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Abstract 
 
Background: Red meat consumption is associated with an increased risk of colon cancer. 
Animal studies showthat heme, found in redmeat, promotes preneoplastic lesions in the colon, 
probably due to the oxidative properties of this compound. End products of lipid peroxidation, 
such as 4-hydroxynonenal metabolites or 8-iso-prostaglandin-F2A ( 8-Iso-PGF2∞), could 
reflect this oxidative process and could be used as biomarkers of colon cancer risk associated 
with heme intake. 
Methods: We measured urinary excretion of  8-Iso-PGF2∞ and 1,4-dihydroxynonane 
mercapturic acid (DHN-MA), the major urinary metabolite of 4-hydroxynonenal, in three 
studies. In a short-term and a carcinogenesis long-term animal study, we fed rats four 
different diets (control, chicken, beef, and blood sausage as a high heme diet). In a 
randomized crossover human study, four different diets were fed (a 60 g/d red meat baseline 
diet, 120 g/d red meat, baseline diet supplemented with heme iron, and baseline diet 
supplemented with nonheme iron). 
Results: DHN-MA excretion increased dramatically in rats fed high heme diets, and the 
excretion paralleled the number of preneoplastic lesions in azoxymethane initiated rats (P < 
0.0001). In the human study, the heme supplemented diet resulted in a 2-fold increase in 
DHN-MA (P < 0.001). Urinary  8-Iso-PGF2∞ increased moderately in rats fed a high heme 
diet (P < 0.0001), but not in humans. 
Conclusion: Urinary DHN-MA is a useful noninvasive biomarker for determining the risk of 
preneoplastic lesions associated with heme iron consumption and should be further 
investigated as a potential biomarker of colon cancer risk. (Cancer Epidemiol Biomarkers 
Prev 2006;15(11):2274–9) 
 
Introduction 
 
Red meat consumption is associated with an increased risk of colon cancer (1). The 
mechanism linking red meat to colon cancer is not yet clear, but red meat is the largest source 
of heme, which has independently been linked to colon cancer risk in women who consumed 
blood pudding twice a month compared with nonconsumers (2). These epidemiologic 
observations are in line with animal studies: dietary heme, in the form of hemoglobin or red 
meat, promotes putative precancerous lesions, aberrant crypt foci, and mucin-depleted foci 
(MDF) in the colon of rats given a carcinogen injection and fed a low-calcium diet (3, 4). 



Heme was previously shown to stimulate production of endogenous N-nitroso compounds, 
which can account for the increased risk of colorectal cancer observed in epidemiologic 
studies (5). Furthermore, the hemeinduced promotion is associated with increased 
concentration of lipoperoxides in fecal water, involving lipid peroxidation as another mode of 
activity of heme. Lipid peroxidation yields end products, such as alkanes, aldehydes, and 
isoprostanes and a major end-product is 4-hydroxynonenal. 1,4-Dihydroxynonane 
mercapturic acid (DHN-MA), previously shown to be the major urinary metabolite of 4-
hydroxynonenal (6), could represent a specific and noninvasive biomarker of the lipid 
peroxidation process (7). As heme intake, colon carcinogenesis, and high luminal 
peroxidation are linked, we analyzed urinary DHN-MA and 8-iso-prostaglandin-F2a ( 8-Iso-
PGF2∞) excretion, the latter being a widely used lipid peroxidation biomarker (8), in three 
separate studies. These studies included two animal studies, both involving four different 
diets: (a) a long-term carcinogenesis study to determine the link between urinary DHN-MA 
and carcinogenesis in rats with chemically induced cancer and (b) a short-term nutritional 
study to determine the association between diet and DHN-MA urinary excretion. In addition, 
a third study used samples from a previous human study, which showed that heme but not 
inorganic iron or protein increased endogenous N-nitrosation in the human colon (5), to see 
whether volunteers excrete more DHN-MA after consuming a diet rich in heme compared 
with a lowheme diet. 
 
