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Two-equation modeling of turbulent rotating flows
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The possibility to take into account the effects of the Coriolis acceleration on turbulence is examined
in the framework of two-equation eddy-viscosity models. General results on the physical
consistency of such turbulence models are derived from a dynamical-system approach to situations
of time-evolving homogeneous turbulence in a rotating frame. Application of this analysi&te)a

model fitted with an existing Coriolis correctidd. H. G. Howard, S. V. Patankar, and R. M.
Bordynuik, “Flow prediction in rotating ducts using Coriolis-modified turbulence models,” ASME
Trans. J. Fluids Engl02, 456(1980] is performed. Full analytical solutions are given for the flow
predicted with this model in the situation of homogeneously sheared turbulence subject to rotation.
The existence of an unphysical phenomenon of blowup at finite time is demonstrated in some range
of the rotation-to-shear ratio. A direct connection is made between the slope of the mean-velocity
profile in the plane-channel flow with spanwise rotation, and a particular fixed point of the
dynamical system in homogeneously sheared turbulence subject to rotation. The general analysis,
and the understanding of typical inaccuracies and misbehavior observed with the existing model, are
then used to design a new model which is free from the phenomenon of blowup at finite time and
able to account for both of the main influences of rotation on turbulence: the inhibition of the
spectral transfer to high wave numbers and the shear/Coriolis instabil2p0® American Institute

of Physics[DOI: 10.1063/1.1920630

I. INTRODUCTION hancement of the turbulent activity are observed.

When a turbulent flow undergoes system rotation, the From what precedes, it comes out that the origins of
! o : g ysten '~ system-rotation effects on turbulence cannot be traced in the
resulting Coriolis accelerations are responsible for stron

modifications to the statistical properties of the fluctuatin ramework of one-point first-order turbulence modeling.
nocificat Istical properti uctua gNow, in an industrial context where the flow configurations
field. The most spectacular ones are related to th

- ) . r mplex(three-dimensional metri relative motion
shear/Coriolis instability,the result of which may be either %e?vfgenpe?ex(mer?tz c:nhgmso(;e?]e%eoof ;e?rfl,etecgn dietio I)OS °
an enhancemerntdestabilization’) or a reduction(“stabili- : y ’

- L it is important to mimic the effects of rotation with relatively
zation”) of the turbulent activity. The latter eventually leads . - . .
o .~ simple turbulence models. This can be achieved by making
to relaminarization. Both phenomena can be observed in ra- - . .
. . . : . model coefficients dependent on the rotation rate. With such
dial turbomachines—especially small-size rotors operating at . L
an approach—&k, €) model and a simple modification pro-

high i —with i h )
igh rotation speed_ _WI'[ important consequences on t € ssed by Howard, Patankar, and Bordyruilongen,
performance and efficiency of the stages. The mode of actloﬁ/I . . .

N . L achiels, and Gatskihave presented calculations of the
of the shear/Coriolis instability can be understood within a lane-channel flow with spanwise rotation that are in excel-
statistical-description context: system rotation appears in th nt agreement with exiiting direct-numerical-simulation
Reynolds-stress transport equations where it interacts wit . o

y P d NS) results*® the computed flow exhibits stabilization

anisotropy in intercomponent-transfer terms. These terms a . A . .
traceless—and therefore without contribution to the respect!vely, destabilizatiorin the V|c!n|ty of the suction
turbulent-kinetic-energy budget—but directly act on the(respectlvely, pressuravall, a core region where the mean-

shear stresses, which are either decreased or increased EfSlOC'ty profile is Ime_a_r with _a slope close to tw_lc_e the rota-
Ion rate(neutral-stability regioy) and accurate friction coef-

pending on the relative orientations of the system-rotatior].". ; . . .

vector and Reynolds-stress tensor, hence the observed sta glents. S,UCh a result (_)_btal_ned ina S|mplg .but.representanve

lization or destabilization processes. On the other hand, ow configuration(stabilization and destabilization phenom-
£na can be observed in the blade-to-blade channels of radial

second mode of action by which the Coriolis acceleration i - )
are known to modify the fluctuating field is not tractable fOtors is encouraging. It motivates the present study that

within the context of one-point statistics: it affects the non-aims at Qeyeloping ca!culation methods that are efficient in
linear spectral-transfer term of Lin's equation and leads to af"® Prediction of rotating flows, and do not involve more

inhibition of the energy cascade to small scales. As a resulf’an @ marginal increase in the computational cost, as com-
reduction of the turbulent dissipation and simultaneous enP@red to the “industry standards.” However, accurate predic-
tion of the channel flow is a somewhat too restricted basis to

3 — - validate a model of sufficiently general use. In order to
Electronic mail: cazalbou@ensica.fr . . K . .

YAlso at INPT-ENSEEIHT-Institut de Mécanique des Fluides de ToulouseWiden th'.s baSIS,. two .We"'docum.en.ted flow Colnf'gur"f‘t'ons
UMR 5502 CNRS, France. are considered, in which the Coriolis accelerations directly
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influence the fluctuating field without affecting the meanindicate that flow is linearly stable whef is outside the
flow. These are ordinary situations of time-evolving homo-range 0-0.5. This result leads to the definition of the
geneous turbulence undergoing rotation: initially isotropicBradshaw—Richardson number

turbulence and homogeneously sheared turbulého¢her _ _

referred to as the Hﬂgand HS!% flows). In the first case, BR =~ 20/SX (1~ 2009 =252~ 1),
limited departures from isotropy of the Reynolds-stress tenand a criterion according to which linear stability corre-
sor remove the shear/Coriolis-instability mechanism fromsponds to positive values 8R. Physical results would help
the problem, and leave the nonlinear effect acting alone. Ito evaluate more precisely the stability characteristics of the
the second case, anisotropy is enforced by mean shear afdly turbulent flow, they are unfortunately scarce: The large-
the instability mechanism dominates. The model problem®ddy-simulationLES) results at3=0, 0.25, and 0.5 of Bar-
corresponding to these situations will be stated in Sec. Il fodina, Ferziger, and Rogai'ﬂ)confirm that the flow is un-
two-equation eddy-viscosity models. They can be studied usstable in this range, and their results g£0.5 seem to

ing a dynamical-system approatand it will be shown that exhibit a neutral character. Rapid-distortion-thetRpT) re-

the fixed-point diagram obtained in the sheared case musilts by Bertoglid’ go from B~-0.44 to 0.44 and, in the
possess some precise properties in order to ensure physicakantime, the computed flow goes from stable to unstable,
consistency. Applying this analysis to the correction methocheutral flow being apparently obtained for a valueBo$ig-

of Howard, Patankar, and Bordyn@iln Sec. Il will illus- nificantly lower than zergabout -0.2. In the absence of
trate typical inaccuracies and unphysical behavior that caprecise bounds for the unstable-flow range, we shall consider
result when the diagram does not possess the desired projrat it extends from a value @8 slightly below zero up to
erties. Based on these results, a new Coriolis correction i8.5.

