give the new Kalman model equation, compute the steady state Kalman

gain (as a function of q) and give the state space representation of the filter

allowing estimates x̂ and b̂ to be computed from xm and vm.

4) How would you proceed to estimate the velocity of the vehicle ̂̇x?

5) Compute the transfer matrix F (s) of the filter:

[
X̂(s)
̂̇X(s)

]
= F (s)

[
Xm(s)

Vm(s)

]
.

6) Comment this transfer (particularly ̂̇X(s)/Vm(s)) as a function of q. Demon-

strate that this filter F (s) provides perfect estimates if the measurements are

perfect.

Correction: Question 1. On can directly state:

{
vm(t) = ẋ(t) + b(t)

xm(t) = x(t) + v(t)
so:

{
ẋ = −b + vm

xm = x + v
.
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The bias is modelled as an integral effect (ḃ = 0) with an unknown initial condition

b0. Thus we have:





[
ẋ

ḃ

]
=

[
0 −1

0 0

] [
x

b

]
+

[
1

0

]
vm

xm = [ 1 0 ]

[
x

b

]
+ v

(2.16)

with E[v(t)vT (t + τ)] = δ(τ).

Question 2. The block diagram of the Kalman model is depicted in Figure 2.9

b

−
+ +

+x
.

mx

0
s

vm
x

v

Figure 2.9: Synthesis model block-diagram.

Question 3. If the Kalman filter is designed on model 2.16, we will find a null gain

in steady state because the state equation is not perturbed by a noise: once the bias

is estimated, the filter will not be able to detect an eventual drift of this parameter.

To overcome this problem and to take into account the bias is not constant, a noise

w is introduced on ḃ(t):





[
ẋ

ḃ

]
=

[
0 −1

0 0

] [
x

b

]
+

[
1

0

]
vm +

[
0

1

]
w

xm = [ 1 0 ]

[
x

b

]
+ v

(2.17)

with E[w(t)wT (t + τ)] = q2δ(τ). This model is in the form of (2.1) and matrices A,
B, C, M can be identified.

The steady state solution reads: Kf = PCT V −1 with P =

[
p1 p12

p12 p2

]
positive

solution of the algebraic Riccati equation:
[

0 −1
0 0

] [
p1 p12

p12 p2

]
+

[
p1 p12

p12 p2

] [
0 0
−1 0

]
−

[
p1 p12

p12 p2

] [
1 0
0 0

] [
p1 p12

p12 p2

]
+

[
0 0
0 q2

]
=

[
0 0
0 0

]

So: 



2p12 + p2
1 = 0

p2 + p1p12 = 0

p2
12 = q2

.

Introduction to Kalman filtering Page 42/74



2.3 Corrected exercises 43

The positive solution is:

P =

[ √
2q −q

−q q
√

2q

]
⇒ Kf =

[ √
2q

−q

]
.

The filter state space equation is (from (2.7)):

[
˙̂x
˙̂
b

]
= A

[
x̂

b̂

]
+Bvm+Kf

(
xm − C

[
x̂

b̂

])
= (A−KfC)

[
x̂

b̂

]
+[Kf B]

[
xm

vm

]
,

or:

[
˙̂x
˙̂
b

]
=

[ −√2q −1

q 0

] [
x̂

b̂

]
+

[ √
2q 1

−q 0

] [
xm

vm

]
.

Question 4. An unbiased estimate of the velocity can be directly obtained by

removing the estimate of the bias from the velocity measurement vm: ̂̇x = vm − b̂.

Question 5. A state space realization of F (s) is:





[
˙̂x
˙̂
b

]
=

[ −√2q −1

q 0

] [
x̂

b̂

]
+

[ √
2q 1

−q 0

] [
xm

vm

]

[
x̂
̂̇x

]
=

[
1 0

0 −1

] [
x̂

b̂

]
+

[
0 0

0 1

] [
xm

vm

]

The associated transfer matrix F (s) is:

F (s) =

[
0 0

0 1

]
+

[
1 0

0 −1

]([
s 0

0 s

]
−

[ −√2q −1

q 0

])−1 [ √
2q 1

−q 0

]
.

That is:

[
X̂(s)
̂̇X(s)

]
=

[ √
2qs + q s

qs s2 +
√

2qs

]

s2 +
√

2qs + q

[
Xm(s)

Vm(s)

]
. (2.18)

Question 6.
̂̇X

Vm

(s) =
s2 +

√
2qs

s2 +
√

2qs + q
.

This is a second order high pass filter with a cutting pulsation
√

q (rd/s) and a

damping ratio
√

2/2 (∀q). The steady state (D. C.) gain of this filter is null (the

null frequency component, that is the bias, is filtered). The cutting frequency is as

greater as q is great, that is, as the bias may derive a lot.

If measures are perfect then xm = x and vm = ẋ. So we have:
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• Xm(s) = X(s) and Vm(s) = sX(s). Reporting this result in the first row of

(2.18), we get:

X̂(s) =
(
√

2qs + q)X(s) + s2X(s)

s2 +
√

2qs + q
⇒ X̂(s) = X(s) .

• Vm(s) = Ẋ(s) and Xm(s) = 1/s Ẋ(s). Reporting that in second row of (2.18),

we get:

̂̇X(s) =
Ẋ(s) + (s2 +

√
2qs)Ẋ(s)

s2 +
√

2qs + q
⇒ ̂̇X(s) = Ẋ(s) .

This filter does not induce any degradation of the quality of the measurement. Such

a filter is called a complementary filter.

2

2.4 Discrete-time Kalman filter

2.4.1 Discrete-time Kalman model

By analogy with the continuous-time case the discrete-time Kalman model is:
{

x(k + 1) = Adx(k) + Bdu(k) + Mdwd(k) state equation, x ∈ Rn, u ∈ Rm, wd ∈ Rq

y(k) = Cdx(k) + Du(k) + vd(k) measurement equation, y ∈ Rp, vd ∈ Rp

(2.19)

Assumptions : we will assume that:

H1: The pair (Ad, Cd) is detectable,

H2: Signals wd(k) and vd(k) are centered gaussian pseudo-white noises with

covariance matrices Wd and Vd respectively, that is:

– E[wd(k) wd(k + l)T ] = Wd δ(l),

– E[vd(k) vd(k + l)T ] = Vd δ(l)

– E[wd(k) vd(k + l)T ] = 0 (with δ(l) = 1 if l = 0; 0 else).

H3: Vd is invertible.