Materials and Methods 
 
Animal Studies. Fischer 344 female rats were purchased at 4 weeks of age from Iffa Credo (St 
Germain l’Arbresle, France). The rats were distributed randomly in pairs (long-term 
carcinogenesis protocol) or individually (short-term nutritional protocol) into stainless steel 
wire–bottomed cages. Animal care was in accordance with the guidelines of the European 
Council on animals used in experimental studies. All animals were allowed 7 days of 
acclimatization to the room, their cages, and control diet. Analyses were done on blinded 
duplicate samples. 
Long-term Carcinogenesis Protocol. Animals were divided into four groups, and each group 
consisted of five rats. All rodents were i.p. injected with the carcinogen azoxymethane (Sigma 
Chimie, St. Quentin-Fallavier, France; 20 mg/kg of body weight) in NaCl (9 g/L). Seven days 
after the injection, the rats were allowed free access to their respective diet (control, chicken, 
beef, and blood sausage diets described below) for a duration of 100 days. Feed was changed 
every second or third day and water once a week. 
 
Table 1. Composition of animal diets 

 



 
NOTE: Values are g/kg of diet. 
*Low-calcium casein. 
cAIN-76 mix, but 500g/kg of dibasic calcium phosphate replaced by sucrose in mineral mix. 
 
Urine samples were collected on day 77 and stored at -20°C. Rats were sacrificed at day 100, 
and MDF were scored blindly as already reported (3, 4). Colons, after fixation in 10% 
formalin, were stained overnight with high-iron diamine-Alcian blue procedure to evaluate 
mucin production (4). After rinsing, colons were counterstained in 1% Alcian blue solution 
for 30 minutes. MDF number and number of crypts per MDF were scored blindly under light 
microscope at x40 magnification. 
Short-term Nutritional Protocol. During the experiment, rats (five rats per group) in this 
study were fed the four diets (control, chicken, beef, and blood sausage diets) described below 
ad libitum and had free access to tap water. Urine was collected daily in tubes containing 500 
AL of 360 mmol/L butylated hydroxy-toluene, labeled with blind codes, and stored at -20°C. 
Animals were sacrificed 15 days after the beginning of the experiment. 
Experimental Diets. The diets used for the short-term and long-term animal studies were 
based on a modified AIN-76 diet in a powdered form (Table 1). All diets were low calcium 
because they contained dibasic calcium phosphate at 2.7 g/kg. Three meat diets given to three 
groups of rats were formulated to contain varying concentrations of heme as hemoglobin or 
myoglobin by the addition of freeze-dried beef, chicken, or blood sausage at 60% meat of the 
total diet, whereas the control diet contained only casein as protein source. The beef diet 
contained 222 Ag/g of heme, whereas none was detected in the chicken diet. The low-fat 
blood sausage diet contained 5.9 mg/g of heme. All diets were balanced for protein (50%), fat 
(20%), calcium (0.8g/kg), and iron (0.14 g/kg) by addition of casein, lard, safflower oil, 
calcium phosphate, and ferric citrate. However, blood sausage is overloaded with heme, and 
the blood sausage diet could not be balanced for iron (0.95 g/kg). The diets were made up 
fortnightly and maintained at -20°C to avoid lipid peroxidation. 
Human Intervention. Eight healthy male volunteers (age ranging between 24 and 74 years) 
were randomly assigned to each of four 15-day dietary periods. As previously described (5, 
9), volunteers lived in a metabolic suite where all food and drink was provided, and all 
specimens were collected. The Cambridge Local Research Ethics Committee gave permission 
for the study and each volunteer signed a consent form after receiving a detailed explanation 
of the study protocol and aims. All diets were constant in fat and dietary fiber. The four 
dietary periods were a 60 g/d red meat diet (containing 9.9 mg/d iron), which constitutes the 
baseline diet (Table 2); 
 
Table 2. Composition of the human baseline diet 



 
 
NOTE: All meat weight given as cooked weight. For the 120 g/d red meat diet, beef at lunch 
was 40 g instead of 20 g, and meat at dinner was 80 g instead of 40 g with a reduction of 
polycal (80, 130, and 160 g for days 1, 2, and 3, respectively). 
 
