
Towards sender-based TFRC
Guillaume Jourjon

National ICT Australia Ltd, and
University of New South Wales and,

Université de Toulouse,
guillaume.jourjon@nicta.com.au

Emmanuel Lochin
National ICT Australia Ltd,

Australia,
emmanuel.lochin@nicta.com.au

Patrick Sénac
ENSICA-LAAS/CNRS and,

Université de Toulouse,
France,

senac@ensica.fr

Abstract—Pervasive communications are increasingly sent over
mobile devices and personal digital assistants. This trend has
been observed during the last football world cup where cellular
phones service providers have measured a significant increase
in multimedia traffic. To better carry multimedia traffic, the
IETF standardized a new TCP Friendly Rate Control (TFRC)
protocol. However, the current receiver-based TFRC design is
not well suited to resource limited end systems. We propose
a scheme to shift resource allocation and computation to the
sender. This sender based approach led us to develop a new
algorithm for loss notification and loss rate computation. We
demonstrate the gain obtained in terms of memory requirements
and CPU processing compared to the current design. Moreover
this shifting solves security issues raised by classical TFRC
implementations. We have implemented this new sender-based
TFRC, named TFRClight, and conducted measurements under
real world conditions.

I. INTRODUCTION

The recently standardized DCCP protocol [1] is seen as
providing an efficient mechanism to carry multimedia traffic.
DCCP can apply multiple congestion control mechanisms, and
identifies TCP-Friendly Rate Control (TFRC) as congestion
control ID #3 (DCCP/CCID3) [2]. TFRC is a congestion
control mechanism for unicast flows operating in a best-effort
Internet environment[3]. TFRC reproduces the TCP window-
based congestion control mechanism through an equation
model of the TCP equivalent throughput. The smooth rate vari-
ation, induced by this congestion control mechanism, makes it
a good candidate for the delivery of an efficient transport ser-
vice to client-server multimedia applications. However in such
a media streaming scenario if multimedia servers are powerful
processing and communication engines, this is not the case of
mobile clients. Indeed, these clients are resource-limited end
systems and are much more sensitive to communication and
system processing while focusing on application layer.

Therefore the lightening of recurrent communication pro-
cessing is a critical issue for increasing the performance and
autonomy of mobile end systems. One of the main costs of
the TFRC mechanism comes from the periodic computation of
both the RTT and the loss rate of data carried by a connection.
In particular, RFC 3448 [3] proposes the loss rate estimation
to be done on the receiver side. It also suggests that this
computation could also be done on the sender-side: “It would
be possible to implement a sender based variant of TFRC
where the receiver uses reliable delivery to send information

about packet losses and the sender computes the packet loss
rate and the acceptable transmit rate”.

We develop this idea by specifying and evaluating the design
of a sender-based implementation of the TFRC congestion
control mechanism. In our proposal, the reliable transfer
of feedback packets is ensured by using a SACK-oriented
mechanism [4]. This scheme is known to be robust to lossy
channels while not entailing heavy and complex error control
mechanisms [4]. Moreover, because it is located on the flows’
servers only, the proposed sender-based approach is more ro-
bust to selfish receivers. Indeed, the sender no longer depends
on the accuracy and the integrity of the returned information
[3]. Some solutions to secure TFRC from selfish receiver have
been proposed in [5] using RTSP [6]. Our solution requires
fewer and simpler modifications to the TFRC header and
algorithm than the proposal in [5].

Furthermore, a receiver-based solution achieves a periodic
estimation of the loss event rate before sending it to the sender.
This computation requires maintenance of a loss event history
data structure. Such a receiver based solution does not comply
with the capacities and resource constraints (i.e. in terms of
energy consumption and overall computational performance)
of light mobile receivers (e.g. PDAs, mobile phones) which
are increasingly pervasive.

This paper is structured as follows: section II introduces
the context of this study and provides some background
information. Section III gives insights into the design of
the new congestion control protocol architecture. Section IV
compares the performance of the proposed congestion control
protocol with respect to the standard TFRC implementation.
We quantify the benefits of our proposal in terms of algorith-
mic processing and communication load in section V. Finally,
section VI provides some conclusions and future directions.

II. CONTEXT AND RELATED WORK

TFRC estimates the equivalent TCP sending rate X from
equation (1) below. This equation depends on the mean packet
size s and two periodically processed parameters: the packet
loss event rate p and the round trip time RTT . RTO refers
to the TCP retransmission timeout value which is usually a
linear function of the RTT.

