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The possibility to take into account the effects of the Coriolis acceleration on turbulence is examined
in the framework of two-equation eddy-viscosity models. General results on the physical
consistency of such turbulence models are derived from a dynamical-system approach to situations
of time-evolving homogeneous turbulence in a rotating frame. Application of this analysis to ask,ed
model fitted with an existing Coriolis correctionfJ. H. G. Howard, S. V. Patankar, and R. M.
Bordynuik, “Flow prediction in rotating ducts using Coriolis-modified turbulence models,” ASME
Trans. J. Fluids Eng.102, 456s1980dg is performed. Full analytical solutions are given for the flow
predicted with this model in the situation of homogeneously sheared turbulence subject to rotation.
The existence of an unphysical phenomenon of blowup at finite time is demonstrated in some range
of the rotation-to-shear ratio. A direct connection is made between the slope of the mean-velocity
profile in the plane-channel flow with spanwise rotation, and a particular fixed point of the
dynamical system in homogeneously sheared turbulence subject to rotation. The general analysis,
and the understanding of typical inaccuracies and misbehavior observed with the existing model, are
then used to design a new model which is free from the phenomenon of blowup at finite time and
able to account for both of the main influences of rotation on turbulence: the inhibition of the
spectral transfer to high wave numbers and the shear/Coriolis instability. ©2005 American Institute
of Physics. fDOI: 10.1063/1.1920630g

I. INTRODUCTION

When a turbulent flow undergoes system rotation, the
resulting Coriolis accelerations are responsible for strong
modifications to the statistical properties of the fluctuating
field. The most spectacular ones are related to the
shear/Coriolis instability,1 the result of which may be either
an enhancements“destabilization”d or a reductions“stabili-
zation”d of the turbulent activity. The latter eventually leads
to relaminarization. Both phenomena can be observed in ra-
dial turbomachines—especially small-size rotors operating at
high rotation speed—with important consequences on the
performance and efficiency of the stages. The mode of action
of the shear/Coriolis instability can be understood within a
statistical-description context: system rotation appears in the
Reynolds-stress transport equations where it interacts with
anisotropy in intercomponent-transfer terms. These terms are
traceless—and therefore without contribution to the
turbulent-kinetic-energy budget—but directly act on the
shear stresses, which are either decreased or increased de-
pending on the relative orientations of the system-rotation
vector and Reynolds-stress tensor, hence the observed stabi-
lization or destabilization processes. On the other hand, a
second mode of action by which the Coriolis accelerations
are known to modify the fluctuating field is not tractable
within the context of one-point statistics: it affects the non-
linear spectral-transfer term of Lin’s equation and leads to an
inhibition of the energy cascade to small scales. As a result,
reduction of the turbulent dissipation and simultaneous en-

hancement of the turbulent activity are observed.
From what precedes, it comes out that the origins of

system-rotation effects on turbulence cannot be traced in the
framework of one-point first-order turbulence modeling.
Now, in an industrial context where the flow configurations
are complexsthree-dimensional geometries, relative motion
between elements, inhomogeneity of the inlet conditions,…d,
it is important to mimic the effects of rotation with relatively
simple turbulence models. This can be achieved by making
model coefficients dependent on the rotation rate. With such
an approach—ask,ed model and a simple modification pro-
posed by Howard, Patankar, and Bordynuik2—Jongen,
Machiels, and Gatski3 have presented calculations of the
plane-channel flow with spanwise rotation that are in excel-
lent agreement with existing direct-numerical-simulation
sDNSd results:4,5 the computed flow exhibits stabilization
srespectively, destabilizationd in the vicinity of the suction
srespectively, pressured wall, a core region where the mean-
velocity profile is linear with a slope close to twice the rota-
tion ratesneutral-stability regiond, and accurate friction coef-
ficients. Such a result obtained in a simple but representative
flow configurationsstabilization and destabilization phenom-
ena can be observed in the blade-to-blade channels of radial
rotorsd is encouraging. It motivates the present study that
aims at developing calculation methods that are efficient in
the prediction of rotating flows, and do not involve more
than a marginal increase in the computational cost, as com-
pared to the “industry standards.” However, accurate predic-
tion of the channel flow is a somewhat too restricted basis to
validate a model of sufficiently general use. In order to
widen this basis, two well-documented flow configurations
are considered, in which the Coriolis accelerations directly
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influence the fluctuating field without affecting the mean
flow. These are ordinary situations of time-evolving homo-
geneous turbulence undergoing rotation: initially isotropic
turbulence and homogeneously sheared turbulencesfurther
referred to as the HI-V and HS-V flowsd. In the first case,
limited departures from isotropy of the Reynolds-stress ten-
sor remove the shear/Coriolis-instability mechanism from
the problem, and leave the nonlinear effect acting alone. In
the second case, anisotropy is enforced by mean shear and
the instability mechanism dominates. The model problems
corresponding to these situations will be stated in Sec. II for
two-equation eddy-viscosity models. They can be studied us-
ing a dynamical-system approach,6 and it will be shown that
the fixed-point diagram obtained in the sheared case must
possess some precise properties in order to ensure physical
consistency. Applying this analysis to the correction method
of Howard, Patankar, and Bordynuik2 in Sec. III will illus-
trate typical inaccuracies and unphysical behavior that can
result when the diagram does not possess the desired prop-
erties. Based on these results, a new Coriolis correction is
finally proposed in Sec. IV. Unlike earlier proposals, it ac-
counts for both the nonlinear effects and the shear/Coriolis
instability.