Remark 2.1 : While in the continuous-time case, white noises in the Kalman

model are defined by their PSD W and V (variances are infinite), discrete-time

Kalman model noises are defined by their covariance matrices Wd and Vd (variances

are finite). PSD of these discrete-time noises are constant (and equal to Wd and Vd)

but on limited range of the reduced pulsation θ ∈ [−π π] (see appendix B.1); this

is why this noise is said to be pseudo-white.
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oB (s) PLANT
u(t)

dt

w(t)
v(t)

y(t) dt
y(k)u(k)

Figure 2.10: Continuous-time plant with zero-order holds on the inputs and sampled

outputs.

u(k)
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2
t
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u(k) u(t)dt

Figure 2.11: The zero-order hold: Bo(s).

Remark 2.2 : like in the continuous-time case, if the noise wd is a colored noise

and characterized by a spectrum in the z-plane Φww(z) the factorization Φww(z) =

G(z−1)GT (z) (see section B.3.2) allows a Markov representation of wd to be de-

rived and to be taken into account in an augmented Kalman model.

2.4.2 A particular case: continuous-time plant with discrete-

time measurements

As it was previously mentioned, practical implementation of Kalman filter, even

for continuous-time plant, is performed on a numerical computer and in discrete-

time. So we will consider that the measurement of the continuous-time plant (1.1)

is sampled with a sampling period dt. We will also assume that zero-order holds

are placed on deterministic inputs u (see Figures 2.10 and 2.11) and we are going

to determine a discrete-time representation of this model.

We denote x(k dt) = x(k). From the general solution (1.3), the state equation

integration between t0 = k dt and t = (k + 1) dt reads:

x(k+1) = eAdtx(k)+

(∫ (k+1)dt

k dt

eA((k+1)dt−τ)Bdτ

)
u(k)+

∫ (k+1)dt

k dt

eA((k+1)dt−τ)Mw(τ)dτ .

The change of variable: (k + 1)dt− τ = v leads to the following results:

x(k + 1) = eAdtx(k) +

(∫ dt

0

eAvBdv

)
u(k) +

∫ dt

0

eAvMw((k + 1)dt− v)dv .

The measurement equation is a static equation and then, at each sampling time, we
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Φ
vv

( ω) 

ω −π/dt π/dt 0 

V 

Figure 2.12: Frequency-domain limitation of the continuous-time measurement

noise.

can write:

y(k) = Cx(k) + Du(k) + v(k)

The discrete time state equation is expressed under the form of (2.19) with:

Ad = eAdt, Bd =
∫ dt

0
eAvBdv, Md = In, Cd = C, (2.20)

The discrete-time state and measurement noises read:

wd(k) =

∫ dt

0

eAvMw((k + 1)dt− v)dv, vd(k) = v(kdt) ,

It is required to characterized them by their respective covariance matrices Wd and

Vd.

Due to sampling, the covariance matrix of discrete-time measurement noise

becomes:

Vd = V/dt . (2.21)

Justification: The continuous-time measurement equation y(t) = Cx(t)+Du(t)+

v(t) involves a white noise v(t) with an infinite variance and a finite PSD V . The

sampling of the measurement with a sampling step dt provides a numerical series

y(k) with an infinite variance and makes the Kalman filter design to be singular.

The frequency domain response (or the PSD) of noise v(t) must be limited between

−π/dt and π/dt to sample correctly the measurement y(t). One can recognize an

analogy with the Shannon condition for deterministic signals; that is: the sampling

cannot allow to take into account the signal components with a pulsation higher

than π/dt. The PSD of the continuous-time noise, limited in frequency domain, is

depicted in Figure 2.4.2. The variance of such a random signal is now finite and is
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equal to (see remark 1.3):

σ2
v =

1

2π

∫ +∞

−∞
Φvv(ω)dω =

V

2π

∫ π
dt

− π
dt

dω =
V

dt
.

As the sampling of a signal does not change its variance, the discrete-time measure-

ment equation is: y(k) = Cx(k) + Du(k) + vd(k) with E[vd(k) vd(k + l)T ] = V
dt

δ(l).

2

Now we have to compute the covariance matrix Wd of the state noise wd(k):

Wd = E[wd(k)wT
d (k)] = E

[∫ dt

0

eAvMw((k + 1)dt− v)dv

∫ dt

0

wT ((k + 1)dt− τ)MT eAT τdτ

]

=

∫ ∫ dt

0

eAvME[w((k + 1)dt− v)wT ((k + 1)dt− τ)]MT eAT τdvdτ

=

∫ ∫ dt

0

eAvMWδ(τ − v)MT eAT τdvdτ

Wd =
∫ dt

0
eAvMWMT eAT vdv . (2.22)

Remark 2.3 : We mention in appendix B (see remark B.2, equation (B.13)) how

Wd can be computed; but we can also use the approximation Wd ≈ dtMWMT if dt is

small with respect to the settling time of the plant. Lastly, we have to keep in mind

that all these formulaes are embedded in Matlab macro-functions lqed or kalmd.

These functions allow a discrete-time Kalman filter to be designed directly from

the continuous-time data (A, B, C, D, M , W and V ) and a sampling period dt (see

the Matlab illustration in appendix C.3). Such an approach (and such functions)

cannot bear correlation between measurement and state noises.

2.4.3 Recurrent equations of discrete Kalman filter

The discrete Kalman filter principle is the same than in the continuous-time case.

It involves a prediction based on the deterministic model and a correction (updating)

based on the innovation (difference between the measurement and its prediction) but

in the discrete-time case, we will distinguish:

• the predicted state at time k + 1, denoted x̂(k + 1|k), knowing all the mea-

sures until time k; which is associated with the prediction error covariance

matrix denoted:

P (k + 1|k) = E
[(

x(k + 1)− x̂(k + 1|k)
)(

x(k + 1)− x̂(k + 1|k)
)T ]

.
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• the estimated (or updated) state, denoted x̂(k + 1|k + 1), knowing all the

measures until time k + 1 (just after the correction or the updating); which is

associated with the estimation error covariance matrix, denoted:

P (k +1|k +1) = E
[(

x(k +1)− x̂(k +1|k +1)
)(

x(k +1)− x̂(k +1|k +1)
)T ]

.

