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The problem of the diffusion of turbulence from a plane source is addressed in the context of
two-equation eddy-viscosity models and Reynolds-stress-transport models. In the steady state, full
analytic solutions are given. At second order, they provide the equilibrium value of the anisotropy
level obtained with different combinations of return-to-isotropy and turbulent-diffusion schemes and
confirm the results obtained by Straatmanet al. @AIAA J. 36, 929 ~1998!# in an approximate
analysis. In addition, all the characteristics of the turbulence decrease can be determined and it is
shown that a special constraint on the value of the modeling constants should hold if turbulence fills
the whole surrounding space. In a second step, precise results can be given for the unsteady model
problem at the first-order-closure level. The evolution cannot be described with a single set of
characteristic scales and one has to distinguish the cases of short and large times. In the short-time
regime, the flow is governed by the characteristic scales of turbulence at the source and
contamination of the flow proceeds ast1/2. At large times, the flow is governed by time-dependent
characteristic scales that correspond to the solution of the steady problem at the instantaneous
location of the front. Contamination of the flow proceeds as a power of time that can be related to
the value of the modeling constants. The role of a combination of these constants is emphasized
whose value can be specified to produce a solution that matches simultaneously the experimental
data for the decrease of turbulent kinetic energy in the steady state and the exponent of the
propagation velocity in the transient regime. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1336155#

I. INTRODUCTION

We consider the action of a plane source of turbulence
on a fluid initially at rest in an unbounded domain. Turbu-
lence is supposed to be statistically homogeneous in the
plane of the source with known characteristic scales. Theo-
retical arguments by Corrsin and Kistler1 show that, as the
source is switched on, turbulence proceeds in the undisturbed
fluid behind a perfectly defined although highly irregular in-
terface. After a sufficient time, all the surrounding space is
filled with turbulence and a steady state of spatial decay is
reached in which the local level of turbulent kinetic energy
results from a balance between turbulent diffusion from the
source and local destruction by viscous dissipation. Turbu-
lent diffusion is therefore an essential mechanism in this situ-
ation which distinguishes it from classical situations of tem-
poral or spatial decay of homogeneous turbulence.

In practice, this situation can be obtained with a turbu-
lence grid oscillating perpendicularly to its plane in the ab-
sence of mean velocity. Long2 studied theoretically such a
situation. By a discussion of relevant parameters, dimen-
sional analysis and a simple model for the grid-generated
motions, he obtained some remarkable results: in the steady
state, the turbulent length scale increases linearly with the
distance from the source (z), the rms value of the velocity

fluctuation is proportional toz21; during the propagation,
the mean position of the interface proceeds ast1/2, wheret is
the time counted from a conveniently chosen origin. These
results allow a concept of ‘‘grid action’’ to be introduced,
according to which the flow is governed by a single param-
eter: the ‘‘action’’ parameter3 K}u8l, whereu8 and l are,
respectively, the rms value of the velocity fluctuation alongx
~perpendicular toz) and the turbulent length scale at the
same location inz. K has the dimension of viscosity and,
according to Long’s analysis, is constant throughout the
flow.

A significant number of experimental studies helps to
evaluate Long’s conclusions. A linear variation for the length
scale is of little doubt being confirmed by Thompson and
Turner,4 Hopfinger and Toly,5 Kit, Strang and Fernando6 and
by the direct-numerical-simulation results of Briggset al.7

Such an agreement is not observed for the decay of turbu-
lence. If most of the data exhibits thez21 behavior for the
decay ofu8 ~Hopfinger and Toly,5 Hannoun, Fernando and
List,8 De Silva and Fernando,9,10 Kit et al.6!, some authors
give significantly different values for the decay exponent:
21.5 for Thompson and Turner,4 varying between20.86
and21.5 for Nokes11 and21.35 in the simulation by Briggs
et al.7 It should be noted, however, that Thompson and Turn-
er’s data have been reinterpreted by Hopfinger and Toly and
that some of them seem to support thez21 behavior, while a
low-Reynolds-number effect could be present in the simula-
tion results of Briggset al. Experiment also gives informa-
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tion on the anisotropy of turbulence: diffusion only acts
along z and velocity fluctuations are enhanced in this direc-
tion. The data5,6,8–10 for the ratio of the rms fluctuations
along z and x (a5w8/u8) are scattered in the range 1.1 to
1.32 while the simulation gives a value of 1.4.

Now, if we turn to the case of the propagation regime,
the experiments of Dickinson and Long3,12 deal with homo-
geneous fluids and support thet1/2 behavior for the mean
position of the interface. Other studies by Fernando13 and
De Silva and Fernando9 deal with stratified fluids, the data
also confirm thet1/2 behavior at the beginning of the evolu-
tion when gravity effects are negligible.

The model problem associated with the steady state has
been studied for the (k, e) turbulence model of Jones and
Launder14 by Sonin15 and for the (k,e), (k,kL)16 and
(k,v)17 models by Briggset al.7 In all cases, solutions in
powers ofz for the turbulent quantities and a linear variation
of the length scale are obtained. At the second-order-closure
level, Straatman, Stubley and Raithby18 examined the anisot-
ropy level far from the source with different combinations of
turbulent-diffusion and return-to-isotropy schemes. The
analysis is based on the hypothesis that the velocity fluctua-
tions and the dissipation rate evolve, respectively, asz21 and
z24 ~consistently with a linear variation of the length scale!.
The value of the anisotropy ratioa can be obtained and the
authors show that an adequate modeling of pressure diffu-
sion is essential to a good prediction of the anisotropy. A
slight modification to Lumley’s model19 is proposed, which
brings the results in good agreement with known data.