II. ROTATING HOMOGENEOUS TURBULENCE

We consider the flow of an incompressible fluid in a
Cartesian coordinate systemsx,y,zd rotating around thez
axis with an angular velocityV relative to a Galilean refer-
ence frame. The turbulence Reynolds number is high and the
statistical properties of the fluctuating field remain homoge-
neous in space at any time. The statistics evolve in time from
an initial state att=0 characterized by the levelsk0 ande0 of
the turbulent kinetic energyk and dissipation ratee. These
assumptions apply to both of the HS-V and HI-V flows.

A. Homogeneously sheared turbulence

In this case the mean flow is unidirectional and the only

nonzero elementS=]Ū /]y of the velocity-gradient tensor is
constant in time and spacesU is the velocity component
alongx and the overbar denotes statistical averagingd. With-
out any loss of generality, we shall consider thatS is positive.
In the absence of rotation, experiment7–9 and simulation10,11

indicate that the flow evolves toward an equilibrium state
where the turbulent time scalesk/ed locks on to the mean-
flow time scale 1/S. Their ratio a=e / sSkd then becomes a
constants<0.22d, independent of the initial conditions and
shear-rate level as soon as the latter is sufficiently highsthe
“high-shear class of flows” reviewed by Tavoularis and
Karnik9d. That is, the turbulent kinetic energy and dissipation
rate continuously increase at the same rate. As mentioned in
the Introduction, the addition of system rotation significantly
alters the picture: examination of the Reynolds-stress trans-
port equations led Johnston, Halleen and Lezius12 to hypoth-
esize that the flow should become stablesi.e., the velocity
fluctuations decrease with timed for negative values of the
ratio b=V /S, and remain unstable otherwise. On the other
hand, displaced-particle analysis13 and stability analysis14–16

indicate that flow is linearly stable whenb is outside the
range 0–0.5. This result leads to the definition of the
Bradshaw–Richardson number15

BR = − 2V/S3 s1 − 2V/Sd = 2bs2b − 1d,

and a criterion according to which linear stability corre-
sponds to positive values ofBR. Physical results would help
to evaluate more precisely the stability characteristics of the
fully turbulent flow, they are unfortunately scarce: The large-
eddy-simulationsLESd results atb=0, 0.25, and 0.5 of Bar-
dina, Ferziger, and Rogallo11 confirm that the flow is un-
stable in this range, and their results atb=0.5 seem to
exhibit a neutral character. Rapid-distortion-theorysRDTd re-
sults by Bertoglio17 go from b<−0.44 to 0.44 and, in the
meantime, the computed flow goes from stable to unstable,
neutral flow being apparently obtained for a value ofb sig-
nificantly lower than zerosabout −0.2d. In the absence of
precise bounds for the unstable-flow range, we shall consider
that it extends from a value ofb slightly below zero up to
0.5.

1. Turbulence-model corrections for the
shear/Coriolis instability

Existing proposals for taking into account the
shear/Coriolis instability in the context of two-equation tur-
bulence modeling have often been obtained from an analogy
between rotation and curvature effects. The corrections of
Howard, Patankar, and Bordynuik,2 and Chen and Guo18 cor-
respond to the curvature correction introduced by Launder,
Priddin, and Sharma.19 TheCe2 coefficient of the destruction
term in the dissipation equation is made rotation dependent
through some formB of the Bradshaw–Richardson number:

Ce2 = Ce2
0 s1 − CscBd,

whereCe2
0 andCsc are positive constants. The model of Chen

and Guo, and the model denoted as “Model II” in Howardet
al., use the following expression of the Bradshaw–
Richardson number:

B = − 2VsS− 2Vdk2/e2. s1d

A simpler expression has also been evaluated by Howardet
al. sModel Id, in the formB=−2Vk/e.