Prediction: at time k, we know x̂(k|k) and we predict the state at time k + 1

using the deterministic model

x̂(k + 1|k) = Adx̂(k|k) + Bdu(k) . (2.23)

At time k, the estimation error was characterized by P (k|k). The prediction model

being wrong, the error can only increase and this error at time k + 1 will be char-

acterized by (see theorem B.1 in appendix) :

P (k + 1|k) = AdP (k|k)AT
d + MdWdM

T
d (2.24)

Correction: at time k + 1, the prediction is updated with the innovation

through the filter gain Kf (k + 1):

x̂(k + 1|k + 1) = x̂(k + 1|k) + Kf (k + 1)
(
y(k + 1)− Cdx̂(k + 1|k)−Du(k + 1)

)
.

(2.25)

Using the measurement equation of model (2.19), we can write:

x(k+1)−x̂(k+1|k+1) =
(
In−Kf (k+1)Cd

)
(x(k+1)−x̂(k+1|k))−Kf (k+1)vd(k+1) and :

P (k + 1|k + 1) =
(
In −Kf (k + 1)Cd

)
P (k + 1|k)

(
In −Kf (k + 1)Cd

)T

+ Kf (k + 1)VdK
T
f (k + 1)

= P (k + 1|k)−Kf (k + 1)CdP (k + 1|k)− P (k + 1|k)CT
d KT

f (k + 1) · · ·
· · ·+ Kf (k + 1)

(
CdP (k + 1|k)CT

d + Vd

)
KT

f (k + 1) . (2.26)

Like in the continuous-time case, we are looking for Kf (k + 1) which minimises

trace(P (k + 1|k + 1)) :

∂trace(P (k + 1|k + 1))

∂Kf (k + 1)
= −2P (k + 1|k)CT

d + 2Kf (k + 1)
(
CdP (k + 1|k)CT

d + Vd

)
.

One can deduce:

Kf (k + 1) = P (k + 1|k)CT
d

(
CdP (k + 1|k)CT

d + Vd

)−1

. (2.27)
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Returning this expression in 2.26, we get:

P (k + 1|k + 1) =
(
In −Kf (k + 1)Cd

)
P (k + 1|k) . (2.28)

The set of equations (2.23), (2.24), (2.25), (2.27) and (2.28) constitutes the discrete-

time Kalman filter. Equations (2.23) and (2.25) are initialized with x̂(0|0), the

initial estimate and equations (2.24), (2.27) and (2.28) are initialized with P (0|0),

the confidence we have in the initialization.

If the model and noises are stationary, equations (2.24), (2.27) and (2.28) can

be integrated off-line. Removing (2.27) and (2.28) in (2.24), one can find a recurrent

Riccati equation in the prediction error covariance:

P (k+1|k) = AdP (k|k−1)AT
d−AdP (k|k−1)CT

d

(
CdP (k|k−1)CT

d +Vd

)−1

CdP (k|k−1)AT
d +MdWdM

T
d .

(2.29)

Lastly, in steady state, Kf (k + 1) = Kf (k) = Kf , but on can distinguish:

• Pp = P (k + 1|k) = P (k|k− 1) = · · ·: the prediction error covariance matrix in

steady state which is the positive solution of the algebraic discrete Riccati

equation:

Pp = AdPpA
T
d − AdPpC

T
d (CdPpC

T
d + Vd)

−1CdPpA
T
d + MdWdM

T
d . (2.30)

• Pe = P (k + 1|k + 1) = P (k|k) = · · ·: the estimation error covariance matrix

in steady state:

Pe = (I −KfCd)Pp .

Then, the state space realization of the stationary (steady state) Kalman filter is

(with (2.25) in (2.23)):





x̂(k + 1|k) = Ad(I −KfCd)x̂(k|k − 1) +[AdKf Bd − AdKfD]

[
y(k)

u(k)

]

x̂(k|k) = (I −KfCd)x̂(k|k − 1) +[Kf −KfD]

[
y(k)

u(k)

]

(2.31)

The state of this realization is the predicted state, the output is the estimated state.

Remark 2.4 :

• 0 < Pe < Pp. Indeed, from (2.27) and (2.28), we get:

Pe = Pp − PpC
T
d (CdPpC

T
d + Vd)

−1CdPp .

The second term of the right-hand member is always positive, thus: Pe < Pp,

that is the estimation error variance is always lower than the prediction error

variance (or the state noise variance propagated in the state equation).
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• Lastly the (un-noised) output yp(k) = Cdx(k) + Du(k) can be estimated by

ŷp(k) = Cdx̂(k|k) + Du(k). The estimation error covariance for this output

reads:

CdPeC
T
d = CdPpC

T
d −CdPpC

T
d (CdPpC

T
d +Vd)

−1CdPpC
T
d = CdPpC

T
d (CdPpC

T
d +Vd)

−1Vd .

That is:

CdPeC
T
d −Vd =

(
CdPpC

T
d (CdPpC

T
d +Vd)

−1−I
)
Vd = −Vd(CdPpC

T
d +Vd)

−1Vd < 0 .

So: CdPeC
T
d < Vd i.e. ŷp(k) is a better estimate of yp that the direct measure-

ment.

• The way to solve Discrete-time Algebraic Riccati Equations (DARE) are not

detailed here. Macro-functions (lqe in Scilab or dlqe, dare, kalman in Mat-

lab) allow such equations to be solved, that is: to compute Kf and to provide

the state space realization (2.31) of the filter in steady state. The way to use

these function is illustrate in the Matlab session presented in appendix C.3.

Exercise 2.1 Demonstrate that in the case of a continuous-time plant with discrete-

time sampled output (with a sampling period dt),

• the continuous-time Kalman filter designed from continuous-time data (A,

B, M , C, W , V ) and then discretized by theEuler method

• and discrete-time Kalman filter designed from equations (2.20), (2.21) and

(2.22)

tend towards the same solution as dt tends towards 0 (first order calculus in dt).

