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This paper introduces in cross standard form (CSF) as a solution to the inverse optimal

control problem. That is, the CSF is a canonical standard problem whose unique H1 or H2

optimal controller is a given controller. From the control design point of view, the general idea

is to apply the CSF to a given controller in order to set up a standard problem which can be

completed to handle frequency domain H2 or H1 specification. The analytical formulation

of the CSF proposed in this paper can be applied to reduced-, full- or augmented-order

compensators or two-degree of freedom compensations. Numerical and academic examples

are given.

1. Introduction

In most practical applications, the control design
problem is expressed in the following terms: is it possible
to improve a given controller (often, a simple low-order
controller designed upon a particular know-how or
good sense rules) to meet additional H2 or H1
specifications? or in other terms: is it possible to take
into account a given controller (which meets some
closed-loop specifications) in a standard H2 and H1
control problem? To address this problem, the notion
of cross standard form (CSF) is introduced in this paper
for a given nth-order plant and an arbitrary given
stabilizing nKth order controller. The CSF can be seen as
a solution for both inverse H1 and H2 optimal control
problems, that is: the CSF is a standard augmented
problem whose unique H1 and H2 optimal controller
is an arbitrary given controller. In Alazard et al. (2004),
the definition of the CSF was based on the possibility
to determine a minimal observed-based realization of
the initial controller (Alazard and Apkarian 1999).
In this paper this observer-based realization is no more
required and thus the CSF is directly defined by the
4 state space matrices of the plant, the 4 state space
matrices of the given controller and a solution to a

general non-symmetric Riccati equation. This new
formulation allows the CSF to be extended to the case

of low-order controller (nK<n) and also to two-degree

of freedom controllers.
The interest for inverse optimal control problems

motivates lots of works (Kalman 1964, Molinari 1973,
Fujii 1987, Fujii and Khargonekar 1988, Lenz et al.

1988, Sebe 2001). The practical interest of such solutions

lies in the possibility to mix various approaches or take

into account different kinds of specifications (Sugimoto
and Yamamoto 1987, Shimomura and Fujii 1997,

Sugimoto 1998). In the particular case of the H1
optimal control problem, the various contributions

address restrictive cases: state feedback controller in
Fujii and Khargonekar (1988), single-output–single-

output controller and specific sensitivity problem in

Lenz et al. (1988). However, a solution for the general
case (multi-input–multi-output, dynamic output feed-

back or arbitrary order) has never been stated. This

general case is addressed in Sebe (2001): for a given

weight system W(s) and a given controller K(s), the
problem is to find all the plants G(s) such that

kFl(Fi(W,G), K )k1< � (see figure 1). Note that the

problem addressed in this paper is different: the issue is

to find W(s) for a given K(s) and a given G(s). That is,
the lower right-hand transfer matrix G of the standard

augmented plant P¼Fl(W, G) must be equal to the*Corresponding author. Email: alazard@supaero.fr



model of the plant between the control input u and

the measured output y.
The convex closed-loop technique Boyd and

Vandenberghe (2003) seems also an attractive approach

to take into account a given controller and additional

H2 and H1 constraints. But such an approach needs a

Youla parameterization of the controller and so is

limited to full-order (observer-based) controllers.

Furthermore, this approach leads to very high order

controllers.
The paper is organized as follows. In x 2 the CSF is

defined as a solution to H2 and H1 inverse optimal

control problems, for an nth order linear time invariant

(LTI) system and a stabilizing nkth order LTI controller.

In x 3 an analytical expression of the CSF is proposed

for low-order controllers (nk� n) and the existence

of a CSF a discussed. In x 4 this result is extended

for augmented-order controllers and so encompasses

previous results presented in Alazard et al. (2004). A

generalization for two-degrees of freedom controllers

is also stated. Finally, an academic example is proposed

to highlight the way to use CSF to take into account

an initial low-order compensator and a robustness

specification in an augmented standard problem.