Another correction introduced by Hellsten20 for the
sk,vd model21 corresponds to the curvature correction of
Park and Chung.22 In a sk,ed context, Hellsten’s proposal
would also involve theCe2 coefficient, now written in the
form

Ce2 = Ce2
0 s1 + CscBd−1,

where the Bradshaw–Richardson number was initially de-
fined according to a suggestion of Khodak and Hirsch:23

B = − uS− 2VusS− uS− 2Vudk2/e2. s2d

However, with this formulation, Hellsten reports an unex-
pected rise of turbulent kinetic energy in the calculation of
the flow in the blade-to-blade channel of a radial compressor.
For this reason, his final proposal makes use of the following
definition:
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B = − uS− 2VusS− uS− 2Vud/S2.

These models can be used without restriction in the cal-
culation of general flows provided that the definition of the
Bradshaw–Richardson number is objective. Introducing the
absolute-rotation tensor

Wi j =
1

2
S ]Ūi

]xj
−

]Ū j

]xi
D + «mjiVm

and strain-rate tensor

Si j =
1

2
S ]Ūi

]xj
+

]Ū j

]xi
D ,

objective measures of rotation and strain can be obtained as

Ṽ=sWi jWi j /2d1/2 and S̃=s2Si jSi jd
1/2, respectively. Definition

s2d was initially given by Khodak and Hirsch23 in the objec-
tive form

B = − 2ṼsS̃− 2Ṽdk2/e2.

Following Spalart and Shur,24 definitions1d can also be made
objective as

B = − 2WikSjkS k

eS̃
D2SdSi j

dt
+ Vms«imnSjn + « jmnSindD .

Note that the last two definitions of the Bradshaw–
Richardson number were claimed to unify rotation and cur-
vature effects.

2. Analysis of the model problem

The analysis is performed for thesk,ed turbulence
model,25 but can be extended to any eddy-viscosity model
that provides a turbulent time scale. In this context, the Rey-
nolds stresses are modeled as

− uiuj = ntS ]Ūi

]xj
+

]Ū j

]xi
D −

2

3
kdi j , s3d

whereui is the velocity fluctuation alongxi andnt=Cmk2/e is
the eddy viscosity. The HS-V flow is governed by the sim-
plified set of model equations,

dk

dt
= Cm

k2

e
S2 − e, s4d

de

dt
= CmCe1kS2 − Ce2

e2

k
. s5d

In this situation and at this modeling level, theCm ,Ce1, and
Ce2 coefficients can depend—at most—on the values of the
nondimensional variablea and parameterb. Equationss4d
and s5d can then be combined to give an evolution equation
for a in the form

da

dt*
= CmsCe1 − 1d − sCe2 − 1da2 ; Lsad, s6d

wheret* =St. With as0d=a0=e0/ sSk0d, Eq. s6d constitutes a
fully defined dynamical system for the state variablea. Its
fixed pointsa` are the solutions of the equation

Lsa`d = 0, s7d

and they correspond to the possible equilibrium states of the
flow. These states will be realizable ifkù0,eù0, anduuvu
øÎu2Î

v
2 hold whena goes toa`. Using relations3d, it is

easy to show that the resulting necessary condition for real-
izability can be written as

a` ù 3Cm/2. s8d

The stability of the fixed point—not to be confused with the
stability of the flow—depends on the value of the derivative
f8 of the function fsad=a+Lsad for a=a`: if f8sa`d is
strictly lower than unity, the fixed point is stable and—in the
absence of another stable fixed point—the equilibrium state
will attract any initial condition.

In order to discuss thestability of the flow, we have to go
back to the evolution equations of the turbulent kinetic en-
ergy and dissipation rate in the form

1

k

dk

dt*
=

Cm − a2

a
, s9d

1

e

de

dt*
=

CmCe1 − Ce2a2

a
. s10d

We shall consider that the flow is stablesrespectively un-
stabled if the turbulent kinetic energy decreasessrespectively
increasesd with time. For a given, realizable, fixed pointa`,
Eq. s9d shows that the flow in the equilibrium state is neutral
if a`

2 =Cm, stable ifa`
2 .Cm, and unstable ifa`

2 ,Cm. More-
over, Eqs.s9d ands10d can be rewritten using relations7d to
give the following relations, holding in the equilibrium state:

U1

k

dk

dt*
U

`

= U1

e

de

dt*
U

`

=
Cm

a`

SCe2 − Ce1

Ce2 − 1
D

`

.

These relations have an important consequence for model-
ing: Considering thatCm should always remain positive, it
appears that the sign of the right-hand side does not depend
on the value ofCm. It is therefore impossible to obtain both
stable and unstable flows across the range ofb by solely
sensitizing this coefficient to the rotation rate.