 
Table 3. Red meat intake increases 4-hydroxynonenal in diet and urinary DHN-MA excretion 
in rats treated with a carcinogen (long-term protocol, five rats per group) 
 

 
 
Abbreviations: ND, Not detectable; HNE, 4-hydroxynonenal; 95% CI, 95% confidence 
interval. 
*Significantly different from control diet, after excluding blood sausage diet results from the 
analysis (P < 0.01, Dunnett’s test). 
cSignificantly different from control diet (P < 0.0001, Dunnett’s test). 
bSignificantly different from beef diet (P < 0.01, Dunnett’s test). 
 
 
a 120 g/d red meat diet (containing 12.5 mg/d iron); a 60 g/d red meat diet supplemented with 
heme iron in the form of 50 g/d of liver pâté on menu days 1 and 3; 70 g/d of blood sausage 
on menu of day 2 of a 3-day rotating menu (total iron content: 17.7 mg/d); a 60 g/d red meat 
diet supplemented with 300 mg/d ferrous gluconate tablet (35 mg of ferrous iron; total iron 
content: 44.9 mg/d). Those diets were made up of normal, palatable foods to total 10 MJ/d. 
Volunteers with a higher energy requirement than the 10 MJ baseline diet were given 1 MJ 
increments of white bread (50 g), low-fat spread (20 g), or marmalade (20 g). Dietary intakes 
of each volunteer varied from 10 to 12 MJ/d. Three consecutive 24-hour urine collections 



were made for 3 days at the end of each dietary period (days 13, 14, and 15 corresponding to 
menu days 1, 2, and 3) and stored at -20°C. The blood sausage and pâté were analyzed for 4-
hydroxynonenal (see below). 
Dietary Heme Assay. The amount of heme in rat diets, liver pâté, and blood sausage was 
determined according to Van den Berg et al. (10). Briefly, an acidified methanol-chloroform 
extract (final concentration of HCl was 1 mol/L) was taken from 20 mg of meat. After 
centrifugation, the chloroform phase was recovered and dried under nitrogen. Samples were 
dissolved in 0.45 mL of KOH (250 mmol/L), sonicated for 5 minutes (Cleanet, Hans 
Grieshaber, Switzerland), and mixed with 0.45 mL of distilled water, 3.75 mL of 2-propanol, 
and 0.75 mL of HCl (1.15 mol/L). This mix was homogenized and then centrifuged for 10 
minutes at 1,500 � g, and the supernatants were assayed for their heme content. Supernatants 
(50 AL) were mixed with 1 mL of glacial acetic acid. Subsequently, 50 uL of FeSO4 7H2O 
(0.12 mol/L freshly prepared) and HCl (4.5 mol/L) were added. Samples were immediately 
mixed and incubated at 60°C for 30 minutes. Two milliliters of 2-propanol/water (1:1, v/v) 
were added before fluorescence measurement using excitation and emission wavelengths of 
400 and 594 nm (JY3D, Jobin-Yvon, France). Blanks were obtained with the same protocol 
but without the incubation at 60°C. 
Dietary 4-Hydroxynonenal Assay. Meat or diet samples (1.5-15 g depending on the dryness 
of the sample) were homogenized in water (10 mL) and centrifuged twice. The supernatants 
were pooled and extracted twice with methylene chloride. After evaporation under vacuum, 
the residue was defatted using isooctane/acetonitrile (1:4, v/v) and then dissolved in phase A 
of the high-performance liquid chromatography system used for analysis. High-performance 
liquid chromatography system (Hewlett-Packard series 1100 with low-pressure quaternary 
gradient; Hewlett Packard, Labe`ge, France) was equipped with a Spherisorb ODS2 reverse-
phase column (25 X 4.6 mm, 5 Am) and a 100-AL loop, and the oven was set at 35°C. UV 
detection was set at 221 nm, and the following elution gradient was used: 100% A for 12 
minutes then 100% A to 100% B from 12 to 18minutes and then 100% B from 18to 25 
minutes, where A was water/acetonitrile (65:35, v/v) and B was water/acetonitrile (45:55, 
v/v), at a flow rate of 1 mL/min. Retention time of 4-hydroxynonenal was 9.2 minutes. 4-
Hydroxynonenal quantitation was done by using a calibration curve. To calculate the recovery 
of 4-hydroxynonenal in the samples, tritiated 4-hydroxynonenal was added before the 
extraction, and radioactivity was analyzed by radiohigh- performance liquid chromatography. 
Extraction recoveries were used to calculate free and total 4-hydroxynonenal. 
Urinary DHN-MA and  8-Iso-PGF2∞ Assay. DHN-MA and  8-Iso-PGF2∞ measurements 
in urine were achieved using competitive enzyme immunoassay as previously described (11-
13), using DHN-MA–linked acetylcholinesterase enzyme or  8-Iso-PGF2∞–linked 
acetylcholinesterase as tracer, respectively. All samples were analyzed blindly, and the code 
was broken only after data had been fully processed and dispatched to all authors. The urine 
samples were assayed in duplicates. 
Statistical Analysis. Results were analyzed using Systat 10 for Windows and GraphPad 
Prism softwares and given as means with 95% confidence intervals. Values were considered 
first using a one-way ANOVA. If a significant difference was found between groups (bilateral 
P < 0.05), then each experimental group was compared with the control group using multiple 
comparison test. The Dunnett’s test was used to compare each group of rats to the control 
group, and the Student-Newman-Keuls pairwise comparison was used to compare dietary 
periods in the human study. Because the blood sausage diet induced a 100-fold increase in 
DHN-MA excretion in rats, variance values for this group obscured the comparisons with 
other groups. Thus, a second ANOVA analysis of the data from the animal studies was done 
after excluding value from the blood sausage group, as explained in a note to Table 3. Human 
data were also analyzed a second time, by repeated-measure ANOVA. This second analysis of 