In the case of the propagation regime, information on the
solution have been given by Spalart and Allmaras20 for their
one-equation model and by Cazalbou, Spalart and
Bradshaw21 for a variety of two-equation models. Both stud-
ies show that, with some special restriction on the values of
the modeling constants, a weak solution~discontinuous for
some of the derivatives at a finite distance from the source!

to the model problem is obtained. This property—linked
with the nonlinearity of the diffusion model—correspondsas
in reality to a turbulent front that propagates into the undis-
turbed fluid at a finite velocity. In the vicinity of the front,
the form of the solution can be given as a function of local
characteristic scales. Unfortunately, these cannot be related
to global scales in the absence of a complete solution of the
problem.

The present paper is divided into two parts. In the first
part we revisit the model problem for the steady state. We
show that power solutions are the only self-similar solutions
and that the hypothesis made in Straatmanet al. are unnec-
essary. Exact and complete solutions are therefore available
for first- and second-order turbulence models. The second
part is restricted to the case of first-order-closure models for
which we show that the knowledge of the steady solution
allows to precise the meaning and behavior of the character-
istic scales that govern the propagation. The time evolution
of the position of the front can then be characterized directly
as a function of the modeling constants.

II. STEADY PROBLEM

We consider a plane source of turbulence whose charac-
teristics are constant in the (x,y) plane. Turbulence diffuses
along z in the surrounding space initially at rest and we are
interested in the steady state obtained in the half spacez
.0. We assume that the turbulent Reynolds number is high
enough for molecular diffusion to be negligible.

A. Eddy-viscosity models

The problem is examined for the (k,e) turbulence model
in its standard high-turbulent-Reynolds-number form. A
similar analysis could be performed for any other two-
equation model as long as turbulent diffusion is of the gra-
dient type. Here, the set of governing equations is restricted
the turbulent-kinetic-energy (k) and dissipation-rate (e)
equations in the simplified forms

05
d

dz S n t

sk

dk

dz D2e, ~1a!

05
d

dz S n t

se

de

dz D2Ce2

e2

k
, ~1b!

where n t5Cmk2/e is the eddy viscosity;sk , se , Cm and
Ce2 are the usual modeling constants. One has to solve these
equations with the following boundary conditions:

k~z50!5k0 , e~z50!5e0 ,

lim
z→`

k~z !50, lim
z→`

e~z !50.

We shall look for similarity solutions considering that, at any
z, the spatial evolution of the variables cannot depend on
other quantities than the local levels of turbulent kinetic en-
ergy and dissipation rate. On dimensional grounds, this reads
as

dk

dz
5a

e

k1/2
and

de

dz
5b

e2

k3/2
, ~2!

where a and b are nondimensional constants to be deter-
mined by substituting relations~2! in Eqs. ~1a! and ~1b!. It
appears that the only solution that satisfies the boundary con-
dition at infinity is obtained with

a52A2sk

3Cm
and b5A sk

24Cm
2A sk

24Cm
1

Ce2se

Cm
.

Now, the derivative of the turbulent length scalel5k3/2/e
can be directly deduced from relations~2!:

dl

dz
5

3

2
a2b. ~3!

Integration is immediate and gives

l5l01gz with l05
k0

3/2

e0
and g5

3a22b

2
.

The dissipation rate can therefore be written ask3/2/(l0

1gz) and relations~2! be integrated to
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k

k0
5S 11g

z

l0
D a/g

and
e

e0
5S 11g

z

l0
D b/g

.

This fully determines the solution and shows that the only
similarity solutions@in the sense of Eq.~2!# are power solu-
tions with a linear variation of the length scale. Now, physi-
cal considerations as well as experimental evidence show
that the length scale should increase with the distance from
the source. According to Eq.~3!, this requires thatg.0 and
leads to the following condition on the modeling constants:

2sk2Ce2se,0. ~4!

Introducing the combination of constantsL5Ce2se /sk , the
decrease exponents of the turbulent kinetic energy and dissi-
pation rate can be rewritten as

a

g
5

272A1124L

6~L22!
and

b

g
5

124L2A1124L

4~L22!
.

The slope of the length scale is given by

g5A sk

24Cm
~A1124L27!

and condition~4! becomes:L.2. We note that, ifL takes
the value 10/3, thena/g522, so that the rms value of the
velocity fluctuation decreases as 1/z, as indicated by the ma-
jority of experimental data. With the standard set of
constants22

sk51, se51.3, Cm50.09 andCe251.92,

one getsa522.72, b524.63, g50.55 and

k

k0
5S 110.55

z

l0
D 24.95

,
e

e0
5S 110.55

z

l0
D 28.42

.

Thus, the decrease of turbulent kinetic energy is significantly
overestimated—Long’s theory and the majority of experi-
mental data givek}z22—and consequently, the Reynolds-
number evolution takes the form of az21.47 decrease. The
latter result leaves the possibility for a low-turbulent-
Reynolds-number regime at largez. Such a regime is not
compatible with the concept of ‘‘grid action’’~according to
which, the turbulent Reynolds number should be constant
throughout the flow! but is reminiscent of what is observed
in the situation of decreasing homogeneous turbulence.23

These differences between model behavior and well-
established experimental trends is evidently linked with the
low value ofL obtained with the standard constants: about
2.5 to be compared with our preferred value 10/3. This im-
plies that either the value ofCe2 or that of the ratiose /sk is
too small. The value ofCe2 is usually chosen in the range 1.8
to 2 in order to match the rate of decay of homogeneous
turbulence, so that things may be difficult to improve by
simply adjusting this value. Instead, a number of arguments
support the idea of increasing the ratiose /sk . First, an
analysis of direct-numerical-simulation data for wall-
bounded flows by Cazalbou and Bradshaw24 indicates that
the standard valuese51.3 is consistent with the data while a
value ofsk in the range 0.4 to 0.7 should be preferred in the
outer layer. These authors also pointed out that such a low

value could be incompatible with the existence of a well-
defined boundary layer edge. However, loweringsk to 0.75
while keepingCe2 and se to their standard values would
bring L fairly close to 10/3 without violating the edge con-
straint (se,2sk , see Ref. 21!. On another hand, recent at-
tempts to reoptimize the (k,e) model by Davodetet al.25,26

and in the framework of theAVTAC European Community
project ~see Be´zard27! also lead to an increase in the ratio
se /sk ~respectively, 1.3/0.8 and 1.14/0.58 for the references
cited! with improvements in the prediction of a variety of
flows including wall-bounded flows and free shear flows.