B. Initially isotropic turbulence

We now consider the unsheared situation. The Reynolds-
stress tensor is initially isotropic and if it remains so, rotation
does not enter the Reynolds-stress-transport equations. How-
ever, early experiments by Wigeland and Nagib26 did show
that the decay rate of turbulence was significantly affected
sreducedd by system rotation. Since then, more experiments27

and numerical simulations10,11,28,29have confirmed this re-
duction in the decay rate. In addition, the data indicate that
anisotropy develops—mainly through the length scales: The
transversesnormal to the system-rotation vectord scales in-
crease more than the axial scales, while the Reynolds-stress
tensor only slightly departs from isotropy. Obviously, these
effects are connected with modifications to the energy
cascade.10 The spectral model of Cambon, Bertoglio, and
Jeandel,30 and the analysis of Aupoix, Cousteix, and
Liandrat31 have shown that such modifications could be ex-
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plained by the explicit action of rotation on the triple corre-
lationssthe nonlinear transfer term in Lin’s equationd. More-
over, a displaced-particle analysis proposed by Jacquinet
al.27 introduces the idea of a confinement for the size of the
turbulent structures. Such confinement would affect the
transversefluctuating motion, and thus explain anisotropy. It
would operate at a scaleLV=v8 / uVu swherev8 is the scale of
the velocity fluctuations in the transverse planed and, there-
fore, leave unaffected the smaller structures. Following this
reasoning, one may expect that, at some point, the rotation
rate can be high enough for all of the energetic range of the
spectrum to be affected, so that the flow would be only mar-
ginally modified by any further increase in the rotation rate.
We shall refer to this notion as the “strong-rotation limit,”
above which the effect of rotation on the fluctuating motion
saturates. The idea of a transition wave numbers~1/LVd
above which the turbulent structures are not affected by ro-
tation can be found in several model spectra proposed
later.32–35 Accordingly, the rotation-sensitive part of the en-
ergetic range should exhibit a slope steeper than the −5/3
Kolmogorov slope which is recovered above the transition
wave number. In all cases, the upper limit of the rotation-
sensitive range is given by a value kV~ sV3/ed1/2. Compari-
son of this value with that of the high end of the energetic
range returns the strong-rotation limit.

1. Turbulence-model corrections for the nonlinear
effects

Accounting for the nonlinear effects in homogeneous,
isotropic turbulence in a rotating frame is rather straightfor-
ward: The only term that remains unclosed in the turbulent-
kinetic-energy and dissipation-rate equations is the destruc-
tion term of the latter. As can be seen in Table I, most of the
existing proposals actually rely on the sensitization of the
destruction coefficientCe2 to the ratiog=se /kd / uVu. The ef-
fect of rotation is always to increase the value ofCe2, so that
the decay rate of turbulent kinetic energy should be reduced
in the HI-V situation. However, the different models exhibit
two kinds of behavior at high rotation rates: In the models
proposed by Bardinaet al.28 and Rubinstein and Zhou,36 the
value of Ce2 goes to infinity as the rotation rate increases,
whereas it goes to a finite limitsCe2

` d with the other models.
Aupoix et al.31 were probably the firsts to introduce such a

feature in their model, it was supported by the calculation
results they obtained using a spectral-closure scheme. Since
then, model spectra as those cited in the previous paragraph
have further substantiated this point: They allow to deduce
consistent expressions ofCe2 as a function ofg sas well as
expressions of the eddy-viscosity coefficientCmd. That is the
way the models given by Okamoto,33 Park and Chung,37 and
Thangam, Wang, and Zhou38 are derived.

Following Bardinaet al.28 all the models considered here

can be made objective by replacinguVu by Ṽ.

2. Analysis of the model problem

In the HI-V flow, using thesk,ed problem leads to a very
simple set of evolution equations:

]k

]t
= − e, s11d

]e

]t
= − Ce2

e2

k
, s12d

where the coefficientCe2 can now depend—at most—on the
value of g. Combining Eqs.s11d and s12d leads to the fol-
lowing dynamical system for the state variableg:

dg

dt**
= − sCe2 − 1dg2 ; Psgd s13d

with gs0d=g0=se0/k0d / uVu and t** = uVut. The turbulent-
kinetic-energy and dissipation-rate equations can be recast in
nondimensional form,

1

k

dk

dt**
= − g, s14d

1

e

de

dt**
= − Ce2g. s15d

The fixed pointsg` of the system are given byPsg`d=0. For
all the models given in Table I,Ce2 cannot fall to unity and
the dynamical systems13d admits only one fixed point:g`

=0. Depending on the model expression ofCe2, one can
distinguish several cases. In the first one, we shall consider
thatCe2

` exists and, therefore, corresponds to the value ofCe2

in the equilibrium state. When this value is inserted in Eqs.