finally proposed in Sec. IV. Unlike earlier proposals, it ac-

counts for both the nonlinear effects and the shear/Coriolis )
instability. 1. Turbulence-model corrections for the

shear/Coriolis instability

Existing proposals for taking into account the
Il. ROTATING HOMOGENEOUS TURBULENCE shear/Coriolis instability in the context of two-equation tur-
bulence modeling have often been obtained from an analogy
between rotation and curvature effects. The corrections of
Howard, Patankar, and Bordyntfilend Chen and Gdbcor-

respond to the curvature correction introduced by Launder,

ence frame. The turbulence Reynolds number is high and the "™~ - X
statistical properties of the fluctuating field remain homoge- “dd'.n’ and 'Shgrm%ﬁTheCQ.coe'fflment of the glestrucnon
erm in the dissipation equation is made rotation dependent

neous in space at any time. The statistics evolve in time fI'OF}lh . i
an initial state at=0 characterized by the levétg and ¢, of through some fornB of the Bradshaw-Richardson number:
the turbulent kinetic energl¢ and dissipation rate. These Co=C%(1-CsB),

assumptions apply to both of the HB-and HIL) flows.

We consider the flow of an incompressible fluid in a
Cartesian coordinate syste(r,y,z) rotating around the
axis with an angular velocit$) relative to a Galilean refer-

whereC?% andC,. are positive constants. The model of Chen

and Guo, and the model denoted as “Model II” in Howatd

al.,, use the following expression of the Bradshaw—
In this case the mean flow is unidirectional and the onlyRichardson number:

nonzero glemerﬂiz dJ/ gy of thg velocity-gra}dient tensor is B = - 20(S- 20)K¥/ . (1)

constant in time and spadd®) is the velocity component

alongx and the overbar denotes statistical averagikgth- A simpler expression has also been evaluated by Howard

out any loss of generality, we shall consider t8a positive.  al. (Model 1), in the formB=-20k/e.

In the absence of rotation, experiméiitand simulatioh®** Another correction introduced by Hellstnfor the

indicate that the flow evolves toward an equilibrium state(k, w) modef® corresponds to the curvature correction of

where the turbulent time scal&/e) locks on to the mean- Park and Chunéz. In a (k,e) context, Hellsten’s proposal

flow time scale 18. Their ratio a=¢/(SK then becomes a would also involve theC,, coefficient, now written in the

constant(=0.22), independent of the initial conditions and form

shear-rate level as soon as the latter is sufficiently kilga C.,=CO(1 +CB)™

“high-shear class of flows” reviewed by Tavoularis and @7 e S '

Karnik®). That is, the turbulent kinetic energy and dissipationwhere the Bradshaw-Richardson number was initially de-

rate continuously increase at the same rate. As mentioned fined according to a suggestion of Khodak and Hirsth:

the Introduction, the addition of system rotation significantly — e e 2

alters the picture: examination of the Reynolds-stress trans- B=-[S-20|(s- |S-20)k7e" @

port equations led Johnston, Halleen and LeZits hypoth-  However, with this formulation, Hellsten reports an unex-

esize that the flow should become stafile., the velocity pected rise of turbulent kinetic energy in the calculation of

fluctuations decrease with timéor negative values of the the flow in the blade-to-blade channel of a radial compressor.

ratio 8= /S, and remain unstable otherwise. On the otheror this reason, his final proposal makes use of the following

hand, displaced-particle analySisind stability analysi$™®  definition:

A. Homogeneously sheared turbulence
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A(a) =0, )

These models can be used without restriction in the caland they correspond to the possible equilibrium states of the
culation of general flows provided that the definition of theflow. These states will be realizablekf=0,e=0, and |t

=

Bradshaw—Richardson number is objective. Introducing thes< \u?\u? hold whena goes toa... Using relation(3), it is

absolute-rotation tensor
1( o, aU)
W= — - — ) +¢,..0Q
! 2( axj X mjEm
and strain-rate tensor

s=3522)
X, I

easy to show that the resulting necessary condition for real-
izability can be written as

a.=3C,/2. ()

The stability of the fixed point—not to be confused with the
stability of the flow—depends on the value of the derivative
f’ of the functionf(a)=a+A(a) for a=a,: if f'(a,.) is
strictly lower than unity, the fixed point is stable and—in the
absence of another stable fixed point—the equilibrium state

objective measures of rotation and strain can be obtained §gj| attract any initial condition.

(~2=(V\/ijV\/ij/2)1’2 and§:(23jsj)1’2, respectively. Definition
(2) was initially given by Khodak and Hirséfin the objec-
tive form

B=-20(S- 20)k%/ €.

Following Spalart and Shaf, definition (1) can also be made
objective as

k \?(dS;
B=- 2V\/ik§k<6_,é> (EJ' + Qm(gimnﬁn + 8jmnSn))-

In order to discuss thstability of the flowwe have to go
back to the evolution equations of the turbulent kinetic en-
ergy and dissipation rate in the form

_ 2
Tk G ©
k dt a
1de C,C.,-Cud?
;dt*: 1a - (10

We shall consider that the flow is stableespectively un-

Note that the last two definitions of the Bradshaw-stablg if the turbulent kinetic energy decreagesspectively
Richardson number were claimed to unify rotation and curincreaseswith time. For a given, realizable, fixed poiat.,

vature effects.

2. Analysis of the model problem

The analysis is performed for thék,e) turbulence
model?®

nolds stresses are modeled as

—  [ay; au;| 2
- Uin = Vt<_l + _l> - _k5|j1

3
(9Xj IX; 3 ( )

wherey; is the velocity fluctuation along and vt:CMkzle is
the eddy viscosity. The H& flow is governed by the sim-
plified set of model equations,

a = CM:SZ - €, (4)
de e
T C,CakS - CQE. (5)

In this situation and at this modeling level, tig,C,, and

but can be extended to any eddy-viscosity model
that provides a turbulent time scale. In this context, the Rey-

Eq. (9) shows that the flow in the equilibrium state is neutral
if a2=C,, stable ifa’>C,, and unstable itxZ <C,,. More-
over, Eqgs.(9) and(10) can be rewritten using relatiof) to
give the following relations, holding in the equilibrium state:

dk| _ 1de &(cc)
kdt' |, edt |, a,\ Co-1/,

These relations have an important consequence for model-
ing: Considering thaC, should always remain positive, it
appears that the sign of the right-hand side does not depend
on the value ofC,,. It is therefore impossible to obtain both
stable and unstable flows across the rangeBdiy solely
sensitizing this coefficient to the rotation rate.