2. Definitions

Nomenclature

AT A transposed
Aþ Moore-Penrose pseudo-inverse ofmatrixA
A? Orthonormal basis for the null space ofA
In n� n identity matrix
_x time derivation ð _x ¼ dx=dtÞ
s Laplace variable
Fl(P,K ) Lower linear fractional transformation

of P and K

Fu(P,�) Upper linear-fractional transformation
of P and �

kG(s)k2 H2 norm of the stable system G(s)
kG(s)k1 H1 norm of the stable system G(s)

GðsÞ :¼
h
A B
C D

��� i
shorthand for G(s)¼C(sI� A)�1BþD

The general standard plant between exogenous input w,
control input u, controlled output z and measurement
output y is denoted

PðsÞ ¼
PzwðsÞ PzuðsÞ

PywðsÞ PyuðsÞ

� �
,

with corresponding state space realization

PðsÞ :¼

Ap B1 B2

C1 D11 D12

C2 D21 D22

26664
37775: ð1Þ

2.1. An inverse optimal control problem

Consider the stabilizable and detectable nth order
system G(s) (m inputs and p outputs) with minimal
state-space realization

_x

y

� �
¼

A B

C D

� �
x

u

� �
: ð2Þ

Consider also the stabilizing nkth order controller K0(s)
with minimal state-space realization

_xk
u

� �
¼

Ak Bk

Ck Dk

� �
xk
y

� �
: ð3Þ

Definition 1: Inverse H2 optimal problem
Find a standard plant P(s) such that

. Pyu(s)¼G(s),

. K0 stabilizes P(s),

. K0(s)¼ argminK(s) kFl(P(s), K(s))k2,

(namely: K0(s) minimizes kFl(P(s), K(s))k2).

Definition 2: Inverse H1 optimal problem
Find a standard plant P(s) such that

. Pyu(s)¼G(s),

. K0 stabilizes P(s),

. K0(s)¼ arg minK(s) kFl(P(s), K(s))k1.

2.2. Cross standard form

Definition 3: Cross standard form
If the standard plant P(s) is such that the 4 conditions

. C1: Pyu(s)¼G(s),

. C2: K0 stabilizes P(s),

G

K

y

z

u

w

P

W =

W11 W12 W13

W21 0 I

W31 I 0

Figure 1. Block diagram of standard plant P, weight function
W, model G and controller K.



. C3: Fl(P(s), K0(s))¼ 0,

. C4: K0 is the unique solution of the optimal H2 or

H1 problem P(s),

are met, then P(s) is called the CSF associated with the

system G(s) and the controller K0(s) and will be denoted

PCSF(s) in the sequel.
By construction, the CSF solves the inverse H2

optimal problem and the inverse H1 optimal problem.

Note that the uniqueness condition C4 is relevant in our

context since we are looking for an H2 or H1 design to

recopy a given controller.

3. Low-order controller case (nk· n)

3.1. General results

The following proposition provides a general analytical

characterization of the CSF.

Proposition 1: For a given stabilizable and detect-

able nth order system G(s) (2) and a given stabilizing

nkth order controller K0(s) (3) with nk< n, a CSF

reads

PCSFðsÞ :¼

A T#Bk�BDk B

�CkT�DkC DkDDk�Dk Im�DkD

C Ip�DDk D

26664
37775,
ð4Þ

where T is a full row-rank matrix, solution of the

generalized Riccati equation

�T I
� �

Acl
I
T

� �
¼ 0, ð5Þ

where Acl is the stable closed-loop dynamic matrix

Fl(G, K0)

Acl ¼
AþBðI�DkDÞ

�1DkC BðI�DkDÞ
�1Ck

BkðI�DDkÞ
�1C AkþBkDðI�DkDÞ

�1Ck

" #
,

ð6Þ

and where T# is a right inverse of T, such that TT# ¼ Ink
(see also Proposition 2).