TABLE I. Model corrections for the nonlinear effects in rotating homogeneous turbulence. The limit ofCe2

when g goes to infinity is denoted asCe2
` . For the model of Park and Chung,m denotes the exponent of the

spectrum at low wave numbers andCnl=Ce2
0 −1 by construction.

Reference Ce2 Ce2
0 Cnl Ce2

`

31 Ce2
0 +Cnls1+0.1325gd/ s1+0.6051g+3.937g2d 1.83 0.9 2.73

28 Ce2
0 +Cnl /g 1.83 0.15 +̀

43 Ce2
0 +Cnl / s1+10g2d 1.83 1 2.83

33 Ce2
0 +Cnl / s1+13.04g2d 1.71 1.21 2.92

36 ÎCe2
0 2+Cnl /g2 ¯ ¯ +`

37 sm52d Ce2
0 +Cnl / s1+4.3g3/2d 1.83 0.83 2.67

37 sm54d Ce2
0 +Cnl / s1+4.3g3/2d 1.7 0.7 2.4

38 ÎCe2
0 2+Cnl / s1+1.525g2d 1.83 3.75 2.67
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s13d–s15d, these can be integrated to give the behavior of the
different variables in the equilibrium statesthat is, wheng
goes to zero andt to infinityd:

g ~ t−1, k ~ t−1/sCe2
` −1d, e ~ t−Ce2

` /sCe2
` −1d.

These are power solutions, the exponents of which do not
depend on the value of the rotation rate: They are thus con-
sistent with the idea of a strong-rotation limit. In the second
case, we shall consider thatCe2

` goes to infinity slower than
1/g2 when g goes to zero. In this case, the fixed pointg`

=0 still exists and Eq.s14d shows that the turbulent kinetic
energy goes to a constantsnot necessarily zerod in the equi-
librium state. The evolution of the dissipation rate will de-
pend on the wayCe2 goes to infinity wheng goes to zero.
Assuming that it behaves as 1/g sthis is the case with the
models given in Refs. 28 and 36d, we find that the dissipation
rate experiences an exponential decay given by

e ~ exps− AuVutd.

The slope of the exponential depends on the rotation rate and
the solution is not consistent with the existence of a strong-
rotation limit.

A last case of interest, although not applicable to the
models given in Table I, is the case whereCe2 can fall to
unity. Let us assume that a strictly positive valueg` exists
such thatCe2sg`d=1. Theng` is a fixed point, and integra-
tion of Eqs.s14d and s15d in the corresponding equilibrium
state yields

k ~ e ~ exps− g`uVutd.

The decreases of both variables are exponential and are en-
hanced when the rotation rate increases. This is in contradic-
tion with experiment and known physics since, in this case,
the decrease of the turbulent kinetic energy should be inhib-
ited.

III. ANALYSIS OF THE CORIOLIS CORRECTION OF
HOWARD et al.

We shall consider here the proposal of Howard, Patankar
and Bordynuik denoted as Model II in Ref. 2shereafter
called HPB correctiond. With the notations adopted in Sec.
II A 1, the value recommended by Howardet al. for Csc is
0.4.

A. Homogeneously sheared turbulence

In the HS-V flow, the rotation-dependent expression of
Ce2 reads

Ce2 = Ce2
0 f1 + Cscbs1 − 2bd/a2g. s16d

The fixed points can be obtained using Eq.s7d where the
above expression ofCe2 has been inserted, that is,

a`
2 =

− Ce2
0 Cscbs1 − 2bd + CmsCe1 − 1d

Ce2
0 − 1

. s17d

We see thata` may not exist and that, otherwise, its value
will depend on the rotation rate through the value ofb. In-
troducing

Csc1=
8Cm

Ce2
0 sCe1 − 1d,

it is a simple matter to conclude that a single positive
a` exists sid for all b, when CscøCsc1; sii d if and only if
bP g−` ,b1gø fb2, +`f, whenCsc.Csc1, with

b
2
1 =

1

4
7

1

4
Î1 −

8Cm

CscCe2
0 sCe1 − 1d.

In order to investigate the realizability of the equilibrium
states when they exist, Eq.s17d can be inserted in condition
s8d to give

2b2 − b +
Cm

CscCe2
0 FCe1 − 1 −

9

4
CmsCe2

0 − 1dG ù 0.

Introducing now

Csc2=
8Cm

Ce2
0 FCe1 − 1 −

9

4
CmsCe2

0 − 1dG ,

we find that there exists one singlerealizable equilibrium
state sid for all b, when CscøCsc2; sii d if and only if
bP g−` ,b3gø fb4, +`f, whenCsc.Csc2, with

b
4
3 =

1

4
7

1

4
Î1 −

8Cm

CscCe2
0 FCe1 − 1 −

9

4
CmsCe2

0 − 1dG .