Solution : The continuous-time Kalman filter is defined by equations (2.7), (2.13)

and (2.14). The Euler method consists in removing ˙x(t) and x(t) by x(k+1)−x(k)
dt

and x(k), respectively. Removing (2.13) in (2.7), this first discrete-time filter is

defined by:





P (k + 1) = P (k) + dt
(
AP (k) + P (k)AT − P (k)CT V −1C(k)P + MWMT

)

x̂(k + 1) = x̂(k) + dt
(
Ax̂(k) + Bu(k) + P (k)CT V −1

(
y(k)− Cx̂(k)−Du(k)

))

(2.32)

The prediction error covariance of the discrete-time Kalman filter is given by equa-

tion (2.29), let us denote P (k|k − 1) = P (k), then using equations (2.20), (2.21)

and (2.22) and with the first order approximation Wd ≈ dtMWMT , we get:

P (k+1) ≈ eAdtP (k)eAT dt−eAdtP (k)CT
(
CP (k)CT +V/dt

)−1

CP (k)eAT dt+dtMWMT .
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Or with a first order expansion:

P (k + 1) ≈ (I + Adt)P (k)(I + AT dt) + dtMWMT

−dt(I + Adt)P (k)CT
(
I − dtV −1CP (k)CT

)
V −1CP (k)(I + AT dt)

≈ P (k) + dt
(
AP (k) + P (k)AT − P (k)CT V −1CP (k) + MWMT

)
+ dt2(· · ·) .

So one can recognize (at the first order) the first equation of (2.32). The gain Kf

becomes:

Kf (k) = P (k)CT
(
CP (k)CT V −1dt + I

)−1

V −1dt ≈ P (k)CT V −1dt,

and the state equation of the filter (equation (2.31)) becomes (we denote x̂(k|k−1) =

x̂(k) and we use also the first order approximation: Bd ≈ dtB):

x̂(k + 1) = eAdt
(
I − dtP (k)CT V −1C

)
x̂(k) + dteAdtP (k)CT V −1y(k)

+
(
Bd − dt eAdtP (k)CT V −1D

)
u(k)

≈ (I − Adt)
(
I − dtP (k)CT V −1C

)
x̂(k) + dt(I − Adt)P (k)CT V −1y(k)

+
(
Bd − dt(I − Adt)P (k)CT V −1D

)
u(k)

≈ x̂(k) + dt
(
Ax̂(k) + Bu(k) + P (k)CT V −1

(
y(k)− Cx̂(k)−Du(k)

))
+ dt2(· · ·) .

In the first order approximation, we recognize the second equation (2.32). So both

discrete-time filters are equivalent when dt tends toward 0.

2.4.4 Example

Let us consider again exercise 2.3.2 on the bias estimation. We wish to implement

the filter on a numerical computer, both measurements vm and xm being sampled

with the sampling period dt.

• Provide state-space equations of the discrete-time Kalman model with [x(k), b(k)]T

as state vector.

• Compute using Matlab the gain Kf and the estimation error covariance in

steady state.

Numerical application: dt = 0.01 s, V = 1, q = 1.

Correction: The computation of discrete-time model consist in applying formulaes

(2.20), (2.21) and (2.22) to the continuous-time model defined by equation (2.17).
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We assume the velocity measurement vm(k) constant on a sampling period (that

corresponds to introduce a zero-order hold). So we can write:

Ad = e


 0 −dt

0 0




=

[
1 0

0 1

]
+

[
0 −dt

0 0

]
+

[
0 0

0 0

]
+ · · · =

[
1 −dt

0 1

]
,

Bd =

∫ dt

0

[
1 −v

0 1

] [
1

0

]
dv =

[
dt

0

]
,

Cd = [1 0] , Vd =
1

dt
,

Wd =

∫ dt

0

[
1 −v

0 1

] [
0 0

0 q2

] [
1 0

−v 1

]
dv =

∫ dt

0

[
q2v2 −q2v

−q2v q2

]
dv

⇒ Wd =

[
1
3
q2 dt3 −1

2
q2 dt2

−1
2
q2 dt2 q2 dt

](
≈

[
0 0

0 q2 dt

])
.

The discrete-time Kalman model is thus defined by:





[
x(k + 1)

b(k + 1)

]
=

[
1 −dt

0 1

] [
x(k)

b(k)

]
+

[
dt

0

]
vm(k) + wd(k)

xm(k) = [ 1 0 ]

[
x

b

]
+ vd(k)

(2.33)

The reader will find in appendix C.3 the Matlab file demoKalmand allowing the

various model parameters to be computed and also the gain Kf and the steady state

estimation error covariance (from function dlqe). We also show how the function

lqed can be used directly from the data of the continuous-time model.

2

2.5 Exercises

2.5.1 Second order system:

A mobile with a mass m is moving along Ox axis due to a force (command) u(t).

A perturbation force w(t) acts also on this mass. w(t) is modelled as a gaussian

centered white noise with a PSD W . The position x(t) of this mass is measured.

We denote xm(t) this measurement which is perturbed by a gaussian centered white

noise v(t) with a PSD V .

A.N.: m = 1 (Kg); W = 1 (N2/Hz); V = ρ2 (m2/Hz) .

From the measurement xm and the command u, we wish to design a Kalman

filter allowing the position x(t) and the velocity ˙x(t) of the mobile to be estimated.

These estimates are denoted x̂(t) and ̂̇x(t).
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1) Give the state space equations of the Kalman model.

2) Compute the Kalman gain in steady state (as a function of ρ).

3) Compute the transfer matrix F (s) of the filter:

[
X̂(s)
̂̇X(s)

]
= F (s)

[
Xm(s)

U(s)

]

4) Comment this transfer (frequency-domain responses of the various compo-

nents, influence of ρ).

5) This filter will be implemented in a numerical computer with a sampling period

dt. Give the state space equations of the discrete-time model and the recurrent

equations of the discrete-time Kalman filter. We denote x̂0 and ̂̇x0 the initial

position and velocity, and P0 the initial estimation error covariance.
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Chapter 3

About physical units

It is important to provide physical units for the characteristics of random signals we

are going to use or simulate. The aim of this brief chapter is to clarify this point.

First of all, we recall that: if u stands for the physical unit of a random variable

X , then its distribution function has no unit and the probability density function

f(x) is in u−1.

If u stands for the physical unit of a continuous-time random signal w(t) than

physical units of various stochastic characteristics are given in Table 3.1 (equations,

allowing the dimension homogeneity to be checked, are also referenced).

Variable Notation Physical unit Equations

signal w(t) u

mean E[w(t)] u (1.8) and (1.5)

auto-correlation (variance) φww(t, τ) u2 (1.9) and (1.6)

spectrum in the s-plane (and PSD) Φww(s) u2 s or (u2/Hz) (1.10)

Table 3.1: Physical units for continuous-time random signal characteristics.

In the case of a discrete-time random signal, the reader will consult Table 3.2

(see also appendix B.1).