X =
s

(RTT ·
√

p·2
3 + RTO ·

√
p·27
8 · p · (1 + 32 · p2))

(1)

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1588

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12038982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

During the initialization phase, TFRC acts as TCP does
during the slow start algorithm. This slow start phase also
occurs during the transfer after the RTO timeout expires. This
phase is followed by a congestion avoidance phase as soon
as the receiver detects a loss. At this step, TFRC needs to
estimate the loss rate in order to compute the sending rate
X . The receiver evaluates the packet loss rate by a sliding
window loss history structure. This structure stores the eight
most recent loss event intervals. A loss event and its related
interval of packets is defined as one or more lost packets
during a duration of a least one RTT[3]. In other words, several
packets lost during an RTT define a single loss event and the
duration of a loss interval is greater than or equal to the RTT.
The algorithm used at the receiver side is given in figure 1.

ReceivePacket() {
Add packet to packet history;
p_new = new value of packet loss rate;
if (p_new > p_old){
feedback timer expiration;
do CreateFeedback();

}
}
CreateFeedback() {

compute average packet loss rate;
calculate measured receive rate;
prepare and send feedback packet;
restart feedback timer;

}

Fig. 1. Original algorithm of the receiver

Two main issues can be identified in the receiver-based
implementation algorithm. Firstly, the receiver must continu-
ously maintain and update the loss event history data structure.
The management of this data structure is an undesirable
processing and memory management overhead for resource
limited mobile receivers. Secondly, the receiver has to contin-
uously process the loss event rate and send it to the sender,
at least once per RTT, and as soon as it observes a loss
event rate increase. Once again, this processing load squeezes
the remaining processing capacity of the receiver. Moreover,
such a receiver-based implementation cannot guarantee that
selfish receivers do not try to trick the sender by inaccurately
reporting the loss rate in an attempt to get higher bandwidth
[5].

III. DESIGN

This section presents the design of our sender-based TFRC
protocol named TFRClight. The design of this protocol is
based on shifting the loss rate estimation processing to the
sender side. We identify and propose the changes entailed by
this shifting in the feedback packet structure and in the data
structures managed by the receiver. The aim of our new TFRC
protocol architecture and design is to reduce the receiver load.
We discuss in this section the design of TFRClight by first
presenting the underlying problems to the packet loss rate
estimation shifting. Then, we give efficient solutions to these
problems.

A. Notification of packet loss

In the original TFRC, the receiver has to periodically send
feedback information to the sender. These feedback messages
contain two parameters that allow the sender to estimate the
current RTT value. These parameters are respectively (1) the
timestamp of the last packet received (Last Timestamp)
and (2) the amount of time elapsed between the receipt of the
last packet and the generation of the feedback (Processing
Time). We present these fields of the TFRC header in figure
2.

TFRC Data Packet

sequence
number

number
last sequence Packet Lost

Rate Rate
ReceivingProcessing Time

proto ID

Last Timestamp

TFRC Feedback Packet

ty
pe

ty
pe Timestamp current RTT Payload

proto ID

Fig. 2. Example of TFRC header

Moreover, feedback packets also contain information about
the packet loss rate (Packet Loss Rate) and the re-
ceived throughput (Receiving Rate) as processed by the
receiver. In TFRClight, the packet loss rate is no longer
processed and returned by the receiver. Nevertheless, the
receiver remains the only entity able to detect the loss of a
packet and to notify the sender about this loss.

In order to perform this notification, we propose maintaining
a compact data structure at the receiver. This data structure is
a vector of bits (i.e. a SACK vector) that describes, from a
given packet number, the distribution of packets received and
lost. In other words, if a given packet is received, the bit is
set to 0 otherwise 1. This vector is periodically sent.

The SACK vector offers redundancy that contributes to the
reliable delivery of loss information when its sending interval
is lower than the duration covered by the SACK vector. The
value of the feedback packet sending period will be discussed
in the next section. The right vector length can be chosen by
considering that the sender-based and receiver-based imple-
mentation should behave similarly to packet losses. Indeed,
as defined in [3], the sender no-feedback timer expires after
4 ∗RTT . Where RTT , is the exponentially weighted moving
average of the round trip time sent by the sender in each
packet. A SACK-based mechanism is intrinsically robust to
a maximum period of data losses equivalent to vector range.
Then, the loss vector length should cover at least:

4 ∗ RTT ∗ PacketSendingRate

Where PacketSendingRate, is the sending rate included in
each data packet header or computed by the receiver as the
received packet rate. In order to reproduce the no-feedback
timer behaviour of the standard receiver based version of
TFRC, the loss information vector length must be dynamically
recomputed with a period of 4 ∗ RTT .