Some variants of the (k,e) model display an even lower
value ofL than the standard version and condition~4! can be
violated.28,29 In this case,g is negative and powers of (1
1gz/l0) are undefined forz/l0.21/g. However, it could
be shown that the evolution given by

• k/k05(11gz/l0)a/g and e/e05(11gz/l0)b/g, for 0<z
,21/g, and

• k ande are uniform forz>21/g and as small as wanted
provided thatn t remains finite,

corresponds to a weak solution of thesteady diffusion prob-
lem whenL,2 ~not to be confused with the weak solutions
given by Cazalbouet al.21 in thepropagation regime!. From
a numerical point of view, we have checked that this solution
was obtained at time convergence of the unsteady problem
with the calculation method used in Sec. III. So, violation of
condition ~4! produces solutions for which turbulencepar-
tially contaminates the surrounding space: on a distance
(l0 /g) that does not exceed a few integral length scales
~about three for the models cited above!. Such a behavior,
along with the decrease of the length scale with distance
from the source, is difficult to accept on physical grounds but
practical consequences of this deficiency have not been fur-
ther explored here.

The limiting caseL52 corresponds to a constant length
scale throughout the flow. The turbulent kinetic energy and
dissipation rate experience an exponential spatial decay ac-
cording to

k5k0 expS a
z

l0
D and e5e0 expS b

z

l0
D ,

with

a5
2

3
b52A2sk

3Cm
.

B. Reynolds-stress transport models

At the second-order-closure level, the problem is gov-
erned by two equations for the normal Reynolds stressesu2

and w2 ~axisymmetric state! supplemented with the
dissipation-rate equation. Taking into account the simplifica-
tions of the problem, the exact transport equation of the Rey-
nolds stressu iu j (u i is the velocity fluctuation alongx i rela-
tive to the statistical average denoted by an overbar! can be
written as
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~5!

D i j , P i j and e i j are, respectively, the turbulent diffusion
term ~by pressure and velocity fluctuations!, the pressure-
strain term~reduced to its ‘‘slow’’ part due to the absence of
mean-velocity gradients! and the dissipation term~with e
5e ii/2). Lumley’s rearrangement can be used to form a
unique return-to-isotropy term:p i j5P i j2e i j12/3ed i j , so
that Eq.~5! finally becomes

05D i j1p i j22/3ed i j ,

leaving turbulent diffusion and return-to-isotropy as the only
processes that need to be modeled. We shall consider the
same closure schemes as Straatmanet al.18 Their definitions
and references19,30–35 are given in Table I. The return-to-
isotropy schemes are linear~Rotta33!, quadratic~Sarkar and
Speziale35! and quadratic with a formulation that accounts
for the anisotropy of the dissipation tensor~Fu, Launder and
Tselepidakis34!. All turbulent-diffusion schemes are of gra-
dient type and neglect pressure diffusion with the exception
of Lumley’s.19 Concerning this scheme, we use the following
relations between the diffusion constants andC1 , the return-
to-isotropy constant in Rotta’s scheme~see Shih, Lumley
and Janicka36!: Cs152/(3b) and Cs25(b22)/(4b110)
with b52C1 . The resulting values are significantly different
from those used by Straatmanet al. These authors have re-

produced what we believe is a misinterpretation by Schwarz
and Bradshaw37 of the relation between the diffusion and
return-to-isotropy constants.

The dissipation-rate model equation can be taken in a
standard form. In the absence of mean velocity, it reads as

05
]

]x i
S Ceu iu j

k

e

]e

]x j
D2Ce2

e2

k
,

with Ce50.14 andCe251.92.
The analysis performed for eddy-viscosity models can

be adapted with little changes considering that

• u2
5v

2, and
• the equation foru2 can be replaced by that for the turbu-

lent kinetic energy.

Accordingly, the problem is governed by the following sys-
tem:

05Dk2e, ~6a!

05D331p3322/3e, ~6b!

05De2Ce2e2/k, ~6c!

where D33, Dk5D ii/2 and De denote, respectively, the
turbulent-diffusion terms ofw2, k ande. We shall look for a
similarity solution satisfying

dk

dz
5a

e

k1/2
,

de

dz
5b

e2

k3/2
and

w2

u2
5a2. ~7!

The equilibrium value of the anisotropy ratioa will be a
result of the analysis. It follows that relations~7! cannot be
valid for z50 if turbulence is produced with an anisotropy
level that does not match the equilibrium value to be found.

TABLE I. Turbulent-diffusion and return-to-isotropy models considered in the steady problem.