Proof: From (4), it is obvious that conditions C1 and

C2 are met. In the sequel of the demonstration, without

loss of generality, the feed-through matrix D of

system G is assumed to be null. Then, equations (4)

and (5) become

PCSFðsÞ :¼

A T#Bk � BDk B

�CkT�DkC �Dk Im

C Ip 0

26664
37775 ð7Þ

and

TðAþ BDkCÞ þ TBCkT� BkC� AkT ¼ 0: ð8Þ

A state space realization of Fl(PCSF,K0) associated

with state vector xT, xTk
� �T

reads

FlðPCSF,K0Þ :¼

Aþ BDkC BCk T#Bk

BkC AK Bk

�CkT Ck 0

2664
3775:

Let us consider the change of state coordinates

M ¼M�1 ¼
In 0

T �Ink

� �
, ð9Þ

where T is a solution of (5) and TT# ¼ Ink . The new state

space realization of Fl(PCSF,K0) reads

FlðPCSF,K0Þ

:¼

Aþ BðDkCþ CkT Þ �BCk T#Bk

0 AK � TBCk 0

0 �Ck 0

26664
37775:
ð10Þ

Therefore then nþ nk stable close-loop eigenvalues

are composed of

. n eigenvalues of AþB(DkCþCkT ) which are

unobservable by the controlled output z of PCSF,
. nk eigenvalues of Ak�TBCk which are uncontrollable

by the exogenous input w of PCSF.

Thus, condition C3 is met

FlðPCSFðsÞ,K0ðsÞÞ ¼ 0:

In the next section it is shown that it is always possible

de find a right inverse T# of T such that the uniqueness

condition C4 is met and that ends the proof. œ

The general block-diagram associated with PCSF is

depicted in figure 2. One can notice that the CSF is a

one block problem and can be seen as a combination

of well-known output estimation (OE) problem and



disturbance feed-forward (DF) problem (Zhou et al.
1996). So, if both cross transfers, Pzu(s) and Pyw(s), are
minimum phase (no zero in the closed right half plane),
then both H2 and H1 syntheses converge towards the
same H1performance index (�) (Zhou 1992). But for the
standard problem PCSF, one can state that �¼ 0 and
that both syntheses are exactly equal.

3.2. Uniqueness condition

The uniqueness condition (C4) can be proven
considering the H2-optimal controller of PCSF. First
of all, in order to make the direct feed-trough between
exogenous inputs and controlled outputs in PCSF vanish,
a simple change of variable (u u�Dky) is performed
to transform PCSF into the problem (remember the
assumption D¼ 0)

PCSFðsÞ :¼

Aþ BDkC T#Bk B

�CkT 0 Im

C Ip 0

26664
37775 ð11Þ

and thus

FlðPCSF,KÞ ¼ FlðPCSF,K�DkÞ,

argmin
K
jjFlðPCSF,K Þjj ¼ argmin

K
jjFlðPCSF,K Þjj þDk:

In Doyle et al. (1989) and Zhou et al. (1996), it is
demonstrated that a standard problem P has a unique
H2-optimal controller if and only if P is a regular
problem. That is, in our case, if cross transfers

PzuðsÞ :¼
Aþ BDkC B

�CkT Im

24 35
and

PywðsÞ :¼
Aþ BDkC T#Bk

C Ip

24 35

have no invariant zeros on the j! axis. It is clear that
the n zeros of Pzu(s) are the n eigenvalues of �zu¼Aþ
B(DkCþCkT ) and, considering (10), belong to the set
of nþ nk closed-loop eigenvalues and thus, are stable by
assumption. So, Pzu(s) has no zeros on the j! axis.

The problem of the zeros of Pyw(s) is more complex,
the n zeros of Pyw(s) are the n eigenvalues of �yw¼
AþBDkC�T#BkC. Then, pre-multiplying �yw by
N ¼ ½Tþ T?� , post-multiplying by N�1 ¼ ½TT T?�

T

and using (8) we have

N�1�ywN¼
Ak�TBCk 0

� T?
T

ðAþBDkC�T#BkCÞT
?