Variable Notation Unité physique

signal w(n) u

mean E[w(n)] u

auto-correlation (variance) φww(n, k) u2

spectrum in the z-plane (and PSD) Φww(z) u2

Table 3.2: Physical units for discrete-time random signal characteristics.
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One can remark a factor time (s) between the continuous-time PSD (or spec-

trum in the s-plane) and the discrete-time PSD (or spectrum in the z-plane). Equa-

tion (2.21), used for the discretization of the measurement equation of a continuous-

time system is homogeneous with that. To characterize a continuous-time noise on a

signal expressed in u, some authors specify the square root of the PSD which is thus

expressed in u/
√

Hz (and which is wrongly considered as a standard deviation).

If we consider now the continuous-time Kalman model (2.1) and if u stands

for the physical unit of the state variable x(t), then the physical unit of the state

noise wx(t) = Mw(t) is u/s and its DSP Wx = MWMT is expressed in u2/s.

In the case of discrete-time Kalman filter (2.19), if u stands for the physical

unit of x(k) (and also of x(k +1)) then Mdwd(k) is also expressed in u and the PSD

of the state noise MdWdM
T
d is expressed in u2. Equation (2.22) used to discretize

a continuous-time state noise or the approximation Wd = W dt respect also this

homogeneity.
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Appendix A

State space equation integration

A.1 Continuous-time case

Let us consider a continuous state space model:
{

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(A.1)

The response of this model to deterministic input on the time range t ∈ [t0, t] and

to initial conditions x(t0) is:

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ) dτ (A.2)

y(t) = Cx(t) + Du(t) (A.3)

Proof: the general solution of the state equation ”without second member”

ẋ(t)− Ax(t) = 0 is:

x(t) = eAtK .

A particular solution can be derived using the ”varying constant method” (K →
K(t)) :

AeAtK(t) + eAtK̇(t) = AeAtK(t) + Bu(t) (A.4)

K̇(t) = e−AtBu(t) (A.5)

K(t) =

∫ t

t0

e−AτBu(τ) dτ + K0 (A.6)

⇒ x(t) = eAtK0 +

∫ t

t0

eA(t−τ)Bu(τ) dτ . (A.7)

Taking into account the initial condition at t = t0 yields to K0 = e−At0x(t0) and

allows to find a unique solution (A.2). Lastly, the output equation is static : y(t) =

Cx(t) + Du(t).
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2

Remark A.1 Using (A.2) with t0=0, x0 = 0 and u(t) = δ(t) (Dirac function),

the impulse response of the system defined by (A, B, C, D) is:

f(t) = CeAtB + Dδ(t) ∀t ≥ 0 (f(t) = 0 si t < 0) .

The Laplace transform: F (s) =
∫ +∞

0
f(τ)e−τsd τ allows to find the well-known

result:

F (s) =

∫ +∞

0

(CeAτB+Dδ(τ))e−τsd τ = C(sI−A)−1B+D (∀s ∈ convergence domain).

(A.8)

Example A.1 Let us consider the second order model: Y (s)
U(s)

= 1
(s+1)2

.

• a) compute the system impulse response,

• b) compute the response of the system to initial conditions y(0) = y0 and

ẏ(0) = ẏ0 (with t0 = 0).

Correction: If the use of Laplace transform pair table allows the question a) to be

solved directly: y(t) = te−t, it is strongly recommended to use a state space approach

and equation (A.2) to solve question b). Let us consider a Jordan realization of

the plant: 



ẋ =

[ −1 1

0 −1

]
x +

[
0

1

]
u

y = [ 1 0 ] x

. (A.9)

As a diagonal form cannot be computed for the dynamic matrix A (one multiple

eigenvalue of order 2), the computation of the matrix exponential eAt can be per-

formed using a Taylor series expansion:

eAt = I + At +
A2t2

2!
+

A3t3

3!
+

A4t4

4!
+ · · · .

Then we get:

e


 −t t

0 −t




=

[
1− t + t2

2!
− t3

3!
+ · · · t− t2 + t3

2!
− t4

3!
+ · · ·

0 1− t + t2

2!
− t3

3!
+ · · ·

]
=

[
e−t te−t

0 e−t

]
.

Impulse response: with t0 = 0, x(t0) = 0 and u(t) = δ(t) (Dirac function), equation

(A.2) becomes :

x(t) =

∫ t

0

[
(t− τ)eτ−t

eτ−t

]
δ(τ)dτ =

[
te−t

e−t

]
et y(t) = [1 0]x(t) = te−t .
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Response to initial conditions (u(t) = 0): a relationship between the state vector x =

[x1, x2]
T and the vector composed of the output y and its derivative ẏ, on which the

initial conditions are formulated, must be established. The measurement equation

and its derivation allow to write:[
y

ẏ

]
=

[
1 0

−1 1

]
x ⇒ x(t0) =

[
1 0

1 1

] [
y0

ẏ0

]
.

So:

y(t) = CeAtx(t0) = [1 0]

[
e−t te−t

0 e−t

] [
1 0

1 1

] [
y0

ẏ0

]
= e−t(1 + t)y0 + te−tẏ0 .

Remark: an horizontal companion realization can be also used: then the state vector

is composed of the output and its derivative:
[

ẏ

ÿ

]
=

[
0 1

−1 −2

] [
y

ẏ

]
+

[
0

1

]
u . (A.10)

The computation of the matrix exponential is now:

e


 0 t

−t −2t




=

[
e−t(1 + t) te−t

−te−t e−t(1− t)

]
.

2

A.2 Discrete-time case

Let us consider a discrete-time state space model:
{

x(k + 1) = Adx(k) + Bdu(k)

y(k) = Cdx(k) + Du(k)
(A.11)

The response to deterministic inputs u(.) over a time range [k0, k] and to initial

conditions x(k0) = x0 is:

x(k) = Ak−k0
d x0 +

k−1∑

i=k0

Ai−k0
d Bdu(k − 1− i + k0) (A.12)

y(k) = Cdx(k) + Du(k) . (A.13)

The proof is directly given solving the state-space recurrent equation:

x(k) = Adx(k − 1) + Bdu(k − 1)

= A2
dx(k − 2) + AdBdu(k − 2) + Bdu(k − 1)

= · · ·
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62 A. State space equation integration

Remark A.2 Using (A.12) with k0=0, x0 = 0 and u(i) = δ(i) (discrete Dirac

function: δ(0) = 1; δ(i) = 0 if i 6= 0), the impulse response of the system defined by

(Ad, Bd, Cd, D) is therefore:

f(0) = D, f(i) = CdA
i−1
d Bd ∀i ≥ 1 (f(i) = 0 si i < 0) .