Turbulent diffusion

Daly and Harlow~Ref. 30! 2uiujuk5Cs

k

e
ukul

]uiuj

]xl

Cs50.22

Hanjalic and Launder~Ref. 31! 2uiujuk5Cs

k

e
Gijk

Cs50.11

Mellor and Herring~Ref. 32! 2uiujuk5Cs ~k2/e! @~]uiuj/]xk! 1 ~]uiuk/]xj! 1 ~]ujuk/]xi!# Cs50.2

Lumley ~Ref. 19! (D i j
u ) 2uiujuk5Cs1 ~k/e! ~Gijk1Cs2~Gilldjk1Gjlldik1Gklldij!! HCs150.185

Cs250.066
Lumley ~Ref. 19! (D i j

p ) 2pu i/r5PD u iu lu l PD51/5

p i j /e

Rotta ~Ref. 33! 2C1a i j C151.8

Fu et al. ~Ref. 34! 2C1A1/2A2(a i j1C18(a ikak j2A2d i j/3))2a i j(12A1/2) HC157.5

C1850.6

Sarkar and Speziale~Ref. 35! 2C1a i j1C2(a ikak j2A2d i j/3) HC151.7

C251.05

G i jk5u iu l

]u juk

]x l
1u ju l

]u iuk

]x l
1uku l

]u iu j

]x l
, a i j5

u iu j

k
2

2
3

d i j

A25a i ja j i , A35a i ja jkaki , A512
9
8 (A22A3)
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We shall therefore consider our results as applicable to a
similarity region away from the source and we can
assume—as usual in this kind of problem—thatz denotes the
distance to a virtual origin whose location depends on the
models used and the anisotropy level of the actual source.

We can proceed in the analysis noting that, whatever the
diffusion model is~see Table II!, it is possible to write

Dk5
d

dz S f ~a !
k2

e

dk

dz D ,

D335
d

dz S g~a !
k2

e

dw2

dz D ,

De5
d

dz S h~a !
k2

e

de

dz D .

It follows that Eqs.~6a! and~6c! can be solved as in the case
of an eddy-viscosity model with the following solution,
which now depends on the value ofa:

k

k0
5S 11g

z

l0
D a/g

,
e

e0
5S 11g

z

l0
D b/g

, ~8a!

with

a52A 2

3 f ~a !
, b5A 1

24f ~a !
2A 1

24f ~a !
1

Ce2

h~a !
.

~8b!

g is still equal to 3a/22b and the analog of condition~4! is
2h(a)2Ce2f (a),0. Relations~8a! and ~8b! can be then
substituted in Eq.~6b! to give

05
2a2

21a2
3

g~a !

f ~a !
1

p33

e
2

2

3
. ~9!

In this flow configuration and for all the return-to-isotropy
models used,p33/e is a literal function ofa only ~see Table
III ! and the solution of Eq.~9! allows the equilibrium value
of a to be determined. A numerical solution to Eq.~9! is
easily obtained, relations~8a! and ~8b! then allow to fully
determine the state of the flow. The corresponding results are
given in Table IV with

• the decrease of turbulence characterized by the exponent
n5a/(2g) of the rms value (u8) of the fluctuation, and

• the evolution of the length scale, by the slopegL

5g(u2/k)3/2.

gL can be assimilated to the slope of the integral scale rela-
tive to u alongx (Lx

u) since the relationLx
u
5Au8

3/e seems
to be satisfied withA51 in our configuration~see Kit
et al.6!.

In spite of the approximations made in their analysis, the
anisotropy levels reported by Straatmanet al.18 are in agree-
ment with the values obtained here. This can be traced to the

TABLE III. p33 /e as a function ofa for return-to-isotropy models.

Model p33 /e

Rotta ~Ref. 33! C1S232
2a2

21a2D
Fu et al. ~Ref. 34! ~C1A

1/2A2112A1/2!S 2

3
2

2a2

21a2D2
1

3
C1C18A1/2A2

2

Sarkar and Speziale~Ref. 35! C1S 2

3
2

2a2

21a2D1
1

3
C2A2

A25
8

3

~a2
21!2

~21a2!2 , A35
16

9

~a2
21!3

~21a2!3 , A5
a2~8a2

119!

~21a2!3

TABLE II. Turbulent-diffusivity coefficients obtained with the different gradient schemes used.

f~a! g~a! h~a!

Daly and Harlow~Ref. 30! Cs

2a2

21a2 Cs

2a2

21a2 Ce

2a2

21a2

Hanjalic and Launder~Ref. 31! Cs

2a2~3a2
12!

~21a2!2 3Cs

2a2

21a2 9

Mellor and Herring~Ref. 32! Cs

3a2
12

21a2
3Cs 9

Lumley (D i j) ~Ref. 19! Cs1

2a2~3a2
12!~115Cs2!

~21a2!2
6Cs1

a2~113Cs2!12Cs2

21a2 9

Lumley (D i j
p ) ~Ref. 19! 22PDCs1

2a2~3a2
12!~115Cs2!

~21a2!2
22PDCs1

2~3a2
12!~115Cs2!

21a2
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fact that their hypothesis lead to the correct~linear! evolution
of the length scale. A conclusion of both analysis is that no
combination of models is able to produce an anisotropy level
in the range 1.1 to 1.4 as indicated by the experimental and
simulation data. This can be explained upon considering that
in this flow, anisotropy is generated by turbulent diffusion
and return to isotropy only comes to moderate this effect. As
a matter of fact, Eq.~9! shows that when the diffusion coef-
ficients for w2 and k are equal:f (a)5g(a) for all a with
Daly and Harlow scheme orf (1)5g(1) whenPD51/5 with
Lumley’s scheme, no anisotropy is generated anda remains
unity whatever the return-to-isotropy scheme is. Hanjalic–
Launder and Mellor–Herring diffusion schemes exhibit the
same ratiog(a)/ f (a) and it can be easily seen that Lumley’s
scheme without pressure diffusion produces a lower ratio as
soon asa is higher than unity. Thus, Hanjalic–Launder and
Mellor–Herring diffusion schemes always give the same
value ofa when combined with the same return-to-isotropy
scheme, while Lumley’s scheme without pressure diffusion
always returns a lower value. Now, with the linear scheme of
Rotta as a reference for return to isotropy, we see that the
nonlinear schemes do not react in the same way to an over-
generation of anisotropy by the diffusion scheme. The Fu
et al. scheme seems to compensate for this effect while the
Sarkar–Speziale scheme amplifies it. The reason is that the
latter has been devised to reduce the rate of return to isotropy
for high values ofA3 ~corresponding to high values ofA2 in
our configuration!, in agreement with experimental data. The
high values ofa ~6.88! obtained in our configuration should
therefore not question the accuracy of Sarkar–Speziale
scheme. As a matter of fact, we shall see below that, when
the diffusion scheme is adjusted so as to keep generation of
anisotropy in reasonable bounds, the results obtained with
this scheme are beyond criticism.