B. Initially isotropic turbulence

We now consider the unsheared situation. The Reynolds-
stress tensor is initially isotropic and if it remains so, rotation
does not enter the Reynolds-stress-transport equations. How-
ever, early experiments by Wigeland and N&gitid show
that the decay rate of turbulence was significantly affected
(reduced by system rotation. Since then, more experim@nts

C,, coefficients can depend—at most—on the values of theynd numerical simulation&*?®?°have confirmed this re-

nondimensional variabler and parameteB. Equations(4)

duction in the decay rate. In addition, the data indicate that

and(5) can then be combined to give an evolution equationanisotropy develops—mainly through the length scales: The

for « in the form
da
dt'
wheret” =St With a(0)=ay=¢€/(Sky), Eq. (6) constitutes a

fully defined dynamical system for the state variablelts
fixed pointsa,, are the solutions of the equation

Cu(Ca—1) - (Co-1)a? = A(), (6)

transversgnormal to the system-rotation vectacales in-
crease more than the axial scales, while the Reynolds-stress
tensor only slightly departs from isotropy. Obviously, these
effects are connected with modifications to the energy
cascade’ The spectral model of Cambon, Bertoglio, and
Jeandef’ and the analysis of Aupoix, Cousteix, and
Liandraf! have shown that such modifications could be ex-
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TABLE I. Model corrections for the nonlinear effects in rotating homogeneous turbulence. The li@j} of
when y goes to infinity is denoted &87,. For the model of Park and Chung, denotes the exponent of the
spectrum at low wave numbers aﬁ‘q|=C22—l by construction.

Reference Co c% Cui c,
31 C%+Cy(1+0.1325) /(1+0.6051y+3.9377) 1.83 0.9 2.73
28 C%L+Cyly 1.83 0.15 0
43 C%L+Cy/ (1+10)7) 1.83 1 2.83
33 C%+Cy/(1+13.042) 1.71 1.21 2.92
36 \“30222+Cn|/’}'2 +oo
37 (m=2) C%+Cp/ (1+4.3%?) 1.83 0.83 2.67
37 (m=4) C%+Cp/ (1+4.3*?) 1.7 0.7 2.4
38 VCL2+Cy/ (1+1.5257) 1.83 3.75 2.67

plained by the explicit action of rotation on the triple corre- feature in their model, it was supported by the calculation
lations(the nonlinear transfer term in Lin’s equatjoMore-  results they obtained using a spectral-closure scheme. Since
over, a displaced-particle analysis proposed by Jacgquin then, model spectra as those cited in the previous paragraph
al.?’ introduces the idea of a confinement for the size of thehave further substantiated this point: They allow to deduce
turbulent structures. Such confinement would affect theconsistent expressions &, as a function ofy (as well as
transverseiluctuating motion, and thus explain anisotropy. It expressions of the eddy-viscosity coeffici€)j). That is the
would operate at a scalg,=v'/|Q| (wherev' is the scale of way the models given by OkamotdPark and Chungd’ and

the velocity fluctuations in the transverse plpaed, there- Thangam, Wang, and Zhduare derived.

fore, leave unaffected the smaller structures. Following this  Following Bardinaet al?® all the models considered here
reasoning, one may expect that, at some point, the rotatiogan be made objective by replacif@| by Q.

rate can be high enough for all of the energetic range of the

spectrum to be affected, so that the flow would be only mary apajysis of the model problem

ginally modified by any further increase in the rotation rate.
We shall refer to this notion as the “strong-rotation limit,”
above which the effect of rotation on the fluctuating motion

In the HIK) flow, using the(k, €) problem leads to a very
simple set of evolution equations:

saturates. The idea of a transition wave numbet/L,) ok

above which the turbulent structures are not affected by ro- 5 =76 (11
tation can be found in several model spectra proposed

later®*~** Accordingly, the rotation-sensitive part of the en- 5. 2

ergetic range should exhibit a slope steeper than the -5/3 (12)
Kolmogorov slope which is recovered above the transition

wave number. In all cases, the upper limit of the rotation-where the coefficien€,, can now depend—at most—on the
sensitive range is given by a valug k(Q3/€)'2. Compari-  value of y. Combining Eqgs(11) and (12) leads to the fol-
son of this value with that of the high end of the energeticlowing dynamical system for the state variable

range returns the strong-rotation limit.

—=-C_,—,
ot 2K

d
L = (Co- D=1y (13)

dt
1. Turbulence-model corrections for the nonlinear
effects with ¥(0)=y,=(€o/ko)/|Q| and t™ =|Q|t. The turbulent-
kinetic-energy and dissipation-rate equations can be recast in

Accounting for the nonlinear effects in homogeneous, ) .
nondimensional form,

isotropic turbulence in a rotating frame is rather straightfor-
ward: The only term that remains unclosed in the turbulent- 1 dk

kinetic-energy and dissipation-rate equations is the destruc- | 4¢* =" (14)

tion term of the latter. As can be seen in Table I, most of the

existing proposals actually rely on the sensitization of the 1 g,

destruction coefficien€,, to the ratioy=(e/k)/|Q|. The ef- POT Ce- (15)

fect of rotation is always to increase the valug®¥, so that

the decay rate of turbulent kinetic energy should be reducedhe fixed pointsy., of the system are given Hy(y.,)=0. For

in the HIQ situation. However, the different models exhibit all the models given in Table [, cannot fall to unity and
two kinds of behavior at high rotation rates: In the modelsthe dynamical systeril3) admits only one fixed pointy,,
proposed by Bardinat al?® and Rubinstein and Zholithe  =0. Depending on the model expression @f,, one can
value of C_, goes to infinity as the rotation rate increases,distinguish several cases. In the first one, we shall consider
whereas it goes to a finite limiC},) with the other models. thatC, exists and, therefore, corresponds to the valug of
Aupoix et al** were probably the firsts to introduce such ain the equilibrium state. When this value is inserted in Egs.



055110-5 Two-equation modeling of turbulent rotating flows Phys. Fluids 17, 055110 (2005)

(13)—(15), these can be integrated to give the behavior of the 1 T M
different variables in the equilibrium statéhat is, wheny ! !
goes to zero andto infinity): 08 E i -
yorth, Kot UCHD o t-CCEHD i IL/’B *
I
These are power solutions, the exponents of which do not 061 ,: T
depend on the value of the rotation rate: They are thus con- 8 1 -

. . . . . Q realizable irealizable
sistent with the idea of a strong-rotation limit. In the second 04F E I ES o
case, we shall consider th&f;, goes to infinity slower than i
1/92 when y goes to zero. In this case, the fixed poit 0o b | / i
=0 still exists and Eq(14) shows that the turbulent kinetic N T s Cser
energy goes to a constafmot necessarily zejdn the equi- 1 unrealizable ES72 e Cec2
librium state. The evolution of the dissipation rate will de- 0 '
pend on the wayC,, goes to infinity wheny goes to zero. 0.25 0 0’;5 0.5 0.75

Assuming that it behaves as 1L (this is the case with the
models given in Refs. 28 and B&ve find that the dissipation FIG. 1. Existence and realizability of the equilibrium statES) predicted
rate experiences an exponential decay given by with the HPB-correctedk, €) model in homogeneously sheared turbulence

as a function ofC.
€« exp(— A|QJt).