paired data yielded the same P, but it seemed more appropriate than the unpaired ANOVA 
because matching was effective (P = 0.026), and it eliminated problems of unequal variances. 
To evaluate the relationship between histologic (MDF) and dietary (iron, heme, and 4-
hydroxynonenal) or urinary (DHN-MA and  8-Iso-PGF2∞) variables, Pearson correlation 
coefficients were calculated. Only correlations with P < 0.01 were considered statistically 
significant (Bonferroni post-test). 
 

 
 
Figure 1. Blood sausage and beef meat diets and DHN-MA excretion in rat urine (short-term 
protocol, five rats per group). a, P <0.0001, significantly different from control (Dunnett’s 
test); b, P <0.01, significantly different from control, after excluding blood sausage results 
from the analysis (Dunnett’s test); c, P <0.01, significantly different from beef (Dunnett’s 
test). 
 
Table 4. Effect of heme and 4-hydroxynonenal content of the diet on urinary DHN-MA in 
human volunteers 
 

 
 
Results 
 
DHN-MA Excretion in Rats. The blood sausage diet increased DHN-MA excretion by 73-
fold (P < 0.0001) in urine collected after 77 days on the diet compared with urine collected 
from rats on the control diet (Table 3). The beef diet increased DHN-MA by 4.6-fold (P < 
0.01), but the chicken diet did not significantly change DHN-MA excretion, compared with 
the control diet. We observed a strong link between heme intake and DHN-MA excretion (P < 
10-10). In the short-term study, similar modulations of DHN-MA excretion were observed in 
the urine of rats not given a carcinogen (Fig. 1). For instance, after 15 days on a blood sausage 
diet, DHN-MA excretion increased 113-fold compared with the control diet. The increase was 
fast, because 24 hours after the start of experimental diets, DHN-MA excretion had already 
increased 50-fold in non-initiated rats fed the blood sausage diet. A plateau was reached 
within 5 to 10 days on all diets. 
DHN-MA Excretion in Human Volunteers. A high-heme diet increased urinary DHN-MA 
in comparison with the other diets (all P < 0.001; Table 4). In contrast, no difference in DHN-



MA excretion was observed between periods where volunteers were given 60 g/d red meat, 
120 g/d, or inorganic iron (all P > 0.05; Table 4). To elucidate this difference in DHN-MA 
excretion, we analyzed the heme and 4-hydroxynonenal content of meat used in the human 
intervention. Red meat contained 0.92 mg of heme per gram of meat; blood sausage contained 
2.15 mg but pâté only 0.49 mg per gram of meat (Table 4). Thus, as in the rat studies, we 
observed a significant correlation between heme intake and DHN-MA excretion (r = 0.94, P < 
0.05, n = 5). The amount of 4-hydroxynonenal in liver pâté was 0.11 ppm and 12.5ppmin 
blood sausage, whereas it was not detectable in beef. 
8-Iso-PGF2∞ Excretion in Rodents and in Human Volunteers. The blood sausage diet 
increased significantly 8-iso- PGF2a excretion in both rat studies (P < 0.0001; Table 3; Fig. 
2). In contrast with DHN-MA excretion,  8-Iso-PGF2∞ did not increase when the rats were 
fed the beef diet (Table 3; Fig. 2). In the human protocol, no modification of this marker was 
observed for any of the diets (Table 4). 
MDF Promotion in Long-term Carcinogenesis Protocol. Beef- and blood sausage–fed rats 
had more MDF than control rats (P < 0.01), and promotion by blood sausage was more potent 
than promotion by beef (P < 0.05). The chicken-based diet, the low-heme diet, did not 
promote MDF formation (Fig. 3). As shown in Fig. 3, MDF promotion increased with DHN-
MA values in the urine of rats treated with a carcinogen (P < 9 X 10-5). Among the tested 
variables urinary DHN-MA and  8-Iso-PGF2∞ (dietary 4-hydroxynonenal, heme, and iron), 
DHN-MA and 4-hydroxynonenal were the best candidate variables correlated with MDF 
variation (Pearson coefficient: 0.654 and 0.577, respectively; P < 0.001). 
 