Our analysis gives also access to the decrease exponent
of u8 and to the slope of the length scale. Considering the
former, we mentioned above that the body of experimental
data indicates thatn521 but values of20.86 and21.5
have also been reported. Values higher than21 are difficult

to accept from a physical point of view since, together with
the linear increase of the length scale, they would imply a
turbulent Reynolds number increasing withz. So, if we con-
sider21.5 to21 as a plausible range forn, every return-to-
isotropy scheme considered here can be combined with sev-
eral diffusion schemes to produce a decrease exponent in this
range. Considering the slopegL of the length scale, experi-
ments with oscillating grids give a rather wide scatter, it
seems that this value depends strongly on the particular ge-
ometry of the grid, frequency and stroke~see Refs. 5 and 6!.
Measurements by Thompson and Turner4 gave gL50.1,
Hopfinger and Toly5 reported three values in the range 0.16
to 0.34 while Kit et al.6 gave a value of 0.25. Such a sensi-
tivity to the initial parameters of the turbulence source is
indeed out of reach of one-point closure but, with one excep-
tion, the tested models produce values that stay in line with
the data.

From a practical point of view, the analysis provides
some guidelines to improve model performances in this flow
configuration. Straatmanet al.18 emphasized that modeling
pressure diffusion was necessary to accurately predict anisot-
ropy and suggested to use Lumley’s model with a lowered
value of PD . Our analysis indeed supports this conclusion
but also suggests an optimization strategy; noting that the
value ofa does not depend on the constants in the dissipation
equation @see Eq.~9!#, one can proceed in two steps:~i!
adjust the value ofPD in order to get the proper level of
anisotropy; and~ii ! adjust the diffusion constantCe to obtain
the correct spatial decrease. At this stage, we neither wish to
modify the diffusion constants in the Reynolds-stress equa-
tions, since they are connected to the return-to-isotropy con-
stant by construction—norCe2—whose value is usually
fixed by the decay law of homogeneous turbulence. Such an
optimization performed with the target valuesa51.2 andn
521 givesPD50.17 andCe50.175 when Rotta’s return-
to-isotropy scheme is used, andPD50.18 andCe50.17 with
the Sarkar–Speziale scheme. In both cases,gL takes the
value 0.35 which is perfectly acceptable in view of the ex-
perimental data cited above. The optimized values ofCe are

TABLE IV. Similarity results obtained far from the source in the steady state with the different Reynolds-
stress-transport models.

Return to isotropy Diffusion n gL a

Rotta ~Ref. 33! Daly and Harlow~Ref. 30! 21.28 0.46 1
Hanjalic and Launder~Ref. 31! 21.00 0.19 1.75
Mellor and Herring~Ref. 32! 20.50 0.31 1.75
Lumley ~Ref. 19! (D i j) 20.32 0.47 1.60
Lumley ~Ref. 19! (D i j1D i j

p ) 20.97 0.56 1

Fu et al. ~Ref. 34! Daly and Harlow~Ref. 30! 21.28 0.46 1
Hanjalic and Launder~Ref. 31! 21.14 0.22 1.55
Mellor and Herring~Ref. 32! 20.47 0.41 1.55
Lumley ~Ref. 19! (D i j) 20.33 0.52 1.52
Lumley ~Ref. 19! (D i j1D i j

p ) 20.97 0.56 1

Sarkar and Speziale~Ref. 35! Daly and Harlow~Ref. 30! 21.27 0.46 1
Hanjalic and Launder~Ref. 31! 20.60 0.01 6.88
Mellor and Herring~Ref. 32! 20.65 0.007 6.88
Lumley ~Ref. 19! (D i j) 20.29 0.28 2.08
Lumley ~Ref. 19! (D i j1D i j

p ) 20.97 0.56 1
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consistent with usual implementations of Reynolds-stress-
transport models. Note that we were unable to perform a
similar optimization with the Fuet al. scheme: it seems that,
in this case, the evolution ofa whenPD varies in the range 0
to 1/5 is not continuous and that values ofa in the range 1 to
1.4 cannot be reached.

In a recent paper, not available when this one was sub-
mitted, Straatman38 proposed a calibration procedure based
on the approximate analysis of Straatmanet al.18 and the
simulation results of Briggset al. The method allows to de-
termine the values ofCs2 and PD in Lumley’s model and
ensures that the three terms at work in this model are bal-
anced in agreement with the simulation data. This appears to
be linked with the value of the ratioR15u2w/w3in a se-
lected region of the flow. TakingR150.29, Straatman ob-
tainedCs250.31 andPD50.153 with the return-to-isotropy
scheme of Sarkar and Speziale. These values are signifi-
cantly different from those used or obtained here but do not
really conflict with our analysis: following Straatman’s
method the valueCs250.066 can be recovered by taking
R1'0.25 which leads toPD'0.18 in agreement with the
result of our optimization.R1'0.25 is not far from the value
recommended by Straatman and equally supported by the
simulation data. It remains that the large difference between
possible values ofCs2 is a matter of concern and a precise
evaluation of this model constant should probably be done
using a different approach.

III. UNSTEADY PROBLEM

We turn now to the unsteady problem in which the
source is switched on att50. At a given timet, turbulence
will have diffused over some distance and we shall look for
a time-dependent scaling of the instantaneous profiles of the
different variables. As we shall see below, the solution of the
steady-state problem will provide a useful basis for such a
scaling.

We restrict the analysis to the case of the (k,e) model
and the unsteady problem is governed by the following set of
equations:

]k

]t
5

]

]z S n t

sk

]k

]z D2e, ~10a!