� �
:

So, the n zeros of Pyw(s) are composed of

. nk eigenvalues of Ak�TBCk. Considering (10), these
eigenvalues belong to the set of nþ nk closed-loop
eigenvalues and thus, are stable by assumption,

. n� nk eigenvalues of ’ðT#Þ ¼ T?
T

ðAþ BDkC�
T#BkC)T

? whose location in the complex plane is
discussed in the following proposition.

Proposition 2: It is always possible to find a right
inverse T# of T such that all the n� nk eigenvalues of
�(T#) (and thus all the n zeros of the cross transfer Pyw)
are not on the j! axis.

Proof: The set of right-inverse matrices of T can be
parameterized in the following way (Brookes 2005):

T# ¼ Tþ þ T?X,

where X is a (n� nk)� nk arbitrary matrix. Then

’ðT#Þ ¼ ’ðX Þ ¼ T?
T

ðAþ BDkCÞT
? � XBkCT

?: ð12Þ

X allows the n� nk eigenvalues of � to be assigned
in the s plane (see numerical example in remark 3).
The computation of X is in fact an eigenvalue assign-
ment problem by a state feedback XT on the pair
ðT?

T

ðAþ BDkCÞ
TT?, ðBkCT

?Þ
T
Þ. œ

Therefore, Proposition 2 allows to state that Pzu(s) has
no zeros on the j! axis. Thus PCSFðsÞ is regular and K0(s)
is the unique solution of the H2-optimal problem PCSF.

As Fl(PCSF,K0)¼ 0, all controllers solution of
the H1-optimal problem are also solutions of the
H2-optimal problem. Thus K0(s) is also the unique
solution of the H1-optimal problem PCSF.

3.3. Existence of a CSF for a given {G(s), K0(s)}

The CSF setup is based on the existence of a full
row rank matrix T (solution of the generalized Riccati

+
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Figure 2. Block-diagram of cross standard form.



equation (5)). This Riccati equation can be solved using

the technique of invariant subspaces.

(i) Find an invariant subspace (S¼ Im(U)) of

dimension n of Acl

AclU�U�: ð13Þ

This subspace is associated with a set of n

eigenvalues, spec(�), among nþ nk eigenvalues of

Acl. Such subspaces can be calculated with a

Schur decomposition of Acl (see Golub and van

Loan (1996) for more details).
(ii) Split the vectors of U.

U ¼
U1

U2

� �
, U1 2 R

n�n

(iii) Calculate the solution T ¼ U2U
�1
1 :

The existence of such a matrix T, when Acl has distinct

eigenvalues, is demonstrated in Narasimhamurthi and

Wu (1977). However in general case, T is not unique.

Furthermore T must be right invertible (i.e. U2 must be

full row rank).
Some necessary conditions for U1 to be invertible

and U2 to be full row rank can be given.

. All uncontrollable eigenvalues in the (A,B) pair are

also eigenvalues of Acl and must be in spec(�) for

U1 to be invertible (see Alazard and Apkarian (1999)

for the proof).
. All uncontrollable eigenvalues in the (Ak, Bk) pair are

also eigenvalues of Acl and must be in spec(�) for U2

to be full row rank.

Proof: Let � an uncontrollable eigenvalue in the

(Ak,Bk) pair associated with left eigen-vector u. That is,

uT½Ak � �Ink � ¼ 0 and uTBk ¼ 0, ð14Þ

then pre-multiplying (13) by ½01�n uT�, it follows that

(Acl is defined in equation (6) with assumption D¼ 0)

uTBkCU1 þ uTAkU2 ¼ uTU2�,

or (using (14))

uTU2ð�� �InÞ ¼ 0:

So, if �=2specð�Þ then uTU2¼ 0, that is, U2 is not right

invertible. œ

Remark 1: From a practical point of view, conditions

for the non-existence of a right invertible matrix T are

very restrictive. Note also that the set of solutions can be

reduced so that T is real. A necessary condition for T

to be real is: U must be auto-conjugate and spec(Acl)

must contain at least on real eigenvalue if n is odd.