It can be easily checked that the fixed point is stable when it
exists. The values ofb1 to b4 have been plotted as functions
of Csc in Fig. 1. We can see that the recommended value
Csc=0.4 leads to the most general case: ranges ofb with no
fixed point, one unrealizable fixed point, or one realizable
fixed point.

When the fixed point exists, the results obtained in Sec.
II show that the stability of the flow can be discussed by
comparing the values ofa` andCm

1/2. This leads to introduc-
ing two other particular values ofb,

FIG. 1. Existence and realizability of the equilibrium statessESd predicted
with the HPB-correctedsk,ed model in homogeneously sheared turbulence
as a function ofCsc.
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b
6
5 =

1

4
7

1

4
Î1 + 8Cm

Ce2
0 − Ce1

CscCe2
0 ,

and to conclude that, in the equilibrium state, the flow will be
sad neutrally stable if b=b5 or b=b6, sbd stable if b
P g−` ,b5føgb6, +`f, scd unstable if bP gb5,b1g
ø fb2,b6f.

In the absence of fixed pointsthat is, if bP gb1,b2fd,
there is no simple way to evaluate the stability of the flow.
However, for this particular correction method, we have been
able to obtain closed-form solutions to the evolution problem
for any value ofb. These are given in Appendix A, and show
that the system can experience ablowup at finite time: in the
rangebP gb1,b2f ,k ande go to infinity whilea goes to zero
at the nondimensional timet1

* given by

t1
* = sabd−1/2arctanÎa0

2a/b,

with

a = Ce2
0 − 1, b = CscCe2

0 bs1 − 2bd − CmsCe1 − 1d.

The flow could therefore be termed unstable in this case, but
such solutions are grossly unphysical.

The fixed-point diagram is given in Fig. 2 forCsc=0.4.
The equilibrium valuea` is plotted as a function ofb, the
location of the corresponding curve relative toCm

1/2 and
3Cm /2 allows graphical determination of the ranges ofb
where the flow is stablesa`.Cm

1/2d and realizablesa`

.3Cm /2d in the equilibrium state.

B. Initially isotropic turbulence

In the HI-V flow, Ce2 becomes rotation dependent
through the state variableg,

Ce2 = Ce2
0 s1 − 2Csc/g

2d,

and the dynamical system takes the form

dg

dt**
= 2CscCe2

0 − sCe2
0 − 1dg2 with gs0d = g0. s18d

It admits one realizable equilibrium state for whichg`
2

=2CscCe2
0 / sCe2

0 −1d, that is,g`=1.29 with Csc=0.4 andCe2
0

=1.92. According to the results obtained in Sec. II B 2, the
fixed point corresponds to the case whereCe2 falls to unity,
and each of the closure variables experiences an exponential
decrease in the asymptotic regime.

Consistency of these results with the HS-V analysis
when ubu goes to infinity is easily checked, since in this case

a` →Î2CscCe2
0

Ce2
0 − 1

b2, g =
a

ubu
→Î2CscCe2

0

Ce2
0 − 1

= g`.

C. Discussion

The above results show that the HPB correction method
is rather efficient in mimicking the effects of the shear/
Coriolis instability: The unstable-flow range betweenb5 and
b6 extends slightly and symmetrically outside the 0–0.5
range given by linear-stability analysisssee Table IId. As
mentioned above, the lower bound should be negative so that
the value −0.05 obtained forb5 cannot be criticized. We
may, however, have some restriction on the upper bound
sb6<0.55d, since it is highly probable that the flow should
return stable forb=0.5. We found that this point has a direct
consequence on the prediction of the velocity profile in the
neutral-stability region of the channel flow with spanwise
rotation. As a matter of fact, if we consider that viscous
effects and turbulent diffusion can be neglected in this re-
gion, the closure equations can be written as

0 = Cm

k2

e

]Ū

]y
− e, 0 =Ce1Cmk

]Ū

]y
− Ce2

e2

k
.

These equations are identical to those obtained at the neutral-
flow fixed points in the HS-V flow, and can therefore only be
satisfied if

Vs]Ū/]yd−1 = b5 or b6.

The value ofb5 is negative and would correspond to nega-
tive velocity gradients close to the suction side of the chan-

FIG. 2. Fixed-point diagram obtained with the HPB-correctedsk,ed model
in homogeneously sheared turbulence. The fixed pointa` is plotted as a
function of b. Unstable flow is obtained when the curve is belowCm

1/2. If it
goes below 3Cm /2, the equilibrium state is unrealizable.

TABLE II. Remarkable points of the fixed-point diagram obtained with the HPB-correctedsk,ed model and
some particular values ofCsc in homogeneously sheared turbulence.