]e

]t
5

]

]z S n t

se

]e

]z D2Ce2

e2

k
, ~10b!

with the initial condition:

;z.0 k~z,t50!50, e~z,t50!50,

and the boundary conditions:

;t>0H k~z50,t !5k0 ,
e~z50,t !5e0 ,
lim
z→`

k~z,t !50,

lim
z→`

e~z,t !50.

It has been shown by Cazalbouet al.21 that, if the ratio
se /sk is lower than 2, turbulence propagates into the undis-
turbed fluid at a finite velocity. At a given time, the evolu-
tions of the different variables can be analytically described

in the vicinity of the front and correspond to a weak solution
of the model equations there. To better visualize the charac-
teristics of such solutions, numerical integration of Eqs.
~10a! and ~10b! can be carried out using the method pre-
sented in the Appendix. The resulting eddy-viscosity profiles
at three different times are plotted in Fig. 1 together with the
steady solution. The propagation character of the solution is
apparent: the eddy viscosity goes to zero linearly~a general
characteristic of the weak solutions given in Ref. 21! at a
finite distance from the source. As time proceeds, so does the
position of the frontd(t) and one is inclined to look for a
similarity solution in the form k5K(t) f (h) and e
5E(t)g(h) with h5z/d(t). However, d is not the only
time-dependent length scale to enter the problem and this
method is not able to give a solution valid at all times. This
is apparent in Fig. 2 where we plot the instantaneous profile
of the length scale at a given time: in addition tod(t) a
second time-dependent scale,l`(d), is to be considered~the
suffix ` will denote the value of the variable in the steady
solution at the location given between parentheses, here: the
position of the frontd). It is therefore difficult to imagine a
simple way to scale the solution att and, in order to proceed,
we shall have to consider separately the cases of ‘‘short’’ and
‘‘long’’ times.

FIG. 1. Numerical solution of the unsteady (k,e) model problem, eddy-
viscosity profiles. ---,te0 /k0530; ––, te0 /k0560; —, te0 /k0590; ••••,
(11gz/l0) (2a2b)/g ~steady solution!.

FIG. 2. Illustration of the different time-dependent length scales in the un-
steady (k,e) model problem. —, Length-scale profile atte0 /k0560; ••••,
11gz/l0 ~steady solution!.
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A. Short-time scaling

We define short times by considering that, in the corre-
sponding regime,~i! turbulence has diffused over a short
distance~compared to the length scale at the sourcel0) and
~ii ! the value of the length scale in the steady solution atz
5d remains close tol0 . We have therefore simultaneously

d!l0 and l`~d !'l0 so that d!l`~d !.

As a direct consequence, gradients are important and diffu-
sion dominates all. We get a pure-diffusion problem that can
be described by the following system:

]k

]t
5

]

]z S n t

sk

]k

]z D , ~11a!

]e

]t
5

]

]z S n t

se

]e

]z D , ~11b!

with the same initial and boundary conditions as the original
diffusion/destruction problem.d(t) is the relevant character-
istic length scale and we shall look for a similarity solution
in the form

k5k0 f ~h ! and e5e0g~h ! with h5
z

d~ t !
, ~12!

whered is more generally considered asproportional to the
position of the front. Substituting these expressions in Eqs.
~11a! and ~11b!, we get

2
sk

Cm

e0

k0
2
dḋh f 85S f 2f 8

g D 8
,

2
se

Cm

e0

k0
2
dḋhg85S f 2g8

g D 8
,

where (•) and (8) denote, respectively, time andh deriva-
tives. Solutions in the form of Eq.~12! exist only if

e0

Cmk0
2
dḋ5A,

A being a nondimensional constant.A is arbitrary and simply
sets theconstant ratio between the position of the front and
d(t). Integration of the last equation yields the expressions
of the position of the front and propagation velocityc(t)
5 ḋ, that is

d~ t !5A2ACmk0
2

e0
3At and c~ t !5AACmk0

2

2e0
3

1

At
.

~13!

The self-similar profiles are then the solutions of the system

2Askh f 85S f 2f 8

g D 8
, ~14a!

2Asehg85S f 2g8

g D 8
, ~14b!

with

f ~0!5g~0!51 and lim
h→`

f ~h !5 lim
h→`

g~h !50.

There is no straightforward analytical solution to Eq.~14a!–
~14b!, but Eqs.~11a!–~11b! can be numerically integrated.
The result of such an integration is illustrated in Figs. 3 and
4. The contamination, at a finite velocity, of the flow is ap-
parent in Fig. 3 where the eddy-viscosity profiles are plotted
for three distinct values of time. In Fig. 4, the same data are
replotted according to the theoretical self-similar scaling@z
normalized by (tk0

2/e0)1/2#. The three profiles collapse on a
single curve that can be considered as the solution of~14a!–
~14b! with A51/(2Cm). This confirms the validity of the
time evolutions given by Eq.~13!. One can notice that in the
one-equation model of Spalart and Allmaras,20 the absence
of a destruction term in the eddy-viscosity equation enables
the distinction between short and long times to be eliminated
and thet21/2 behavior of the propagation velocity could be
shown to be valid all along the evolution. Such a behavior is
remarkably consistent with the results of Long’s analysis and
known experimental data.

B. Long-time scaling

In the long-time regime we consider that

d~ t !@l0 and therefored~ t !'l`~d !.

Sincek ande are both decreasing withz in the steady state,
we can also assume that, fort sufficiently large, we have

FIG. 3. Numerical solution of the pure-diffusion unsteady (k,e) model
problem, eddy-viscosity profiles. ---,te0 /k0530; – – , te0 /k0560; —,
te0 /k0590.