Discussion 
 
These results show that intake of a meat-based diet containing heme increases the urinary 
excretion of DHN-MA in both animal models and in humans. In rats given blood sausage, the 
increase in DHN-MA was strikingly high, and concentrations reached a level never seen 
previously in any urine sample (7). The effect of diet was very fast because the DHN-MA 
value increased by a 50-fold factor after only 24 hours on the blood sausage diet. A 5- to 9-
fold increase was also seen in rats given a beef meat diet. In human volunteers, the 2-fold 
DHNMA increase on the high-heme diet was very significant but much less striking than in 
rats. Red meat promotes colon carcinogenesis in rodents, and this promotion is linked with 
heme intake (3, 4). In a previous study, we have shown that heme-rich meat diets increase the 
number of MDF, preneoplastic lesions in the colon of carcinogen-initiated rats. Promotion is 
significantly greater in rats given a high-heme blood sausage diet than a mediumheme beef 
diet. A low-heme chicken diet does not promote MDF. This promotion is associated with lipid 
peroxidation in the fecal water, assessed by the thiobarbituric acid reactive substance assay (3, 
4). 4-Hydroxynonenal is considered as a reliable biomarker of lipid peroxidation, and it is also 
a cytotoxic and a genotoxic agent, a real ‘‘second messenger of oxidative stress,’’ via 
alteration(s) of cellular functions and the formation of exocyclic DNA adducts (14). 4-
Hydroxynonenal is also considered as a cell signaling molecule (15). However, 4-
hydroxynonenal is not excreted into urine and thus cannot be directly measured from 
noninvasive sampling techniques, although DHN-MA, the major urinary metabolite of 4- 
hydroxynonenal, bears the same advantages without this drawback.  
 
 
 
 
 
 



 
 
Figure 2. Blood sausage diet and 8-iso-PGF2a excretion in rats urine (short-term protocol, five rats per group) a, P 
<0.0001, significantly different from control (Dunnett’s test). 
 
 

 
 
Figure 3. Association between urinary DHN-MA and MDF in rats (five rats per group). a, P <0.0001, significantly 
different from control (Dunnett’s test); b, P <0.01, significantly different from control, after excluding blood sausage 
results from the analysis (Dunnett’s test); c, P <0.01, significantly different from beef (Dunnett’s test). MDF data 
were published in ref. 4. 
 
This DHN-MA excretion was related to heme intake (Table 3). Heme induces lipid 
peroxidation in the diet and the formation of 4-hydroxynonenal, which is the precursor of 
DHN-MA, but the same phenomenon also likely occurs during digestion. DHN-MA reflects 
then both lipid peroxidation occurring in the diet and during digestion. Its determination gives 
a more complete view of these oxidative events than dietary 4-hydroxynonenal. DHN-MA 
was not a consequence of MDF development, but it was on the contrary related to MDF 
promotion (Fig. 3). Indeed, similar DHN-MA levels were seen in the urine of rats pretreated 
with a carcinogen or not, and DHN-MA increased quickly after the blood sausage diet was 
given. Human volunteers given a high-heme diet excreted twice the amount of DHN-MA than 
when they were on a lowerheme diet. The fact that the effect was much smaller in humans 
than in rats could be explained by differences in heme doses, and in dietary protective agents: 
(a) the daily intake of heme was 60 times higher in rats than in humans, when estimated by kg 
of metabolic weight; (b) the diet given to human controls contained 60 g/d of beef meat, 
whereas the diet for control rats contained no meat and no heme; (c) rat diets were designed to 
contain very small amount of heme-blocking calcium, whereas human diet contained normal 
amounts of calcium (9); (d) rat diets were designed to contain 5% safflower oil, this oil is low 
in vitamin E and contains 70% of linoleic acid, which get easily peroxidized and yields 4-
hydroxynonenal; (e) rat diets were made of purified components, free of antioxidant agents, 
whereas the human diets contained fruits and vegetables (Table 2), and possibly antioxidant 