The Z-transform: F (z) =
∑∞

i=0 f(i)z−i allows to find the well-known result:

F (z) =
∞∑
i=1

CdA
i−1
d Bdz

−i+D = Cd(zI−Ad)
−1Bd+D (∀z ∈ domaine de convergence).

(A.14)
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Appendix B

Transmission of random signals

and noises in linear systems

The following proofs are extracted from reference [4] and adapted to the notation

of this document.

B.1 Additional background: discrete random sig-

nals

The notions introduced in chapter 1 are extended here to the discrete-time case .

Let w(n) be a sequence of random variables.

• Expected value (mean) : m(n) = E[w(n)].

• Autocorrelation function : φww(n, k) = E[w(n)wT (n + k)].

• Wide-sense stationarity: m(n) = m; φww(n, k) = φww(k) ∀n .

• Variance : σ2
w = φww(k)|k=0 .

• Spectrum in the z-plane :

Φww(z) =
∞∑

k=−∞
φww(k)z−k , and reciprocally :

φww(k) =
1

2πj

∫

cercle unité
Φww(z)zk−1dz =

1

2π

∫ π

−π

Φww(ejθ)ejθkdθ .

• Power Spectral Density (PSD): this function of the pulsation ω assumes the

introduction of a time scale. So, the sampling period dt between each sample
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of the sequence w(n) is introduced.

Φww(ω) = Φww(z)|z=ejωdt

Then, we can state:

φww(k) =
dt

2π

∫ π/dt

−π/dt

Φww(ω)ejω dt kdω and σ2
w =

dt

2π

∫ π/dt

−π/dt

Φww(ω)dω .

The variance is equal (with a factor dt/2/π) to the integral of the PSD between

−π/dt et π/dt.

B.2 Time-domain approach

B.2.1 Continuous-time case

Theorem 1.1 (recall of page 21). Let us consider the continuous-time linear

system:
˙x(t) = Ax(t) + Mw(t) . (B.1)

w(t) is a centered gaussian white noise with a PSD W . Let us denote m(t0) and

P (t0) the mean vector and the covariance matrix of the initial state x(t0) (also a

gaussian random variable independent of w(t)). It is shown that x(t) is a gaussian

random signal:

• with mean vector:

m(t) = E[x(t)] = eA(t−t0)m(t0)

• and a covariance matrix P (t) = E[(x(t)−m(t))(x(t)−m(t))T ] solution of the

differential Lyapunov equation:

˙P (t) = AP (t) + P (t)AT + MWMT . (B.2)

If the system is stable (all the eigenvalues of A have a negative real part) a

steady state is reached: Ṗ = 0 and P (t) = P is then solution of the continuous-

time Lyapunov equation:

AP + PAT + MWMT = 0 . (B.3)

Proof: The integration of equation (B.1) from initial time t0 and running time t

yields to:

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Mw(τ)dτ

x(t) is thus a combination of random gaussian signals (x(t0) and w(τ)), so x(t) is

also a gaussian random signal. Let us compute its mean m(t) = E(x(t)] and its

covariance matrix P (t) = E[(x(t)−m(t))(x(t)−m(t))T ].
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Mean m(t):

m(t) = eA(t−t0)E[x(t0)] +

∫ t

t0

eA(t−τ)M E[w(τ)]dτ ,

now, E[w(τ)] = 0 (centered noise) and E[x(t0)] = m(t0) so:

m(t) = eA(t−t0)m(t0) .

Covariance P (t):

x(t)−m(t) = eA(t−t0)
(
x(t0)−m(t0)

)
+

∫ t

t0

eA(t−τ)Mw(τ)dτ

= eA(t−t0)
(
x(t0)−m(t0) +

∫ t

t0

eA(t0−τ)Mw(τ)dτ
)

. (B.4)

(
x(t)−m(t)

)(
x(t)−m(t)

)T

= eA(t−t0)

((
x(t0)−m(t0)

)(
x(t0)−m(t0)

)T

+

+

∫ t

t0

eA(t0−τ)Mw(τ)
(
x(t0)−m(t0)

)T

dτ +

+

∫ t

t0

(
x(t0)−m(t0)

)
wT (τ)MT eAT (t0−τ)dτ +

+

∫∫ t

t0

eA(t0−τ)Mw(τ)wT (u)MT eAT (t0−u)dτdu

)
eAT (t−t0) . (B.5)

P (t) = eA(t−t0)

(
P (t0) +

∫ t

t0

eA(t0−τ)M E

[
w(τ)

(
x(t0)−m(t0)

)T
]
dτ+

+

∫ t

t0

E

[(
x(t0)−m(t0)

)
wT (τ)

]
MT eAT (t0−τ)dτ +

+

∫∫ t

t0

eA(t0−τ)M E

[
w(τ)wT (u)

]
MT eAT (t0−u)dτdu

)
eAT (t−t0) . (B.6)

From assumption (x(t0) and w(τ) are independent ∀ τ > t0 and w(t) is a centered

white noise), one can state:

• E

[
w(τ)

(
x(t0)−m(t0)

)T
]

= 0

• E

[
w(τ)wT (u)

]
= Wδ(τ − u).
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So:

P (t) = eA(t−t0)

(
P (t0) +

∫ t

t0

eA(t0−τ)M W MT eAT (t0−τ)dτ

)
eAT (t−t0) . (B.7)

and

˙P (t) =
dP (t)

dt
= AeA(t−t0)

(
P (t0) + · · ·

)
eAT (t−t0) + eA(t−t0)

(
P (t0) + · · ·

)
eAT (t−t0)AT

+eA(t−t0)

(
eA(t0−t)M W MT eAT (t0−t)

)
eAT (t−t0) . (B.8)

That is:
˙P (t) = AP (t) + P (t)AT + M W MT . (B.9)

Remark B.1 In steady state, the general solution of equation

AP + PAT + MWMT = 0 is:

P =

∫ ∞

0

eAtMWMT eAT tdt .

Indeed:

AP + PAT =

∫ ∞

0

AeAtMWMT eAT t + eAtMWMT eAT tAT dt

=

∫ ∞

0

d[eAtMWMT eAT t]

dt
dt

= [eAtMWMT eAT t]∞0 = 0−MWMT (iff A is stable) .