FIG. 4. Numerical solution of the pure-diffusion unsteady (k,e) model
problem. Eddy-viscosity profiles as functions ofz scaled by the theoretical
expression ofd(t) ~13!. ---, te0 /k0530; ––, te0 /k0560; —, te0 /k0

590; the three profiles, perfectly collapsing, are indistinguishable.
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k0@k`~d ! and e0@e`~d !.

This precludes any scaling based on the values of the vari-
ables at the source and it seems thatd(t) can only be con-
sidered as a reference location att. Thus, we look for a
solution in the form

k5K~ t ! f ~h !

e5E~ t !g~h !
with h5

d~ t !2z

K3/2~ t !/E~ t !
. ~15!

As previously, relations~15! can be substituted in Eqs.
~10a!–~10b! to give

Cm

sk
S f 2f 8

g D 8
5F ḋ

K1/2G f 82F3

2

K̇

E
2

KĖ

E2 Gh f 81F K̇

E
G f 1g,

~16a!

Cm

se
S f 2g8

g D 8
5F ḋ

K1/2Gg82F3

2

K̇

E
2

KĖ

E2 Ghg81FKĖ

E2 Gg

1Ce2

g2

f
. ~16b!

Here again, a necessary condition for the system to have a
self-similar solution is that the terms between brackets are
constant, which is equivalent to

ḋ

K1/2
5A,

K̇

E
5B,

KĖ

E2
5C, ~17!

whereA, B and C are nondimensional constants. Now, it is
easy to check that this condition can be fulfilled if one takes
for K andE the solution fork ande in the steady state atz
5d(t):

K~ t !5k0S 11g
d~ t !

l0
D a/g

, ~18a!

E~ t !5e0S 11g
d~ t !

l0
D b/g

. ~18b!

Accordingly, relations~17! are satisfied withB5Aa, C
5Ab and the following expression ford(t):

d~ t !

l0
5

1

g S A0t
e0

k0
1A1D g/(a2b)

2
1

g
, ~19!

whereA05A(a2b) andA1 is an integration constant. Inci-
dentally, we note that the value of the exponent only depends
on the choice of the modeling constants through the value of
L:

g

a2b
5

12~L22!

12L2171A1124L
.

Differentiation of Eq.~19! gives the expression of the propa-
gation velocity:

c~ t !5Ak0
1/2FA0t

e0

k0
1A1Ga/2(a2b)

5AAk`~d !. ~20!

Provided that relations~17! are satisfied, the remaining
spatial problem is governed by the following equations:

Cm

Ask
S f 2f 8

g D 8
2

g

A
2 f 8~12gh !2a f 50,

Cm

Ase
S f 2g8

g D 8
2Ce2

g2

A f
2g8~12gh !2bg50.

If we consider that the value ofA has been chosen so that
d(t) correspondsstrictly to the position of the front att,
relations~15! show thatf and g need to be defined on the
interval @0,1/g# which is the limit whend goes to infinity of
@0,d/(l01gd)# ~corresponding toz in @d,0#). The boundary
conditions ath50 are immediate, we have:f (0)50 and
g(0)50. To specify the boundary conditions ath51/g, we
begin by writing relations~15! for z50:

15S 11g
d

l0
D a/g

f S d

l01gd D ,

15S 11g
d

l0
D b/g

gS d

l01gd D ,

d varying from 0 to infinity. IntroducingX5d/(l01gd), we
getd/l05X/(12gX) and it follows that, for allX between 0
and infinity, f (X)5(12gX)a/g and g(X)5(12gX)b/g.
Obviously this result is not acceptable forX50, so that in
the end, the analysis appears to be restricted to the case
whereX remains close to 1/g that isd@l0 which is charac-
teristic of the long-time regime. We shall therefore consider
the following boundary condition ath51/g:

f ~h ! ;
h→1/g

~12gh !a/g and g~h ! ;
h→1/g

~12gh !b/g.
~21!

The analysis is now complete. It shows that, in the un-
steady model problem, a similarity solution in the form of
Eq. ~15! with time-dependent characteristic scales given by
Eqs. ~18a!–~18b! is adequate at large times. With the stan-
dard set of constants, the position of the front should evolve
as t0.29. A remarkable result is that, whenL takes the value
10/3~corresponding to a 1/z decrease in the steady problem!,
the position of the front evolves ast1/2 in the long-time re-
gime as required by Long’s theory.

Numerical integration of Eqs.~10a!–~10b! has been car-
ried out to check these results. According to Eq.~19!, the
quantity D5(d/l011/g) (a2b)/g should be a linear function
of time during the propagation. It is rather easy to locate the
position of the front in the numerical solution and to plot it
against time. This has been done in Fig. 5, the linear charac-
ter of the result at large times is quite convincing while a
slow divergence at short times is apparent. A least-square
linear approximation of the curve in the ranget55 to 90
gives A050.9 andA152.1 corresponding toA50.47. The
propagation velocity has been plotted in Fig. 6 together with
the time evolution ofk`(d). Both curves are in good agree-
ment as soon ast55, the slope of the logarithmic plot being
consistent with the exponent in Eq.~20!. As t becomes lower
than 5, the two curves depart significantly andc(t) exhibits
the21/2 slope, characteristic of the pure-diffusion regime at
short times.

If we turn now to the space problem, it can be seen in
Fig. 7 that the eddy-viscosity profiles, computed at three dif-
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ferent times in the long-time regime, perfectly collapse when
scaled according to Eqs.~15!, ~18a! and ~18b!. One also
observes that the equivalent of relation~21! for the eddy
viscosity

f 2~h !/g~h ! ;
h→1/g

~12gh !(2a2b)/g

accurately fits the results as soon ash50.4. According to
the analysis in Cazalbouet al.,21 the slope of the eddy-
viscosity profile at the front should be equal toA(2sk

2se)/Cm , the corresponding line is plotted on the figure
with A50.47 and is in good agreement with the numerical
result.