Remark 2: If K0(s) is not a stabilizing controller, it is

still possible to solve in T the generalized equation (5).

The standard problem PCSF given by (4) is still regular

if there are no closed-loop eigenvalues on the imaginary

axis. Then, H2 or H1 design on the standard plant

PCSF will provide a stabilizing controller K̂ðsÞ 6¼ K0ðsÞ.

It can be shown (Alazard et al. 1999) that the closed-

loop eigenvalues of FlðPCSF, K̂Þ are then assigned on the

stable eigenvalues and on the opposites of the unstable

eigenvalues of Fl(PCSF,K0). This property will be used

in the example given in x 5.

Proposition 3 (Existence of a CSF): The non-existence

of a full row rank matrix T solution of the generalized

non-symmetric Riccati equation (5) implies the non-

existence of a CSF for G(s) and K0(s).

Proof (by contraction): Let us assume that a regular

CSF exists for the strictly proper stabilizing controller

K0(s)�Dk and for the stabilizable and detectable

modified system �GðsÞ (such a change of variable is not

restrictive)

�GðsÞ :¼
Aþ BDkC B

C 0

24 35:
Then it is shown in Doyle et al. (1989) that the

unique solution dKH2
of the corresponding H2 optimal

problem involves a state feedback gain K and a state

estimator gain G. The nth order state space realization

of such a controller associated with the state vector x̂

reads

dKH2
:¼

Aþ BDkCþ KBþ GC �G

K 0

24 35: ð15Þ

As the solution is unique: dKH2
ðsÞ ¼ K0ðsÞ �Dk. Thus the

state space realization (15) in non-minimal if nk< n.

Thus a projection matrix Snk�n (full-row rank) exist such

that xk ¼ Sx̂ and

SðAþ BDkCþ BKþ GCÞ ¼ AkS

�SG ¼ Bk

K ¼ CkS:

So S solves the following equation

SðAþ BDkCÞ þ SBCkS� BkC� AkS ¼ 0: ð16Þ



This equation is exactly the same as the Riccati equation

(8) in T. Thus, if T (or S) does not exist, then the CSF

for given �GðsÞ and K0(s)�Dk (or G(s) and K0(s)) does

not exist.

Remark 3: This last proposition highlights that the

unique controller K̂ðsÞ provided by H2 or H1 design

on PCSF is non-minimal. It can be shown that the n� nk
non-minimal dynamics in K̂ðsÞ are assigned to the

eigenvalues of �(X) (equation (12)) and thus can be

assigned by a suitable choice of X.

Numerical example: The results if this section are

illustrated on a very simple example. Let us consider

the system

GðsÞ ¼
1

s2 � 2sþ 1
:¼

2 �1 1

1 0 0

0 1 0

264
375,

and the initial controller

K0ðsÞ ¼
�30s

sþ 10
:¼
�10 10

30 �30

" #
:

The only real solution T of (8) reads

T ¼ �0:11485 0:98248
� �

:

Let us choose T#
¼Tþ, then the CSF reads

PCSF :¼

2 �1 28:826 1

1 0 10:0410 0

3:4455 0:52566 30 1

0 1 1 0

2666664

3777775:

It is easy to check that the optimal H1 controller reads

K1ðsÞ ¼
�30sðsþ 1:487Þ

ðsþ 10Þðsþ 1:487Þ
:

Furthermore, equation (12) reads

’ðXÞ ¼ �1:4866� 1:1611X and ’ð1:3035Þ ¼ �3:

Then the choice

T# ¼ Tþ þ 1:3035T? ¼ 1:1773 1:1555
� �T

leads to a new PCSF and a new optimal H1 controller

K1ðsÞ ¼
�30sðsþ 3Þ

ðsþ 10Þðsþ 3Þ
:

In both designs, K1 is not minimal and K1¼K0.