additives like butylated hydroxyanisole, which inhibits both peroxidation and carcinogenesis 
(3, 4). Preneoplastic lesions and DHN-MA excretion are clearly associated with dietary heme 
iron, but not with inorganic (nonheme) iron. The link between DHN-MA and carcinogenesis 
is likely to be related to lipid peroxidation and production of 4-hydroxynonenal, which is the 
precursor of DHN-MA. We show here that 4-hydroxynonenal concentration in diets was 
related to the concentration of heme-iron and not of inorganic iron. Why was 4-
hydroxynonenal formed when heme-iron, but not non–heme-iron was present in the diet? 4-
Hydroxynonenal is a peroxidation product formed during the oxidation of n-6 fatty acids, 
particularly linoleic acid, which is abundant in foods. 4-Hydroxynonenal links covalently with 
cysteine, histidine, and lysine (16, 17). Hemoglobin (in blood sausage) and myoglobin (in 
beef meat) are rich in histidine. Interestingly, 4-hydroxynonenal links covalently with the 
histidine residues that coordinate iron in heme proteins (18). This covalent link can affect the 
redox stability of the heme proteins by increasing their oxidation status (19). Thus, 4-
hydroxynonenal increases the formation of oxidized metmyoglobin and decreases the ability 
of metmyoglobin to be enzymatically reduced, therefore enhancing its pro-oxidant activity. 
One can hypothesize that this increased pro-oxidant activity leads to the peroxidation of the 
dietary fatty acids and the new generation of 4-hydroxynonenal, which in turn makes covalent 
links to the heme proteins, increasing the phenomenon. DHNMA comes from the 
metabolization of 4-hydroxynonenal in the body (6). Although 4-hydroxynonenal metabolism 
after oral administration has not been studied yet, one can assume that this rather lipophilic 
compound can easily go through the intestinal barrier and be metabolized within the body into 
DHN-MA, among other metabolites, and be eliminated into urine (6). In contrast with 4-
hydroxynonenal, 8-iso-PGF2a originates exclusively from arachidonic acid, which is not 
usually abundant in foods, except in poultry. 8-Iso-PGF2a level, thus, reflects inflammation-
induced lipid peroxidation within the body membranes, and this biomarker does not depend 
on the diet (20). We showed here that a blood sausage diet increased the urinary excretion of 
8-iso-PGF2a in rats. This suggests that this diet can quickly induce an inflammatory process, 
possibly in the gastrointestinal tract. However, this lipid peroxidation biomarker was not 
sensitive enough to reflect the putative inflammation induced by beef meat in rats or by blood 
sausage in humans. Lipid peroxidation in food, and possibly in the gastrointestinal tract, 
results from the concomitant presence of peroxidable fatty acids and a pro-oxidant compound 
and can be modified by the presence of antioxidant compounds. The interest of DHN-MA as a 
biomarker of risk when compared with the measurement of dietary heme in food or body iron 
stores is that this compound indeed reflects this food lipid peroxidation process and not only 
the presence of the prooxidant compound. In rats, DHN-MA increase was linked with the 
promotion of an early biomarker of carcinogenesis. Urinary DHN-MA level increased fast 
after heme ingestion. Its return to baseline when turning back to a no-heme diet was not 
looked for here, but DHN-MA seems a short-term risk biomarker. Long-term exposure to 
heme-rich diets should be better estimated by measuring adducts to protein or DNA in colonic 
exfoliated cells (21), and 4-hydroxynonenal adducts could be good candidates. Because urine 
is much easier to collect than exfoliated cells, urinary DHN-MA could be used as short-term 
biomarker of cancer risk associated with meatbased diets in nutritional studies. 
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