The data structure used to compute SACK is a circular
buffer, with a pointer keeping track of the most recently
received packet. In the next section we first consider a simple
initial scheme for managing this structure. Then, from the

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1589

issues raised by this scheme, we will propose a solution that
conforms to the standard TFRC behaviour.

The message headers for the simple initial scheme are given
in figure 3.

last sequence
Rate

Receiving

sequence
numberty

pe current RTT

proto ID

nbSeq sync PayloadTimestamp

ty
pe Last Timestamp Processing Time

proto ID

Length Offset SACK
number

TFRClight Feedback Packet

TFRClight Data Packet

Fig. 3. Modification in TFRC header

B. Loss event definition in TFRClight

Although the previously introduced data and protocol data
unit structures are necessary for implementing an efficient
sender-based TFRC protocol, they are not sufficient. Indeed,
the loss history structure is based on the loss event definition
given in [3]. A loss event is defined as the detection of one or
more lost packets during one RTT. For keeping track of loss
events, the receiver needs the receiving time of each packet
to detect if lost packets correspond to the current loss event
interval.

Since the sender and the receiver cannot maintain a syn-
chronous behavior, the simple SACK structure previously
introduced does not allow the sender to construct an accurate
loss event history structure even if feedback packets are sent
every RTT. Indeed, without a careful design, in certain cases,
a loss event may be falsely detected. In figure 4, we give an
illustration of such false detection. The time axis is used to
represent the arrival time of the data packets. We also show
on this axis the times, tn, when the receiver sends feedback.
As an example, we show the tail (i.e. the SACK vector) of
three feedback messages below this axis. At t1, the feedback
message reports two losses represented by the two bits set in
the SACK field. The Offset is equal to 100.

In the original TFRC, a timer of RTT time units should
have been triggered at the estimated receiving time of the lost
packet with the sequence number of 106. This timer range is
represented in figure 4 by two-way arrows. At t2, when the
receiver sends its second feedback packet, the SACK vector
Offset is now equal to 112 and as the RTT period is expired,
a loss event should have been detected. At this time, the
traditional TFRC algorithm closes the previous loss interval
and restarts a new one from packet number 119. Finally at
t3, the losses reported for packets 125 and 127 belong to
the previous loss event as the RTT timer expired at packet
number 130. Since no other packet is lost after this expiration
there is no new loss event. The problem of false detection can
potentially result from an interpretation as a loss event of this
third feedback with Offset field which is equal to 124 and
its two marked bits in the vector.

As shown in figure 4, the TFRC mechanism is supposed
to see two loss events (symbolized by the two RTTs). In
TFRClight, if we just shift the packet loss rate estimation,
since there is no information about the estimated time of the

packet loss, and the sender and receiver are not synchronous,
the TFRC mechanism will see three loss events. Indeed, it will
receive three disjoint feedback messages (one per RTT) with a
non-null SACK field. Therefore, a simple logical interpretation
of these feedbacks leads to the identification of three loss event
instead of only two.

packet received

time

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

RTT RTT

Offset of a packet loss event

100 0 0 0 0 0 0 1 0 1 0 0 0

10
0

112 1 10 0 00 0 1 1 10 0

Tail of feedback message

10
6

11
2

11
9

12
4

packet number

12

124 0 01 1 0 0 0 0 0 0 0 0

12

12

lenght Vector of Received/Lost PacketOffset

feedback sending time

packet lost

t0 t1 t2 t3

Feedback message at t1 :

Feedback message at t2 :

Feedback message at t3 :

tn

Fig. 4. Illustration of a the definition of the loss event

Figure 5 presents the impact of this false detection problem.
We give in this figure the instantaneous throughput measured
at the sender and instantaneous throughput measured at the
receiver. Figure 5(a) shows the resulting throughputs of a
TFRClight with a bad interpretation of loss events. The exper-
iments involve an architecture with two nodes that generate
traffic and are connected by a link with fixed capacity of
1Mbit/s and RTT = 100ms. In figure 5(a), TFRClight de-
tects five loss events just after the slow start phase (between
t = [0, 10])1. However a correct implementation of TFRC
would have seen only four loss events as illustrated in 5(b).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t (

K
b/

s)