The slope of the exponential depends on the rotation rate and

the solution is not consistent with the existence of a strong-

rotation limit. Cscl— 5 (Cel 1),

A last case of interest, although not applicable to the Ce

quels given in Table I, is the_ case W_h_@ez can faII_ 0 it is a simple matter to conclude that a single positive

unity. Let us assume that a strictly positive valyg exists a exists (i) for all B, when Co.<Ce.g (il) if and only if

such thatC(y..)=1. Theny,, is a fixed point, and integra- we]_oo EARIE +oc’[ whenéc >é°1’ with

tion of Eqgs.(14) and (15) in the corresponding equilibrium o 2 seT seb

state yields 1 1 \/ 8C
1 _

=— — -
k oL € X exq— ‘ym|Q|t) ﬁ% 4 4 CSCCSZ(Csl 1) .

The decreases of both variables are exponential and are en- |n order to investigate the realizability of the equilibrium
hanced when the rotation rate increases. This is in contradigtates when they exist, E(L7) can be inserted in condition
tion with experiment and known physics since, in this case(8) to give

the decrease of the turbulent kinetic energy should be inhib-

ited. C, 9 o
+ Ca-1--C,(Cy-1|[=0
B ﬁ CSCC |: €l 4 ,LL( €2 ):|

Ill. ANALYSIS OF THE CORIOLIS CORRECTION OF

HOWARD et al. Introducing now

We shall consider here the proposal of Howard, Patankar ¢ _ = &[Cd_ 1 _gc (c%, - 1)] ,
and Bordynuik denoted as Model Il in Ref. (dereafter 82 41

ﬁ‘ﬂ!eld t':]PB clorrectloh W'thdthg Sotatlonsm?dlor;tedcm Sec. we find that there exists one singtealizable equilibrium
» the vajue recommended Dy Howaell al. 1or Lsc IS giate (i) for all B, when C,.<Cg (ii) if and only if

0.4 Bel-,B3]ULBs, +o[, whenCey> Cyep with

A. Homogeneously sheared turbulence 1 1 8C 9
i | =-—F-4/1-——[C4q-1--C,(C%L-1)
In the HSQ flow, the rotation-dependent expression of Bi + o | et w\e2 .
4 CsCo 4
C,, reads €
Cop=C%[1+CeB(1 - 2B)a?]. (16) Itcan be easily checked that the fixed point is stable when it

) ) ) ) exists. The values g8, to B, have been plotted as functions
The fixed points can be obtained using E@) where the ot c_ in Fig. 1. We can see that the recommended value

above expression df,, has been inserted, that is, Cs.=0.4 leads to the most general case: range8 with no
. ngcsﬁ(l 28)+C,(Cq - 1) ﬁxed po_int, one unrealizable fixed point, or one realizable
as, = -1 (17 fixed point.

When the fixed point exists, the results obtained in Sec.
We see thai,, may not exist and that, otherwise, its value Il show that the stability of the flow can be discussed by
will depend on the rotation rate through the value@fin-  comparing the values af., andCllt/z. This leads to introduc-
troducing ing two other particular values @8,
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Pss Fube B. Initially isotropic turbulence
H I I I I ' In the HI-Q flow, C, becomes rotation dependent
12 |- sgdle i | Spable through the state variableg,
1LE ' mrentable, | - Cep=Cap(1-2Cd ),

. Unrealizable;
Pstem ES e

0.8 and the dynamical system takes the form
3
° 06 P i dy 0 :
: L Blowwp || I 2C,C% - (C%-1)72 with ¥(0) = y,. (18)
04 ﬁmte tlme
— L NZA It admits one realizable equilibrium state for whicyf
02 \ / R =2CC%/(C%-1), that is, y..=1.29 with C4.=0.4 andC?
N B =1.92. According to the results obtained in Sec. Il B 2, the
90.5 025 0 025 05 075 1 fixed point corresponds to the case wheg falls to unity,
B B2 and each of the closure variables experiences an exponential
B=9/8 decrease in the asymptotic regime.

Consistency of these results with the KSanalysis

FIG. 2. Fixed-point diagram obtained with the HPB-corredtied) model When|,8| goes to infinity is eas”y checked, since in this case

in homogeneously sheared turbulence. The fixed painis plotted as a
function of 8. Unstable flow is obtained when the curve is belﬁ%ﬁ. If it 2C CO 2C Co
goes below €,/2, the equilibrium state is unrealizable. SCe2 2 y= @ N Zoscre? _ Yoo

|,3| ng_ 1

Oy —

0
C,-1

0
,85:1 1 1+ SC—CEl C. Discussion

s 4 4 #CeCY _

The above results show that the HPB correction method
and to conclude that, in the equilibrium state, the flow will bejs rather efficient in mimicking the effects of the shear/
(@ neutrally stable if 3B=85 or B=pg, (b) stable if 5 Coriolis instability: The unstable-flow range betwegnand
€]-°,B[U]Bs, +[, (c) wunstable if BelBs,B1]  pg extends slightly and symmetrically outside the 0-0.5
U[B2, Bel- range given by linear-stability analysisee Table N. As

In the absence of fixed poirithat is, if e ]B8:1,8.0),  mentioned above, the lower bound should be negative so that
there is no simple way to evaluate the stability of the flow.the value —0.05 obtained fo8s cannot be criticized. We
However, for this particular correction method, we have beennay, however, have some restriction on the upper bound
able to obtain closed-form solutions to the evolution problem(g,~0.55), since it is highly probable that the flow should
for any value ofg. These are given in Appendix A, and show return stable fod=0.5. We found that this point has a direct
that the system can experiencélawup at finite timein the  consequence on the prediction of the velocity profile in the
rangep € 181, B2l .k ande go to infinity while « goes to zero  neutral-stability region of the channel flow with spanwise
at the nondimensional timg given by rotation. As a matter of fact, if we consider that viscous

t = (ab)‘l’zarctam"m, effects and turbulent d_iffusion can be_ neglected in this re-

gion, the closure equations can be written as
with _ _
o o _ kU e
a=C,-1, b=C,C,B(1-28)-C,(Cq-1). O_C":a—y -¢ 0=C4C, k y Co— .
The flow could therefore be termed unstable in this case, bu_}
such solutions are grossly unphysical.