C. Transition between short and long times

As time progresses fromt50, the space evolution
gradually shifts from the short-time situation where the tur-
bulence flux at the source (fk05(n t /sk) ]k/]zuz50) de-
creases in modulus~it should reach zero in the end if the
evolution were to proceed in the pure-diffusion regime! to
the long-time situation where it saturates on the constant
value corresponding to the steady state, that is:

lim
t→`

fk05
Cm

sk

k0
2

e0

]k`

]z U
z50

5a
Cm

sk
k0

3 ,

and, similarly for the dissipation rate:

lim
t→`

fe05
Cm

se

k0
2

e0

]e`

]z U
z50

5b
Cm

se
k0

1/2e0 .

Figure 8 shows the time behavior of these fluxes and one
sees that, starting from theoretically infinite values att50,
they come to saturation on the above values for a nondimen-
sional time approximately equal to 3. Rigorously this is only
obtained whent→`. However, one can give an indication
of the time (tT) at which transition between the short- and
long-time regimes occurs by noting in Fig. 4 that the gradient
of n t at the source takes the constant value 1.28 whenz is
scaled by (tk0

2/e0)1/2. Equating with the known value in the
steady solution we get

tTe0 /k05~1.28/~b22a !!2'2.47,

which is coherent with what can be observed in Fig. 8. More-
over, noticing in Fig. 4 that the front is located atz
'0.57k0

3/2/e0 , it can be deduced thattT correspond to a
propagation distance of the same order of magnitude as the
integral scale at the source:dT'0.9k0

3/2/e0 . This is a rather
short distance and, consequently, it is most likely that the
experimental data for the propagation of the front should be
compared with model solutions in the long-time regime.

FIG. 6. Time evolution of the propagation velocity. —, Numerical result for
c(t)/A with A50.47; ––,k`(d), d(t) being given by the numerical solu-
tion.

FIG. 7. Eddy-viscosity profiles in the long-time regime scaled by the time-
dependent characteristic scales. ---,te0 /k0530; ––, te0 /k0560; —,
te0 /k0590; •••, asymptotic behavior whenh→1/g; –•–, theoretical slope
of the eddy-viscosity profile at the front@A(2sk2se) with A50.47]. The
three instantaneous profiles, collapsing perfectly, are indistinguishable.

FIG. 8. Time evolutions of the turbulent-kinetic-energy and dissipation-rate
fluxes atz50. ––,fk03sk /(Cmk0

3); ---, fe03se /(Cmk0
1/2e0).

FIG. 5. Time evolution ofD5(d/l011/g) (a2b)/g. —, Numerical result;
––, least-square linear fit betweent55 andt590.
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IV. SUMMARY AND CONCLUSION

It has been shown that a number of characteristics of the
turbulent field created by the diffusion from a plane source
could be analytically given for turbulence models of first and
second order. In the steady state, complete solutions where
turbulence usually fills the whole surrounding space can be
obtained: the spatial decrease of turbulence, as well as the
equilibrium anisotropy level for a variety of second-order
models are given and may be used to improve the perfor-
mances of the models in this flow configuration.

With the two-equation eddy-viscosity models that satisfy
the conditions given in Ref. 21, one can also examine the
problem at finite times. It appears that the cases of short and
long times have to be distinguished. The first case corre-
sponds to a pure-diffusion evolution, the position of the front
evolves ast1/2 whatever the values of the model constants
are. The evolution at large times is slowed down by viscous
dissipation and the position of the front still evolves as a
decreasing power of time but the exponent now depends on
the model constants. With the standard (k,e) model, transi-
tion between short- and long-time regimes occurs after a pe-
riod of time which is of the order of the integral scale at the
source.

If some constraints on the modeling constants are taken
into account, the agreement with experimental data is always
satisfactory from a qualitative point of view. For the predic-
tion of the steady state with the (k,e) model, the combina-
tion of constantsL5Ce2sk /se should be higher than 2 for
allowing ~i! the length scale to increase when the turbulent
kinetic energy decreases and~ii ! turbulence to fill the whole
surrounding space. An equivalent constraint holds for
second-order models. In the propagation regime, the con-
straintse /sk,2 given in Ref. 21 is still desirable. Finally, a
remarkable value forL ~10/3! ensures a hyperbolic spatial
decrease of the rms value of the velocity fluctuation in the
steady regime and a parabolic time behavior for the progres-
sion of the front in the propagation regime at large times, in
agreement with existing experimental data. It seems that re-
considering the calibration of the (k,e) model so as to re-
spect this particular value ofL could be done without major
difficulty.
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APPENDIX: NUMERICAL DETAILS

In Sec. III, we use a rather classical numerical method to
solve the closure equations. It is based on a time-marching
procedure with finite-volume discretizations in space and
time.

The time discretization is first-order accurate, implicit
for diffusion and explicit for destruction. The time step must
be very small att50 where the propagation velocity tends to
infinity and can be relaxed as time proceeds: we make it vary
asAt from 531024 at t50 up to 1.2531022 at t560 ~all

values normalized byk0 /e0). About 9000 time steps are
therefore needed to compute the flow during this period of
time.

The space discretization is conservative with a constant
step, 600 grid points are used up toz/l055.

The turbulent kinetic energy and its dissipation rate can-
not be set to zero in the undisturbed fluid. As in Ref. 21, we
use ‘‘small’’ but non-zero values there: 1023 times their re-
spective level at the source.

The instantaneous position of the front is determined
with an accuracy of one mesh size which is enough to ex-
amine its behavior. After differentiation, however, it returns
a propagation velocity that can be rather noisy. The results
for this quantity~Fig. 6! are evaluated every 80 time steps
from a linear least-square fit of the front position for these 80
steps. Time resolution remains very good, the corresponding
time intervals being in the range 631022 at the beginning of
the calculation to 1 at the end.
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