Time

Sender
Receiver

(a) Behavior of TFRClight with a
falsely detected loss event

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 20 40 60 80 100 120 140 160 180

K
bi

t/s

Time (sec)

Sender
Receiver

(b) Proper behaviour of TFRC

Fig. 5. Comparison of TFRClightwith a false detection and a usual TFRC
in a network with a bandwidth of 1Mbit/s, and an RTT=100ms

As a result, when a new loss event occurs (i.e. t = 63s and
t = 137s), the sender will decrease its emission rate more than
needed. In figure 5(a), this behaviour can be seen with the two
rate dips. This throughput decrease is explained by the way
the loss history structure is built. Indeed, as the mechanism

1Observed by the addition of a memory variable inside the core protocol

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1590

gets successive loss events, the corresponding entries in the
loss history structure will be filled with loss intervals shorter
than they should be. When a new loss event occurs, these
erroneously sized loss intervals raise the resulting value of the
loss event rate. This loss rate causes an excessive reduction of
the sending rate as given by equation (1).

In order to solve this issue we propose the following
modifications.

1) New receiver algorithm: At the receiver side the struc-
ture remains similar to the one presented in the previous
section. The algorithm used by the receiver side is shown in
figure 6.

ReceivePacket(){
Add packet to received packet;

}
CreateFeedback(){

calculate measured receive rate;
prepare and send feedback packet;
restart feedback timer;

}

Fig. 6. Receiver algorithm

In this proposal, the receiver is no longer responsible for
computing the packet loss rate. This algorithm supposes the
existence of a new structure that records the arrival or loss of
packets.

2) Modification at the sender side: In order to detect a loss
event at the sender side, the server has to set up a structure
that stores information about when packets were sent. This
structure is identical to the one that traditional receiver-based
TFRC receivers use to compute the packet loss rate, except that
instead of keeping a trace of the arrival time of the packet this
new structure stores the sending time of the packet.

Based on this new structure the sender is now able to
detect loss events from a sender perspective by considering
the sending time of the packets reported as lost in the received
SACK vectors. Furthermore because the sender keeps the
packets sending time, the TimeStamp field in both data and
feedback headers is no longer needed. Fig. 7 gives the resulting
new structure of the TFRClight headers associated with the
data and feedback packets.

number

number
last sequence

Rate
Receiving

ty
pe

proto ID

Processing Time Length Offset SACK

ty
pe

proto ID

current RTT nbSeq sync Payloadsequence

TFRClight Data Packet

TFRClight Feedback Packet

Fig. 7. Modification in TFRC header for the loss event detection second
solution

3) Translation from Loss History to Loss Events: In our
proposal, the sender is now aware of the sending time of each
packet. This information, combined with the received SACK
vectors, allows the sender to process the packet loss rate as
detailed in Fig. 8.

In section 5.2 of RFC 3448, the authors explain how to
build loss events from the loss history. This operation needs:

for(int i=0; i<lenghtACK; i++)
{
if(vector[i]==0)

add Packet(offset+i) loss History;
p_new=new value of packet loss rate;

else
loss history to loss event;

}
compute average packet loss rate;

Fig. 8. Analysis of the vector of Ack

• Sloss the sequence number of the lost packet;
• Sbefore the sequence number of the last packet to arrive

such that Sbefore < Sloss;
• Safter the sequence number of the first packet to arrive

such that Sloss < Safter;
• Tbefore the reception time of Sbefore;
• Tafter the reception time of Safter.

In the presented solution, the sender is not aware of Tbefore

and Tafter. Nevertheless, the sender must estimate the arrival
time of Sloss. In our proposal, we use sending times, not arrival
times, to build loss events. These sending times are corrected
by the following factor, which the sender evaluates whenever
it receives feedback (where Xsent and Xrecv are respectively
the sending and receiving rates):

α =
Xsent

Xrecv

The determination of the new event is accomplished in the
same way as in the original TFRC except that the time
reference is no longer the arrival time but is now the sending
corrected by the factor α.

4) Discussion: As feedback messages are not systemati-
cally sent when a loss is detected, we recommend that the
feedback message sending interval should equal RTT

x with
x > 1.

IV. VALIDATION OF TFRClight

We have implemented a user level prototype of TFRClight in
Java. We have evaluated the TFRClight protocol over a simple
testbed composed of two end-systems and a network emulated
by a FreeBSD/Dummynet pipe [7]. For all experiments, the
bandwidth and the RTT are respectively set to 1Mbit/s and
100ms. In all figures, we report the sending/receiving instanta-
neous throughputs measured respectively at the sender/receiver
sides. The results of our experiments show that our sender
based protocol has the same behaviour as traditional receiver
based TFRC implementations.