The fixed-point diagram is given in Fig. 2 f@.=0.4.
The equilibrium valuea,, is plotted as a function o/}g} the
?C(::a/tlzc)n of the corresponding curve relative @)1 and Q(aUlay) ™t = Bs or Bs.

allows graphical determination of the rangesﬁ)f
where the flow is stable(aoo>Cl’2) and realizable(a,,  The value ofBs is negative and would correspond to nega-
>3C,/2) in the equilibrium state. tive velocity gradients close to the suction side of the chan-

hese equations are identical to those obtained at the neutral-
flow fixed points in the HS? flow, and can therefore only be
satisfied if

TABLE Il. Remarkable points of the fixed-point diagram obtained with the HPB-correéted model and
some particular values @, in homogeneously sheared turbulence.

Cec By B2 Bs Ba Bs Bs
0.4 0.058 0.442 0.032 0.468 -0.051 0.551
Cs1=0.165 0.25 0.25 0.124 0.376 -0.112 0.612

Cyep=0.0951 0.25 0.25 -0.175 0.675
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nel. The reasoning fails in this region where the flow is not

fully turbulent. We can therefore conclude that the predicted

slope of the velocity profile should be equal /3

=~ 1.80) across the neutral-stability region, and that the latter

corresponds to the region where diffusion can be neglected.

A similar reasoning can be made with the exact, unclosed,

statistical equations, and may explain why the neutral-

stability region does not reduce to a single point in the real

flow too (the question was raised by Johnsg&tmal. in Ref.

12). From experiment and simulation, we expect that the

slope should be fairly close tdE so that the result obtained

with the HPB correction is acceptable although slightly un-

derestimated. 0 I I 0

The blowups at finite time encountered in the range 0 05 1 15 9

B1—B> are much more a matter of concern. They are reminis- y/h

cent of the diverging solutions obtained by Ji and Dutbin

the absence of a stable equilibrium state too, but in a inghtI)Z'G' 3. Profiles of the local mean-vglocity gradient _obtained with the HPB-
. orrectedk, €) model and some particular values@; in the plane-channel

different context: second-order closure and turbulence Subrow with spanwise rotation. The pressure side is locateg/at0 and the

ject to rotation and stable stratification. Also, we believe thakuction side aty/h=2. (—), C,=0.4; (=9, Csc=Csc1; (---), Csc=Cscs

this property of the dynamical system is connected with thelotted lines, theoretical_ estimates of the predicted sl¢peg’Sg); sym-

unexpected rise of turbulent kinetic energy reported byPo'S: PNS results of Kristoffersen and Anderss@ief. 4.

Hellsterf® in the computation of the flow in a centrifugal-

compressor rotor. As a matter of fact, the fixed-point diagram ) ) )
given in Appendix B confirms that the initial form of Hell- about 0.2 still steadily decreasing at the last measurement

sten’s correctior(see Sec. Il A 1leads to roughly the same Station. Moreover, in this high-rotation reginfg=1.29, the
kind of behavior as the HPB correction. As the latter is con-iime decrease of the closure variables remains dependent on
cerned, a possible remedy consists in lowering the value dhe rotation rate, and further increase in the rotation rate

C.. below C., SO as to obtain a stable equilibrium state for results in a faster decrease of the turbulent kinetic energy.
any value ofQ)/S. This is apparent in Table II, where the The model is therefore not consistent with a strong-rotation

particular values of3 arising from the analysis are given for limit and disagrees with experiment. The dynamical-system
Co=Coy aNdCy=Cy.i WhenCq, goes belowC,., the range analysis of the HIQ flow shoyv;_ that all these (_:ie_f|C|enC|es
B~ is removed from the fixed-point diagram. Unfortu- &€ conn.ected with the possibility for the coeffici€l, to
nately, the values reached I8 indicate that such a recali- fall to unity.

bration may have a detrimental effect on the predicted slope

of the velocity profile in the neutral-stability region of the v THE NEW CORIOLIS CORRECTION
channel flow. In order to check this point and validate the

connection made above between the valueggfand the In this section we shall work on the HPB correction with
slope of the velocity profile, calculations of the channel flowthe aim of suppressing the blowups at finite time, and restor-
have been performed with the values@f given in Table Il.  ing a physically consistent behavior at high-rotation rates. To

The flow has been computed with ReU,,/(20h)=2 and  this end, we shall first design the correction method in the
Re,=2Uh/v=5800, whereh is half the distance between framework of homogeneous turbulence, with the basic re-
the walls andJ, the bulk velocity. The predicted profiles of quirements thati) it produces a single, stable, and realizable
the local mean-velocity gradient across the channel are plofixed point for any value of3 in the HS{) flow, (ii) it re-

ted in Fig. 3, together with constant values estimated aguces to a proven model for the nonlinear effects in the HI-
Q/Bs. The simulation results of Kristoffersen and ) flow.

Anderssofi at these Reynolds and Rossby numbers are also In a second step, we shall generalize the resulting for-
plotted for reference. It can be seen that all profiles do exmulation so that the final model can be used without any
hibit the constant plateau corresponding to the neutralambiguity in nonhomogeneous flows.

stability region. The level of this platediequal to unity, if

the slope were equal toD decreases with the value 6f,  A. Design of the correction method

in a remarkable agreement with the theoretical estimates. \yjith the simplifications and notations used in the AS-

When Cy=Cs, the predicted slope underestimates thefy, one way to begin the design of the model is to write the

simulation data by more than 20%. expression o, in the form
The behavior of the model at high-rotation rates is also 0
questionable: With or without mean shear, increasing rota- Ce2=Ce[ 1 +Fnl(B,@) + Fd6,a)], (19
tion can never bring the value of below 1.29 in the here
asymptotic regime, a value which is much higher than those
recorded in available experiment§or instance, the data of _ O(S-29) = B(1 - 2B)a
Jacquinet al?’ at their highest rotation rate give valuespf SX ek
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3/2
, B=tanhbé, +c)-d.

is a mixedBradshaw—Richardson numbg@rormalization in- a,

volves both the mean-flow and turbulent time scales = 12 -8
The F,, function is the correction for nonlinear effects,

any model given in Sec. Il B 1 can be used here. Our prefEquation(23) can be considered as a quadratic equation for

erence goes to the model of Park and CHimgich is based  a., with a single positive root. It is therefore strictly equiva-

on a model spectrum with a -2 slope in the wave-numbetent to

range affected by rotation, and leads to a bounded evolution —

of C_, consistent with the idea of a strong-rotation limit. _1+A  -CLCB+1A (24

Making this model objective by the use &, we write TT2+A 2(c%-1)
(Ce— DICE

with

Fo= (20)

( o )3/2
1+a 2+A
112 -4 A =CL*CB?+4C,(Ca-D(Co- D 4.