Let us denote h(t) = eAtB, ∀t ≥ 0, the impulse response of the state x, one can

write:

P =

∫ ∞

0

h(t)WhT (t)dt =
1

2π

∫ ∞

−∞
H(−jω)WHT (jω)dω (Parseval equality)

= [L−1
II Φxx(s)]s=0 with: Φxx(s) = H(−s)WHT (s) .

These last equalities allow to do the link with the following frequency-domain ap-

proach (theorem 1.2) and to show that the variance is (with a factor 2π) the integral

of the noise frequency response square.

B.2.2 Discrete-time case

Theorem B.1 Let us consider the discrete-time linear system:

x(k + 1) = Adx(k) + Mdwd(k) . (B.10)
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wd(k) is a pseudo-white gaussian centered noise with a PSD Wd (that is

E[wd(k)wd(k + j)T ] = Wdδ(j)) . m(0) and P (0) denote the mean vector and covari-

ance matrix of initial state x(k0) = x(0) (also a random gaussian variable indepen-

dent of wd(k)). Then x(k) is also a gaussian random signal:

• with a mean vector:

m(k) = E[x(k)] = Ak−k0
d m(0)

• and a covariance matrix P (k) = E[(x(k) −m(k))(x(k) −m(k))T ] solution of

the recurrent Lyapunov equation:

P (k + 1) = AdP (k)AT
d + MdWdM

T
d . (B.11)

If the system is stable (that is all the eigenvalues of Ad have a modulus lower

than 1) a steady state is reached: P (k + 1) = P (k) = P is solution of the

discrete-time Lyapunov equation:

P = AdPAT
d + MdWdM

T
d . (B.12)

Proof: (this proof is simpler than in the continuous-time case). In equation (A.12),

x(k) is a linear combination of gaussian random variable. Then one can conclude

that x(k) is a gaussian random variable. wd(k) being centered (∀k), one can state

that E[x(k)] = Ak−k0
d m(0).

Lastly, one can note that x(k + 1)−m(k + 1) = Ad(x(k)−m(k)) + Mdwd(k).

The independence, at each instant k, of centered variables x(k) −m(k) et wd(k)

allow us to conclude that P (k + 1) = AdP (k)AT
d + MdWdM

T
d .

Remark B.2 From equation B.7, one can derive the discrete-time Lyapunov equa-

tion for a continuous system sampled with a sampling period dt. It is sufficient to

choose t0 = n dt et t = (n + 1) dt where dt is the sampling period. Then we denote

P (t) = P (n + 1) and P (t0) = P (n), we have:

P (n + 1) = eA dtP (n)eAT dt +

∫ dt

0

eAuMWMT eAT udu

Let us remark :

• eAdt = Ad: discrete-time dynamic matrix,

• ∫ dt

0
eAuMWMT eAT udu = Wd is the covariance matrix integrated on a sampling

period,
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Then we can write:

Pn+1 = Ad Pn AT
d + Wd

(whose steady state is: Pn = Ad Pn AT
d + Wd). One find again equation (B.11) with

Md = I.

One can verify that :

• if A is invertible, Wd satisfy the Lyapunov equation:

AWd + WdA
T + MWMT − eAdtMWMT eAT dt = 0, (B.13)

• Wd ≈ dtMWMT if dt est small w.r.t. the plant dynamics.

Example B.1 (Example with Matlab) Let us consider again exercise 1.3 and

complete it by a discrete-time analysis of the variance of the noise w:

% Filter definition:

G=tf([-1 100],[1 50 10000])

% State space realization:

[A,B,C,D]=ssdata(G);

% variance determination using continuous-time Lyapunov equation:

P=lyap(A,B*B’); var_w=C*P*C’ % ==> var_w=1/50.

% Discrete-time Analysis:

dt=0.001; A_d=expm(A*dt);

Wd=lyap(A,B*B’-A_d*B*B’*A_d’); %In this example: W=I; M=B.

Pd=dlyap(A_d,Wd);var_wd=C*Pd*C’

% ==> We find excatly the variance of w(t): var_w=1/50.

% Approximative calculus using: Wd=dt*B*B’

Pdp=dlyap(A_d,dt*B*B’);var_wdp=C*Pdp*C’

% ==> That does not work too bad !!.

2

B.3 Frequency-domain approach

B.3.1 Continuous-time case

Theorem 1.2 (rappel). Let us consider a stable linear continuous-time system

defined by the transfer matrix G(s)p×q between the input w and the output y. The

steady state response y to a stationary random signal w, characterized by a spectrum
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Φww(s)q×q in the s-plane, is a stationary random signal characterized by a spectrum

Φyy(s) in the s-plane such that:

Φyy(s)p×p = G(−s)Φww(s)GT (s) .

Proof : without loss of generality the proof will consider a strictly proper system

(without direct feed-through). Let (A, M , C) be a state space realization of the

transfer G(s), i.e.: G(s) = C(sI − A)−1M .

By definition:

Φyy(s) =

∫ ∞

−∞
φyy(τ)e−τ sdτ =

∫ ∞

−∞
E

[
y(t)yT (t + τ)

]
e−τ sdτ . (B.14)

To compute y(t) during the steady state, the formulae (A.2) will be used with

x(t0) = 0 and t0 = −∞:

y(t) =

∫ t

−∞
CeA(t−u)Mw(u)du =

∫ ∞

0

CeAvMw(t−v)dv (change of variable: t− u = v) .

Φyy(s) =

∫ +∞

−∞
E

[∫ ∞

0

CeAvMw(t− v)dv

∫ ∞

0

wT (t + τ − u)MT eAT uCT du

]
e−τsdτ

=

∫ +∞

−∞

{∫ ∫ ∞

0

CeAvME
[
w(t− v)wT (t + τ − u)

]
MT eAT uCT du dv

}
e−τsdτ

=

∫ +∞

−∞

{∫ ∫ ∞

0

CeAvMev sφww(τ + v − u)e−(τ+v−u)s MT eAT uCT e−us du dv

}
dτ

=

∫ ∞

0

CeAvMev s dv

∫ +∞

−∞
φww(τ + v − u)e−(τ+v−u)s dτ

∫ ∞

0

MT eAT uCT e−us du

= G(−s)Φww(s)GT (s) from (A.8) and (B.14) .

B.3.2 Discrete-time case

Theorem B.2 (Transmission of a noise in a discrete-time linear system) Let

us consider a stable linear discrete-time system defined by the transfer matrix

G(z)p×q between the input w and the output y. The steady state response y to a

stationary random signal w, characterized by a spectrum Φww(z)q×q in the z-plane,

is a stationary random signal characterized by a spectrum Φyy(z) in the z-plane such

that:

Φyy(z)p×p = G(z−1)Φww(z)GT (z) .