We made many measurements to validate this new architec-
tural design and report in this section a representative sample
of the results.

It is always difficult to compare the performance of a real
implementation and a simulated one since the simulation re-
produces an ideal case without the overhead introduced by real
measurements. Nevertheless, we show that the TFRClight re-
ceiver throughput is as stable as the ns-2 receiver throughput.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1591

Concerning the sender throughput, more oscillations occur in
TFRClight than in ns-2 TFRC. This is explained by the over-
head introduced by our user level TFRClightimplementation.

In the experiment illustrated in figure 9, we introduce
an UDP flow with a rate of 500Kbits/s between t =
[30sec, 90sec]. This test aims to verify the responsiveness of
TFRClight compared to ns-2 TFRC. In figure 9, due to the
packets being multiplexed with a non-responsive UDP flow,
both implementations brutally decrease during the UDP flood.
Furthermore, both implementations react the same way to the
losses induced by the UDP flow. When the UDP flow stops,
both implementations respond similarly. Eventually, we can
conclude from this scenario that the modifications proposed
and implemented in TFRClight result in a behaviour similar
to ns-2 TFRC.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 20 40 60 80 100 120 140 160 180

K
bi

t/s

Time (sec)

Sender
Receiver

(a) TFRC with UDP traffic

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

K
b/

s)

Time

Sender
Receiver

(b) TFRClight with UDP traffic

Fig. 9. TFRC and TFRClight with a network bandwidth of 1Mbit/s, an
RTT=100ms and introduction of an UDP flow at t = [30s, 90s]

In the following experiments, we show that the proposed
sender-based TFRC remains TCP friendly. The results of the
TFRC friendliness property are shown in table IV. These mea-
surements give the average throughput observed at the receiver
side after 200s of transfer. We drive the first experiment with
5 TFRClight flows only. We have also studied the multiplexing
behaviour of TFRClight flows with TCP and TFRC flows.
The results summarized in Table 1 show that TFRClight flows
occupy a fair share of the bandwidth when multiplexed with
TCP and TFRC flows.

TFRClight TCP TFRC
5TFRClight 19.4%(20%) N/A N/A
5TFRClight 10%(10%) N/A 9.5%(10%)
and 5TFRC

5 TFRClight 6.2%(6.6%) 6.7%(6.6%) N/A
and 10TCP

TABLE I
MEAN BANDWIDTH RATIO PER FLOW (THEORETICAL VALUE IN

BRACKETS)

V. QUANTIFICATION OF THE SHIFTING SCHEME

In table II, we summarize the benefits/drawbacks of the
proposed design compared to the original algorithm.

benefits suppression of the loss history structure
no processing of the packet loss rate
protection from misbehaving receivers
simpler timer management
simpler sender’s algorithm

drawbacks new structure for Sack vectors management
Loss events built from sender point of view
feedback only sent periodically

TABLE II
SUMMARY OF THE BENEFITS AND DRAWBACKS OF THIS PROPOSAL

The main advantages of our solution are the removal of
the packet history structure and the removal of the com-
putation of the packet loss rate at the receiver. Conversely,
we have introduced a new light structure that allows the
receiver to build the Sack vector sent to the sender in feed-
back messages. This structure has a size of the order of
4RTT ∗ Bandwidth/(packetsize). For instance, in the case
of a transmission with a bandwidth of 1Mbit/s, an RTT of
100ms and a packet size of 1000Bytes, the structure should
have a maximum size of 50bits. This structure is actualized for
each data packet received. In the original design of TFRC, the
receiver has to manage a more complex structure that stores
information concerning the arrived or lost packets. The stored
information includes:

• the packet timestamp (16bits);
• the packet size (8bits);
• the arrival time (16bits).

Therefore, the elementary size of an entry is 40bits. Further-
more the size of this structure does not have a maximum
bound. This structure is emptied after detecting a loss event.
As an example in figure 5, there are no losses between t = 63
and t = 137. During this entire period, the structure has
to be updated at a rate of 1Mbit/s which corresponds to
125packet/s. This structure for the given example contains:

40 ∗ 125 ∗ (137 − 63) = 370Kbits

when it can be released. In this particular case the memory
use decreases from 370Kbits to 50bits with TFRClight.