The F. function is the correction for the shear Coriolis _ _ _
instability. It will be defined subject to several conditions that!t can be shown that the right-hand side of EB4) is an
must guarantee a correct mathematical beharigalizabil- ~ increasing function ofA and a decreasing function &.
ity, existence of a stable equilibrium state for any value of"Whatever the values at.. and 3 are,A is positive andB is
p), as well as render a physically consistent phenomenologif? the range]-1-d,1-d[. A lower bound for the value of
(flow-stability characteristics in the equilibrium statave  the fixed pointa,. can therefore be obtained takiAg-0 and

have retained the following. B=1-d in Eq. (24); it reads
(@ The correction is inactive in the limit of vanishing _ -C%C{(1-d)

shear rates, i.e., Qoo = 4(C%-1)

Feo™ 0 whena— . + VC%2C2(1-d)?+8C,(C4— 1)(C,L- 1)
(b) It is roughly equivalent to the HPB correction in the 4(Cc%-1) :

vicinity of the neutral-flow fixed points, i.e.,

_ Specifying that this lower bound is equal t€32, we find
Fsd6,2) ~Kéla when6— 0, a sufficient condition oml for condition(c) to be satisfied:

K being a constant equivalent to tlig, constant of the

- 2
HPB correction. . . . d=1- —0[—(@1 -1)-3C,(C%,-1)|. (25)
(c) The equilibrium state is always realizable, i.e., CsCerl 3
forall B, a,=3C,/2. Turning now to conditior(d), we note that Eq(24) can also

be used to place a finite upper bound @n It follows that,
if the fixed point existsp., remains finite wheng| goes to
- infinity. This result can then be used together with Egs.
a,=\C, when|B|— . (19—21) to state thaiC_, takes a constant value, equal to
N o . 2C%-1-C%C(1+d)/ a.,, in the equilibrium states obtained
These conditions can be satisfied by takifg in the  \yhen|g| goes to infinity. When this value is inserted in Eq.
form (7), we get a quadratic equation with only one positive root

(d) The flow remains stable in the limit of high rotation-
to-shear ratio, i.e.,

C a., (the limit of a., when|g| goes to infinity given by
Fod 6, ) = —tanHb + c) — d]. (21)
* _ CeCsd1+d)
Condition (a) is automatically satisfied. Linearizindrg; o 4(C22— 1)

aroundé=0 then gives

c , VCLCA1 +d+8C,(Ca~D(CH -1
FscN i:l:tarlhc -d+ b(l - tanﬁ C) 9]! 4(C22 i 1) |
o

In practice, the value oE,. will be drawn from this equation

so that, if tantc=d, condition(b) will be satisfied with after having specified a value af, [higher thaanL’Z in

K=C.b(1-tantfc). (22 agreement with conditiofd)]. Eliminating d with Eq. (25),
In order to check that conditioft) can be satisfied, we re- we get
write Eq. (7) taking into account the definitiofl9) of C, [3a,(C% - 1) +C, - 1](2a. - 3C,)
and obtain Csc= 62O £ (26)
€2

2+A
(CL-1) 1 +Aai +C%CBa.~C,(C4-1)=0, (23  Atthis stage, we note that the expressiorCof is dependent
on the shear rati| the absence of rotatiof.his dependency
where takes the form
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c,-1 c.°
€2 SC Ez(tanhC—d),
o

C,=Co%+
€2 €2 1+a(2a)3/2

and should not affect the generality of the model if the valueconstant
of C,, is adequate in the usual calibration case: the logarith=

mic layer of wall-bounded flows. With thék, ) model, the

behavior of the main variables is known there, given by
ud @ U u,
€= I = 1 - = )
Ky vC, Iy Ky

whereu is the friction velocity andk the Karman constant.
According to our expression @, this coefficient would
take the following value in the logarithmic layer:

c%-1 CsC

0
0 SC-e2
— —=(tanhc—d).
1+a(2vC,)%¥* \C,

c €2

K
€2

The standard valu€f,=1.92 can thus be recovered by tak-
ing

c%-1 lc,
tanhc:d—<022— o L= ) S (27)
1+a(2 \“"C,u)3/2 CsLe

B. Generalization and final calibration of model
constants

Generalization will be performed by defining objective

Phys. Fluids 17, 055110 (2005)

TABLE llI. Calculation of the modeling constants for the present model.
Given the initial choicea.,.=0.3 andK=0.5, calculation of the coefficients
proceeds from left to right.

Csc d c b
Determining equation (26) (25 (27) (22
Value 0.119 0.682 0.453 5.13

K=0.5, a.=1C,=03.

The remaining constants are determined using the relations
established in the preceding section, Table Il gives the de-
termining equation and the final value obtained for each of
them.

Figures 4 and 5 show the fixed-point diagram obtained
with the present model and illustrate the influence of the
constants,, andK on this diagram. All plots are obtained by
numerically solving Eq(7); they exhibit the desired proper-
ties: a single, stable, and realizable fixed point exists for any
value of B, the lower bound of the unstable-flow range is
slightly below 8=0, and the upper bound is closef&0.5.
With K=0.5 anda,=0.3, we find that the unstable-flow
range goes fronB~-0.039 to 0.518. The figures show that
the effect of each constant is rather distinct: The influence of
a., is limited to the stable-flow range and that léfto the

Rossby and Bradshaw-Richardson numbers that should 'Fansition between stable and unstable flows. Calibration of

duce toy and @ in the HI-Q) and HS{) flows, respectively.
We retain

~ €
Ro=—
Ok
and
—_ 2k ds
BR=— «f_V\llkSk(T + Qm(gimn%n + 8jmnSn)) .
Se t

The definition off\RJodirectIy follows from the suggestion of
Bardinaet al,?® while the definition ofer is adapted from
the proposal of Spalart and SHdThe model expression for
C., can now be written as
ng -

R -
—<—— +C%C—[tanHber + c) — d].
1+aRo*? €

— 0
C62 - CeZ +

(28)

Calibration of the constants involves two sets of standard

values: those given by Launder and Shaltfar the (k, €)
model and those recommended by Park and CHufay
their Coriolis correction, that is,

C,=0.09, C, =144, C5=1.92
and
Cc%=1.83, a=43.

At this stage, a value df about 0.4 and a value af. higher
than C}L’Z have to be selected. We choose

the model in the stable-flow range is not easy due to the lack
of physical data, the valua,=0.3 selected here is in agree-
ment with the RDT results of Bertogﬁé(see following sec-
tion). As the transition range is concerned, Fig. 5 shows that
the sensitivity to the value oK is not high, the choic&
=0.5 has been made primarily for simplicity. However, the
channel flow with spanwise rotation presents such a transi-
tion. Calculations presented in the following section do not
contradict this choice.