4. Generalization

For briefness, the proof of following results are omitted.

4.1. Augmented-order controller case (nk>n)

It is supposed that D¼ 0, K0(s) is minimal and nk> n.
This implies that PCSF(s) must be at least of order nk.
Then the CSF can be dressed in the following way.

. solve in T (now, a column matrix because nk> n)
the generalized Riccati equation (5),

. compute a matrix Vnk�ðnk�nÞ such that ½T V � is
invertible ðV ¼ TT?Þ,

. compute Tþ and Vþ such that TþT¼ I, VþV¼ I
and TTþþVVþ¼ I.

Then, a CSF satisfying C1 to C4 reads

4.2. 2 degrees of freedom controllers

The general connection of a standard plant P(s) with
a 2 degrees of freedom controller is depicted in figure 3.

A state space realization of this controller between
both inputs (measurement y and input reference e)
and both outputs (control signal u and monitoring
signal zc) is

K0ðsÞ :

_xk

u

zc

2664
3775 ¼

Ak Bk1 Bk2

Ck1 Dk11 Dk12

Ck2 Dk21 Dk22

2664
3775 _xk

y
e

24 35

¼
Ak Bk

Ck Dk

" # _xk

y

e

2664
3775:

PCSFðsÞ :¼

A TþðAk � TBCkÞV TþBk � BDk B

0 VþAkV VþBk 0

�ðCkTþDkCÞ �CkV �Dk Im

C 0 Ip 0

26666664

37777775: ð17Þ



Case nk� n: The general solution PCSF presented in
equation (4) and the block diagram in figure 2 are still
valid but involve augmented parameters

B B 0n�q
� �

, C 
C

0r�n

� �
, D 

D 0p�q
0r�m 0r�q

� �
,

where r and q are length of vector e and zc respectively.
This CSF works with an augmented control input
½ uT zTc �

T and an augmented measurement output
½ yT eT�

T
.

The case nk> n is not given here, but could be easily
found with previous cases.

5. Academic example

This example is given to illustrate the way to use the
CSF to take into account an initial low-order controller
and a parametric robustness specification in an aug-
mented standard problem. The initial controller K0(s)
is a well-known proportional derivative controller
designed on a simplified model G0(s) to assign the
dominant dynamics. Although K0(s) does not stabilize
the full-order model G(s), the CSF is used to find
a stabilizing controller K(s) allowing the dominant
dynamics to be assigned on the desired value in spite
of parametric uncertainties.
Let us consider the simplified model of a positioning

device between the force u (input) applied on the load
m (mass) and its position x (output)

G0ðsÞ ¼
1

ms2
:

A simple proportional-derivative controller is designed
to assign the poles of G0(s) to a second order dynamics
(pulsation !, damping ratio �). A fast pole (�10!) is
included for K0(s) to be proper

K0ðsÞ ¼ �m
!2 þ 2�!s

1þ ðs=10!Þ
:

A state space realization of K0(s) reads

Ak Bk

Ck Dk

" #
¼
�10! 20!� 1

10!3m 20�!2m

" #
ð18Þ

N.A.: m¼ 1Kg, !¼ 1 rd/s, � ¼
ffiffiffi
2
p

=2.

The closed loop dynamics assignment is highlighted

on the root locus of the loop gain�K0(s)G0(s) (figure 5:
grey curves).

The full order model G(s) takes into account the

stiffness k and the low damping factor f of the
transmission between the mass m1 of the positioning
device and the mass m2 of the payload (see figure 4)
whose position x2 is the only measurement.
Furthermore, the stiffness k is uncertain,

k 2 ð �kð1� �Þ, �kð1þ �Þ
� �

:

N.A.: m1¼m2¼ 0.5Kg; �k ¼ 1N=m; �¼ 0.3 (30%);
f¼ 0.0025 Ns/m.