Csc b1 b2 b3 b4 b5 b6

0.4 0.058 0.442 0.032 0.468 −0.051 0.551

Csc1=0.165 0.25 0.25 0.124 0.376 −0.112 0.612

Csc2=0.0951 ¯ ¯ 0.25 0.25 −0.175 0.675
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nel. The reasoning fails in this region where the flow is not
fully turbulent. We can therefore conclude that the predicted
slope of the velocity profile should be equal toV /b6

<1.8V across the neutral-stability region, and that the latter
corresponds to the region where diffusion can be neglected.
A similar reasoning can be made with the exact, unclosed,
statistical equations, and may explain why the neutral-
stability region does not reduce to a single point in the real
flow too sthe question was raised by Johnstonet al. in Ref.
12d. From experiment and simulation, we expect that the
slope should be fairly close to 2V, so that the result obtained
with the HPB correction is acceptable although slightly un-
derestimated.

The blowups at finite time encountered in the range
b1–b2 are much more a matter of concern. They are reminis-
cent of the diverging solutions obtained by Ji and Durbin39 in
the absence of a stable equilibrium state too, but in a slightly
different context: second-order closure and turbulence sub-
ject to rotation and stable stratification. Also, we believe that
this property of the dynamical system is connected with the
unexpected rise of turbulent kinetic energy reported by
Hellsten20 in the computation of the flow in a centrifugal-
compressor rotor. As a matter of fact, the fixed-point diagram
given in Appendix B confirms that the initial form of Hell-
sten’s correctionssee Sec. II A 1d leads to roughly the same
kind of behavior as the HPB correction. As the latter is con-
cerned, a possible remedy consists in lowering the value of
Csc below Csc1, so as to obtain a stable equilibrium state for
any value ofV /S. This is apparent in Table II, where the
particular values ofb arising from the analysis are given for
Csc=Csc1 andCsc=Csc2: whenCsc goes belowCsc1, the range
b1–b2 is removed from the fixed-point diagram. Unfortu-
nately, the values reached byb6 indicate that such a recali-
bration may have a detrimental effect on the predicted slope
of the velocity profile in the neutral-stability region of the
channel flow. In order to check this point and validate the
connection made above between the value ofb6 and the
slope of the velocity profile, calculations of the channel flow
have been performed with the values ofCsc given in Table II.
The flow has been computed with Rom=Um/ s2Vhd=2 and
Rem=2Umh/n=5800, whereh is half the distance between
the walls andUm the bulk velocity. The predicted profiles of
the local mean-velocity gradient across the channel are plot-
ted in Fig. 3, together with constant values estimated as
V /b6. The simulation results of Kristoffersen and
Andersson4 at these Reynolds and Rossby numbers are also
plotted for reference. It can be seen that all profiles do ex-
hibit the constant plateau corresponding to the neutral-
stability region. The level of this plateausequal to unity, if
the slope were equal to 2Vd decreases with the value ofCsc,
in a remarkable agreement with the theoretical estimates.
When Csc=Csc2, the predicted slope underestimates the
simulation data by more than 20%.

The behavior of the model at high-rotation rates is also
questionable: With or without mean shear, increasing rota-
tion can never bring the value ofg below 1.29 in the
asymptotic regime, a value which is much higher than those
recorded in available experiments.sFor instance, the data of
Jacquinet al.27 at their highest rotation rate give values ofg

about 0.2 still steadily decreasing at the last measurement
stationd. Moreover, in this high-rotation regimesg=1.29d, the
time decrease of the closure variables remains dependent on
the rotation rate, and further increase in the rotation rate
results in a faster decrease of the turbulent kinetic energy.
The model is therefore not consistent with a strong-rotation
limit and disagrees with experiment. The dynamical-system
analysis of the HI-V flow shows that all these deficiencies
are connected with the possibility for the coefficientCe2 to
fall to unity.

IV. THE NEW CORIOLIS CORRECTION

In this section we shall work on the HPB correction with
the aim of suppressing the blowups at finite time, and restor-
ing a physically consistent behavior at high-rotation rates. To
this end, we shall first design the correction method in the
framework of homogeneous turbulence, with the basic re-
quirements thatsid it produces a single, stable, and realizable
fixed point for any value ofb in the HS-V flow, sii d it re-
duces to a proven model for the nonlinear effects in the HI-
V flow.

In a second step, we shall generalize the resulting for-
mulation so that the final model can be used without any
ambiguity in nonhomogeneous flows.