1.8

L5 -
1.2
2009
0.6

0.3

FIG. 4. Influence of the value d.,. on the fixed-point diagram obtained
with the present model in homogeneously sheared turbulence. All calcula-
tions are performed withK=05. (—), a.=C}% (-9, a,=2C}%
(---), a,=3C}2
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ments of Jacquiet al,?” and direct numerical simulations by

0.6
055 Mansour, Cambon, and Spezidsee Ref. 3Yis also claimed
0.5 when the value ofc?, is adjusted so as to account for the
initial spectra of the experimental data.
0.45 When shear is present, the LES results of Bareinal
0.4 can be used to assess the performance of the model in the
8 035 unstable-flow range. Figure 6 shows the results of calcula-
© tions performed for the three cases documented by Bardina
0.3 et al. (8=0, 0.25, and 0.ptogether with results obtained
0.25 using the HPB-correctetk, e) model. WhenB=0, the latter
0.2 model reduces to the standard model and gives the same
evolutions of turbulent kinetic energy and dissipation rate.
0.15 § § i : : : The present model remains very close to the standard model
0.1 111 with a.,,~0.205(instead of 0.20pandC_,~ 1.95(instead of
15 -1 05 0 05 1 15 2 1.92. As a result, the evolution of the closure variables is

=9/ virtually identical for the two models. Whep=0.25, the
FIG. 5. Influence of the value & on the fixed-point diagram obtained with figure illustrates the blowup at f|n|t§- time experienced with
the present model in homogeneously sheared turbulence. All calculations atBe HPB-correctedk,e) model, while the present model
performed witha..=C}%. (--), K=0.25; (—), K=0.5; (- - -), K=0.75. shows a physically consistent behavior: the growth rates of
the closure variables remain finite, although slightly lower
o than those obtained in LES. In the last c§8e0.5), the flow
C. Validation . ;
should be close to neutral; the present model again shows a
In the situation of initially isotropic turbulence in a ro- sensible improvement over the HPB-correcti&gde) model,
tating frame, the present model becomes strictly equivalergven if the predicted flow remains slightly unstable. Com-
to the model of Park and Churi§In Ref. 37, the authors parison with the RDT results of Bertoglicin Fig. 7 unables
show that the model is in excellent agreement with the exene to assess the behavior of the model in the stable range.
perimental results of Wigeland and Na%ﬁlwhen a value of Time evolution of the turbulent kinetic energy is plotted for
1.83 is selected fo@Sz. A similar agreement with the experi- =0 and -0.25; the figure shows that the rates of

5 T T T T 5 T T T T 5 T T T T
/S =0 Q/S =025 ! Q/S=0.5
I
4 4 4F ! 4 4} -
3_ -
<
~
~
9 |- -
000
1M
0 1 1 1 1 0 1 1 1 1 0 1 1 | 1
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
5 T T T T 5 T T T ™ 5 T T T T
Q/5=0 /8 =025 i 2/S=05
]
4 4 4 ! 4 4FfF -
i
I
|
3 4 3} ! £ 3 -
o ! o
~ | °
w ! ©
2 4 2} o 4 o -
qo
o]
009 [o Iy -]
00022 0@ e
1 c.,,,,,,:.e°°° -1 1 0 —z -1 14 o) = =
S T - - 90000000
0 1 1 1 1 0 1 1 1 I 0 I 1 I 1
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
t* =St t- =St t* =St

FIG. 6. Time evolutions of the turbulent kinetic energy and dissipation rate for homogeneously sheared turbulence in a rotatifig fre®eesults of
Bardina, Ferziger, and Reynol@Ref. 11). Model calculations are performed with=0.296.(-), Present modek— -), HPB-correctedk, €) model.
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5 T T T T TABLE IV. Channel flow with spanwise rotation at Re5800 and Rg
| =2. Model calculations compared with the DNS data of Kristoffersen and

Q/S =0 { Mode Andersson(Ref. 4. The friction coefficient is defined a8,,=2u?/U?,
RDT . T
Re, Cim Up/u,

DNS 194 0.008 60 1.207

) HPB correction 190 0.008 59 1.24

= Present model 172.4 0.007 07 1.22

Ro,=2/3 for the data of Lamballaist al. Both models are
used with the low-Reynolds-number treatment of Launder

0 ! ! | ! and Sharm&° Figure 8 shows the mean-velocity profiles ob-
0 1 2 3 4 5 tained in these flows, and it can be seen that the two models
t* = St perform well in this situation. We note that the slope of the

. ) _— profile in the neutral-stability region is slightly better pre-
FIG. 7. Time evolution of the turbulent kinetic energy for homogeneously . . . . .
sheared turbulence in a rotating frame. Comparison between the results og—'CtEd with the present model. This is consistent with our
tained with the present model and the RDT results of Bertogtef. 17.  theoretical estimates according to which the slope should be
Model calculations are performed witiy=0.204. equal t02/0.518=1.98) instead of(2/0.551=1.80) with
the HPB correction. Location of the mean-velocity maxi-
mum is also better predicted with the present model; this is
increase/decrease are in good agreement as soon as #teking at the highest rotation rate. As the friction coeffi-
memory of the initial condition is lost. Attention is brought cients are concerned, Tables IV and V indicate that the HPB
to the fact that trying to catch the evolution of the flows correction is more accurate at these low Reynolds numbers.
simulated by Bertoglitf and Bardinaet al!* at early times However the Launder—Sharma low-Reynolds-number treat-
with an eddy-viscosity model like ours is illusive: This kind ment is known to underestimate the friction coefficient at
of model instantaneously correlates the velocity fluctuationsow bulk Reynolds numbers, and our results are more in line
when mean shear is present, while LES as well as RDT takeith those obtained in the absence of rotation. The good
some time to buildup significant shear stress, and hence turesult obtained for the friction coefficient with the HPB cor-
bulence production. rection could therefore be a case of compensating errors.
As already mentioned, the plane-channel flow with span-
wise rotation is an important test case for practical applica;
tions. The DNS results of Kristoffersen and Anders$amd V. CONCLUSION
Lamballais, Lesieur, and Métdihave been used here to We have presented the development and validation of a
validate the model. We shall denotewgshe quadratic mean linear (k,e) model modified so as to account for the main
of the friction velocities on the pressure wali,;) and suc- influences of system rotation on turbulence: the inhibition of
tion wall (u,), and introduce the corresponding Reynoldsthe cascade to small scales and the shear/Coriolis instability.
number: Re=uh/v. Model calculations have been per- The development of the model is based on our sugges-
formed with the HPB-correctetk, €) model and the present tion that physical consistency of the turbulence model should
model so as to match the mean Reynolds and Rossby nurbe examined with reference to the equilibrium states ob-
bers obtained in the simulations: Re5800 and Rg=2 for  tained in time-evolving homogeneous turbulerfegth and
the data of Kristoffersen and Andersson, ,R&000 and without homogeneous sheafhis is a distinction with ear-