To estimate the computation benefit of our proposal, con-
sider how in normal TFRC [3] the loss rate estimate is sup-
posed to be recomputed for every received packet. The basic

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1592

algorithmic sequence for computing the loss rate estimate
entails the following set of elementary arithmetic operations:
eight additions, eight multiplications, one division and one
maximum operation. For instance, at rate of 1Mbit/s with
a packet size of 1Kbyte, this estimation should be computed
125 times per second. These elementary operations can be
translated into CPU cycles as follows2:

• division = 70 cycles
• multiplication = 15 cycles
• addition, maximum = 0.5 cycles

As a result, for the given example, in the original TFRC, the
receiver has to use 24312.5 cycles/s.

Furthermore, after a slow start phase the receiver has to
initiate its loss history. This initialization is done from the
inversion of equation (1) in order to find the packet loss rate
corresponding to the measured received rate. This initialization
is usually done with a binary search and uses the list of
elementary operation sum up in table III.

+ ∗ / sqrt
binary search 4n + 4 8n + 8 2n + 2 n
CPU cycles 0.5 15 70 70

TABLE III
LIST OF THE NUMBER OF ELEMENTARY OPERATION

(n = number of iterations)

The worst case of this binary search can be observed when
this algorithm diverges, which can occur when the solution of
the inversion of (1) is outside the [0, 1] range. This potential of
divergence leads to an upper bound on the number of iterations
done during the binary search. Therefore, in order to compute
the inversion of (1) for most cases, the maximum number
of iterations is usually set to 50. Indeed, we implemented
the binary search of the inversion and found out that the
algorithm still converges in 15 iterations for RTT = 400ms
and bandwidth = 1Mbit/s.

In conclusion, for the worst case it takes 16862 CPU
cycles for the initialization process. In our proposal, all of
this computational process is achieved at the sender side.
Moreover, we have shown in section IV that this simplification
entails a congestion control behaviour that strictly conforms
to receiver-based TFRC implementations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented the design of a sender-
based TFRC congestion control. This design is driven by the
aim to shift the computation of the loss rate estimation from
the receiver to the sender in order to alleviate the processing
and memory needs of “light” receivers. This shifting requires
the sending of loss resilient feedback, and is accomplished
through the use of a SACK-like mechanism. The result is a sig-
nificantly lightened computational load on the receiver which
is particularly useful for mobile clients with computation and
energy constraints. We have shown that a sender-based TFRC

2According to Intel PIV documentation

built following the proposed protocol architecture and mech-
anisms behaves the same as the official ns-2 implementation
and remains friendly to TCP streams. We have quantified the
benefits of this shifting from a computational and memory
point of view. Furthermore, the solution proposed allows the
security issues raised in [3] to be solved. These security issues
are related to the forwarding of false loss event rates by the
receiver. Such misbehaviour is no longer possible with our
solution when associated with nonce mechanisms. We plan to
further validate our proposal by performing a large range of
experimental measurements on a multi-hop testbed.

VII. ACKNOWLEDGMENTS

We would like to thank Tim Moors from the University of
New South Wales for his valuable remarks. This work has
been supported by National ICT Australia funding.

REFERENCES

[1] E. Kohler and M. Handley and S. Floyd, “Datagram Congestion Control
Protocol (DCCP),” IETF, Request For Comments 4340, Mar. 2006.

[2] S. Floyd, E. Kohler, and J. Pahdye, “Profile for Datagram Congestion
Control Protocol (DCCP) Congestion Control ID 3: TCP-Friendly Rate
Control (TFRC),” IETF, Request For Comments 4342, Mar. 2006.

[3] M. Handley, S. Floyd, J. Pahdye, and J. Widmer, “TCP Friendly Rate
Control (TFRC): Protocol Specification,” IETF, Request For Comments
3448, Jan. 2003.

[4] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An Extension to the
Selective Acknowledgement (SACK) Option for TCP,” IETF, Request
For Comments 2883, July 2000.

[5] M. Georg and S. Gorinsky, “Protecting tfrc from a selfish receiver,” in
Proc. of Joint International Conference on Autonomic and Autonomous
Systems and International Conference on Networking and Services
(ICAS/ICNS 2005), Oct. 2005.

[6] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Streaming Protocol
(RTSP),” IETF, Request For Comments 2326, Apr. 1998.

[7] L. Rizzo, “Dummynet: a simple approach to the evaluation of network
protocols,” ACM Computer Communications Review, vol. 27, no. 1, Jan.
1997.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1593