One can show Alazard et al. (1999) that the uncertain
model can be represented by the following M(s)��

form

_x1

_x2

€x1

€x2

z�k

y

2666666664

3777777775
¼

A B� B

C� D� D�

C D� D

26664
37775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
:¼MðsÞ

x1

x2

_x1

_x2

w�k

u

2666666664

3777777775

w�k
¼ �z�k

8� 2 ½�1,þ 1�

with

MðsÞ :¼

0 0 1 0 0 0

0 0 0 1 0 0

�
�k

m1

�k

m1
�

f

m1

f

m1
�

ffiffiffi
�
p

m1

1

m1

�k

m2
�

�k

m2

f

m2
�

f

m2

ffiffiffi
�
p

m2
0

ffiffiffiffiffi
�k
p

�
ffiffiffiffiffi
�k
p

0 0 0 0

0 1 0 0 0 0

2666666666666664

3777777777777775
and G(s)¼Fu(M(s), 0)¼DþC(sI�A)�1B.

z
Fl (P(s), K(s))zc

w

e

zc

w

u

e

z

y

K(s)

P(s)

Figure 3. 2 degrees of freedom controller.

f

k

m1 m2

x2 = y

u

x1

Figure 4. Spring-mass model.



It is well known that a proportional-derivative

controller cannot stabilize such a non-collocated

spring-mass system. Indeed, the closed-loop dynamics

of Fl(M,K0) is

0:68� 2:02i, �0:71� 0:61i, �9:95
� 	

:

To solve the non-symmetric Riccati equation (5) using

the invariant subspace technique, we choose a subspace

associated with the 4 complex eigenvalues. Thus, the

solution is

T ¼ ½ 0:0311, 1:5683, �0:0030, �0:1577�:

Then, one can build a two-channel standard problem

PðsÞ :¼

A B� TþBk�BDk B

C� D� 0 D�

�CkT�DkC 0 �DkþDkDDk Im�DkD

C D� Ip�DDk D

26666666664

37777777775
:

ð19Þ

The first channel of this problem corresponds to the

robustness problem on the uncertain parameter k.

A sufficient condition for robust stability is: the H1
norm of this channel must be less than 1. The second

channel corresponds to the CSF (equation (4)). Thus,

the minimization of both channels will provide a

stabilizing controller and the resulting closed-loop

rigid dynamics will be inflected towards the initial

stable assignment (see remark 2). Indeed the third

order controller K̂ðsÞ thus obtained, using the

macro-function hinflmi from the MatlabTM LMI
control toolbox, reads

K̂ðsÞ ¼ argmin
KðsÞ
kFlPðsÞ,KðsÞÞk1

¼
�73:62s3 þ 63:66s2 � 170:4s� 57:16

s3 þ 19:07s2 þ 118:4sþ 305:8

and the H1 closed-loop performance on the first
channel is 1.02. One can check on the root locus of
�K̂ðsÞGðsÞ (figure 5: black curves) that the rigid mode
is correctly assigned close to the location prescribed
by the initial controller K0(s). Figure 6 highlights the
closed-loop stability for all values of the uncertain
parameter. It appears also that this uncertainty has a
weak influence on the rigid mode assignment.

6. Conclusions

The definition of the CSF and links with inverse H2 and
H1 optimal control problems were established. A general
analytical solution was derived for any given system and
any given stabilizing controller of arbitrary order. The
interest of the CSF to take into account an a priori given
controller and additional frequency-domain or robust-
ness specifications in a general augmented standard
problem was highlighted on an academic example.
The reader will find in Voinot et al. (2003) a quite
realistic application of the CSF in the context of discrete-
time attitude control of a launcher, which demonstrates
the flexibility and practical value of this methodology.
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