1.8 T T T T
1.6 - PR -
14 . ) .
12 _ FIG. 8. Mean-velocity profiles ob-
! X tained in the channel flow with span-
1 e wise rotation. Comparison between
B - the DNS results obtained by Kristof-
08 7] fersen and AnderssoiRef. 4 and
4 \ Lamballais, Lesieur, and MétaiRef.
0.6 |- g = h ;
0.4 DNS Kristoffersen et al.  ° 5) with model calculations performed
Present correction 04 & DNS Lamballais et al. © - using the present model and the HPB-
o2 b HPB correction ------ Present correction corrected(k, ) model.
’ 0.2 HPB correction ------
0 ] ] 1 ] 0 ] ] 1 1
0 04 0.8 1.2 1.6 2 0 04 0.8 1.2 1.6 2

y/h y/h
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TABLE V. Channel flow with spanwise rotation at Re5000 and Rg APPENDIX A: ANALYTICAL SOLUTIONS OBTAINED
=2/3. Model calculations compared with the DNS data of Lamballais, Le-\\/|TH THE HPB-CORRECTED (k, €) MODEL IN

sieur, and MétaigRef. 5. THE HS-Q FLOW
Re, Cim Urp/ U We suppose thaf,.> C,.,. In this case, botlB; and 3,

DNS 113 0.004 09 1.15 exist; otherwise, the solutions can be immediately deduced
HPB correction 110.8 0.003 93 113 from those given here. The evolution equations can be recast
Present model 99.6 0.003 17 107 inthe form

da

— 2
- =—aa“—b,
dt

lier proposal® and practices. Our motivation is that a first

guess on the effect of a model constant can be misleading: 1 dk C,

For instance, the fact that the HPB correction leads to the | 4+ = o &

decrease of the destruction coeffici€®), when rotation is

increased led Speziaét al** to reject such modifications on de C. b

the ground that the predicted dissipation rate should increase _dtf s nga,
€ o

with rotation. However, the dynamical-system analysis of the
unsheared flow indicates without any doubt that this is not,;:,
the case in the equilibrium state, where it is the evolution of
the turbulent kinetic energy which is questionable. a=C%-1, b=C,C%B(1-28) - CuCa-1).

Another issue is the treatment of the eddy viscosity and i ) i ) ) )
its coefficientC,. From a phenomenological point of view, The first equatlon can be directly integrated, |_ntegrat|on of
sensitizingC,, to the rotation rate would be natural: Model € k and € equations follows. We remark thatis always
spectra like those cited in Sec. Il B lead to rotation-sensitiva?©Sitive, and that the sign df depends on the value ¢,
expressions of the eddy-viscosity coefficient in unshearedfading to consider three different cases.
turbulence®*3* Also, the basic mechanism responsible for
the shear/Coriolis instability affects the Reynolds shear
stress, and would therefore probably need another correction Case 1: b<0ege]-,8[ 185, [
to C,. However, we consider that the eddy viscosity is un- _ o — _
defined in unsheared turbulende,=-Uo[dU/dy]™), and The fixed point is given byx.=y-b/a. Depending on
that the dynamical-system analysis of the sheared floihe initial condition we get the following expressions:
shows unambiguously that a modification to the eddy-(i) If ap> a,
viscosity coefficient alone is not able to bring the prediction

from unstable flow to stable flow when the rotation-to-shear @ _ tan(Co)
ratio varies. This points out that our modification@g, for @y tanh(y-abt + CO)’

the shear/Coriolis cannot be considered as phenomenologi-
cal. Instead, our approach is based on the idea that physically K { coshCy) ]C,Jb
consistent predictions can be obtained in target configura- T I
tions if some mathematical properties are satisfied. Ko | cosiy-abt +Cy)

We believe that the present model should prove useful in sinh(Cyp) 12
practical computation of turbulent flows in rotating frames: X sinh(v"——abt* +Cy)
Its results are physically consistent with the known effects of 0
the Coriolis acceleration on turbulence, and it should be free C fb-1
from the problem of blowup at finite time. The definition of £ { C%f) ] .
the Bradshaw—Richardson number used here as a sensor of € | cosi{(y—abt +Cy)
the rotation-to-shear ratio was initially proposed by Spalart . %Ja
and Shuf it is an objective form that unifies rotation and [ Sw o } -
curvature. As such, it handles streamline curvature on the sinh(y—abt + Cyp)
basis of Bradshaw's analogy between rotation and(ii)
curvature®? It follows that our model should also mark some
improvement in the prediction of strongly curved flows. Fu- a tanr(\f'—_abt* + co)
ture work will involve an assessment of its behavior in com- —=

If op<a.,

tani(C '
plex turbomachinery flows. o MCo)
; C, /b
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€ sinh(Cy) Culb-1
Lo 2=
€ smk(\x’— abt + CO)
" coshCy) Cla
cosH{\~abt +Cy) '
(i) I ag=a.,
k aC,+b,
Lo, —:E:ex;<—"‘—*t>,
g Kk € V-ab
where
1 |a.ta
Co=Zln| ==
2 | as—a

2. Case 2: b=0& =, 0r =5,
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. Unstable-flow range .

0.2 Exp. Exp. -
blowup || blowup
0.1 -1
0
-0.5 0 0.5 1 1.5
B=8/S

FIG. 9. Fixed-point diagram obtained in the HBfow with the initial form
of Hellsten’s correctior{Ref. 20.

APPENDIX B: FIXED-POINT DIAGRAM OBTAINED

Whatever the initial condition is, we get the following WITH THE INITIAL FORM OF HELLSTEN'S

expressions:

o *

—_— = (1 +aCl’0t )_1,

ag

k C t?

— = (1 +aagt) Yexpg —£t" +aC —>,
k() ( ag ) ap m o

€ o0 C,. 2
— = (1 +aagt’) C%exp £t + aC#—> .
€ ap 2

The flow is unstable witlw going to zero andk and e going
to infinity whent™ goes to infinity.

3. Case 3: b>0e8€]B., 8.

The equilibrium state does not exist; we get the follow-
ing expressions:
o

a tan(Cyp)
ap  tan(yabt +Cp)’

k _[ cogCy) }Cdb{ sin(Cy) }1/3
ko | cogvabt +Cp) sin(\abt +Cp) |

COS(CO) :| CM/b—l
cog\abt +Cy)

0
:| Chla
L

E_
€

« { sin(Cy)

sin(yabt + Cy)

with

Vb/a
Cpo=arctan—.
@

The system develops a blowup at finite tirm%.:(quz
_Co)/\““’ab.

CORRECTION (REF. 20)

The fixed points have been obtained from a numerical

solution of Eq.(7). The result is given in Fig. 9. The calcu-
lation has been performed with

C,=0.09, C, =144, C%,=192, C.=04,

and

S-20](S-|S-20)) |
e

Ceo= CSZ 1-Cy

The unstable-flow range goes frofi=-0.035 toS~1.035
and

€]0.09,0.491U ]0.509,0.99{L

blowup is expected when
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