Proof : without loss of generality the proof will consider a strictly proposer system

(without direct feed-through). Let (A, M , C) be a state space realization of the

transfer G(s), i.e.: G(s) = Cd(zI − Ad)
−1Md.
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By definition:

Φyy(z) =
+∞∑

i=−∞
φyy(i)z

−i =
+∞∑

i=−∞
E

[
y(k)yT (k + i)

]
z−i (B.15)

To compute y(k) during the steady state, the formulae (A.12) will be used with

x0 = 0 and k0 = −∞:

y(k) =
k−1∑

j=−∞
CdA

j−k0

d Mdw(k−1−j +k0) =
+∞∑
j=0

CdA
j
dMdw(k−1−j) (j ← j − k0) .

Φyy(z) =
+∞∑

i=−∞
E

[
+∞∑
j=0

CdA
j
dMdw(k − 1− j)

+∞∑

l=0

wT (k + i− 1− l)MT
d AT l

d CT
d

]
z−i

=
+∞∑

i=−∞

{
+∞∑
j=0

+∞∑

l=0

CdA
j
dMdE

[
w(k − 1− j)wT (k + i− 1− l)

]
MT

d AT l

d CT
d

}
z−i

=
+∞∑

i=−∞

+∞∑
j=0

+∞∑

l=0

CdA
j
dMdz

j+1φww(i− l + j)z−(i−l+j)MT
d AT l

d CT
d z−l−1

=
+∞∑
j=1

CdA
j−1
d Mdz

j

+∞∑

k=−∞
φww(k)z−k

+∞∑

l=1

MT
d AT l−1

d CT
d z−l (k = i− l + j)

= G(z−1)Φww(z)GT (z) from (A.14) and (B.15) .
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Appendix C

Matlab demo files

C.1 Function Kf t.m

function y=Kf_t(u)

% y=Kf_t(u)

% input:

% * u(1): time (t),

% * u(2:length(u)): innovation (y(t)-yhat(t))

% output:

% * y = Kf(t)*(y(t)-yhat(t))

global a c W P0

% Compute P(t):

Pinf=a+sqrt(a^2+W);

k=2*sqrt(a^2+W);

P=Pinf+k*(P0-Pinf)./(exp(k*u(1))*(P0-Pinf+k)+Pinf-P0);

% Compute Kf(t):

Kf=P*c’;

% Output

y=Kf*u(2:length(u));

C.2 Script file demoKalman.m

% Global Variable declaration

global a c W P0

% Kalman model data:
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a=-1; % state space date

b=1;

c=1;

W=1; % Process noise spectral density

V=1;

P0=1; % Initial estimation error variance

X0=20; % Initial condition for the process output

% Simulation data

dt=0.01; % Integration sampling period

T=0; % Time delay in the validation model

% Start simulation:

sim(’simuKalman’);

% Output plots:

figure plot(output.time,output.signals.values(:,1),’g-’) hold on

plot(output.time,output.signals.values(:,2),’k-’,’LineWidth’,2)

plot(output.time,output.signals.values(:,3),’k-’)

plot(output.time,output.signals.values(:,4),’r-’,’LineWidth’,2)

% Compute state estimation error variance as a function of time:

t=output.time;

Pinf=a+sqrt(a^2+W);

k=2*sqrt(a^2+W);

Pdet=Pinf+k*(P0-Pinf)./(exp(k*t)*(P0-Pinf+k)+Pinf-P0);

% plot estimation+2*sigma:

plot(output.time,output.signals.values(:,4)+2*sqrt(Pdet),’r-’)

% plot estimation-2*sigma:

plot(output.time,output.signals.values(:,4)-2*sqrt(Pdet),’r-’)

legend(’y(t)’,’x(t)’,’u(t)’,’xhat(t)’,...

’xhat(t)+2\sigma’,’xhat(t)-2 \sigma’)

return

% Solution with a 2nd order Pade approximation of a 1 second delay

% taken into account in the Kalman filter:

T=1; sys=ss(a,b,c,0);

[num,den]=pade(T,2);

ret=tf(num,den);

sysret=sys*ret;

[a,b,c,d]=ssdata(sysret);

W=1;
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[Kf,P]=lqe(a,b,c,W,1);

% Output estimation error variance:

var=c*P*c’;

% Start simulation only in steady state behavior:

X0=0;

sim(’simuKalman_p’); % same as simuKalman.mdl but

% the matlab Function Kf_t is

% replaced by a static Gain

% Output plots:

figure plot(output.time,output.signals.values(:,1),’g-’) hold on

plot(output.time,output.signals.values(:,2),’k-’,’LineWidth’,2)

plot(output.time,output.signals.values(:,3),’k-’)

plot(output.time,output.signals.values(:,4),’r-’,’LineWidth’,2)

% plot estimation+2*sigma:

plot(output.time,output.signals.values(:,4)+2*sqrt(var),’r-’)

% plot estimation-2*sigma:

plot(output.time,output.signals.values(:,4)-2*sqrt(var),’r-’)

legend(’y(t)’,’x(t)’,’u(t)’,’xhat(t)’,...

’xhat(t)+2\sigma’,’xhat(t)-2 \sigma’)

C.3 Script file demoKalmand.m

% Continuous-time model data:

A=[0 -1;0 0];

B=[1;0];

M=[0;1];

C=[1 0];

D=0;

sysc=ss(A,B,C,D);

V=1;

q=1; W=q^2;

% Continuous-time Kalman filter:

[Kf,P]=lqe(A,M,C,W,V)

dt=0.01;

% Compute Discrete-time model:

sysd=c2d(sysc,dt,’zoh’);

[A_d,B_d,C_d,D]=ssdata(sysd)
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74 C. Matlab demo files

Vd=V/dt

Wd=[1/3*q^2*dt^3 -1/2*q^2*dt^2;-1/2*q^2*dt^2 q^2*dt] % Wd can not

% be computed by a Lyapunov equation (equation B.13) since A

% is not invertible !! (see how Wd can be computed in LQED)

% Discrete-time Kalman filter using dlqe:

[Kfd1,Pd1]=dlqe(A_d,eye(2),C_d,Wd,Vd)

% Discrete-time Kalman filter using lqed (from continuous-time data):

[Kfd2,Pd2]=lqed(A,M,C,W,V,dt) %==> same solution !
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