A. Design of the correction method

With the simplifications and notations used in the HS-V

flow, one way to begin the design of the model is to write the
expression ofCe2 in the form

Ce2 = Ce2
0 f1 + Fnlsb,ad + Fscsu,adg , s19d

where

u =
VsS− 2Vd

S3 e/k
= bs1 − 2bd/a

FIG. 3. Profiles of the local mean-velocity gradient obtained with the HPB-
correctedsk,ed model and some particular values ofCsc in the plane-channel
flow with spanwise rotation. The pressure side is located aty/h=0 and the
suction side aty/h=2. s—d , Csc=0.4; s– –d , Csc=Csc1; s- - -d , Csc=Csc2;
dotted lines, theoretical estimates of the predicted slopessRom

−1b6
−1d; sym-

bols, DNS results of Kristoffersen and AnderssonsRef. 4d.
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is a mixedBradshaw–Richardson numbersnormalization in-
volves both the mean-flow and turbulent time scalesd.

The Fnl function is the correction for nonlinear effects,
any model given in Sec. II B 1 can be used here. Our pref-
erence goes to the model of Park and Chung37 which is based
on a model spectrum with a −2 slope in the wave-number
range affected by rotation, and leads to a bounded evolution
of Ce2 consistent with the idea of a strong-rotation limit.

Making this model objective by the use ofṼ, we write

Fnl =
sCe2

0 − 1d/Ce2
0

1 + aS a

u1/2 −bu
D3/2 . s20d

The Fsc function is the correction for the shear Coriolis
instability. It will be defined subject to several conditions that
must guarantee a correct mathematical behaviorsrealizabil-
ity, existence of a stable equilibrium state for any value of
bd, as well as render a physically consistent phenomenology
sflow-stability characteristics in the equilibrium stated. We
have retained the following.

sad The correction is inactive in the limit of vanishing
shear rates, i.e.,

Fsc→ 0 whena → `.

sbd It is roughly equivalent to the HPB correction in the
vicinity of the neutral-flow fixed points, i.e.,

Fscsu,ad < Ku/a whenu → 0,

K being a constant equivalent to theCsc constant of the
HPB correction.

scd The equilibrium state is always realizable, i.e.,

for all b, a` ù 3Cm/2.

sdd The flow remains stable in the limit of high rotation-
to-shear ratio, i.e.,

a` ù ÎCm when ubu → `.

These conditions can be satisfied by takingFsc in the
form

Fscsu,ad =
Csc

a
ftanhsbu + cd − dg. s21d

Condition sad is automatically satisfied. LinearizingFsc

aroundu=0 then gives

Fsc,
Csc

a
ftanhc − d + bs1 − tanh2 cdug,

so that, if tanhc<d, conditionsbd will be satisfied with

K = Cscbs1 − tanh2 cd. s22d

In order to check that conditionscd can be satisfied, we re-
write Eq. s7d taking into account the definitions19d of Ce2

and obtain

sCe2
0 − 1d

2 + A

1 + A
a`

2 + Ce2
0 CscBa` − CmsCe1 − 1d = 0, s23d

where

A = U a`

1/2 −b
U3/2

, B = tanhsbu` + cd − d.

Equations23d can be considered as a quadratic equation for
a` with a single positive root. It is therefore strictly equiva-
lent to

a` =
1 + A

2 + A
3

− Ce2
0 CscB + ÎD

2sCe2
0 − 1d

, s24d

with

D = Ce2
0 2Csc

2 B2 + 4CmsCe1 − 1dsCe2
0 − 1d

2 + A

1 + A
.

It can be shown that the right-hand side of Eq.s24d is an
increasing function ofA and a decreasing function ofB.
Whatever the values ofa` andb are,A is positive andB is
in the rangeg−1−d,1−df. A lower bound for the value of
the fixed pointa` can therefore be obtained takingA=0 and
B=1−d in Eq. s24d; it reads

a` ù
− Ce2

0 Cscs1 − dd

4sCe2
0 − 1d

+
ÎCe2

0 2Csc
2 s1 − dd2 + 8CmsCe1 − 1dsCe2

0 − 1d

4sCe2
0 − 1d

.

Specifying that this lower bound is equal to 3Cm /2, we find
a sufficient condition ond for condition scd to be satisfied:

d = 1 −
1

CscCe2
0 F2

3
sCe1 − 1d − 3CmsCe2

0 − 1dG . s25d

Turning now to conditionsdd, we note that Eq.s24d can also
be used to place a finite upper bound ona`. It follows that,
if the fixed point exists,a` remains finite whenubu goes to
infinity. This result can then be used together with Eqs.
s19d–s21d to state thatCe2 takes a constant value, equal to
2Ce2

0 −1−Ce2
0 Cscs1+dd /a`, in the equilibrium states obtained

when ubu goes to infinity. When this value is inserted in Eq.
s7d, we get a quadratic equation with only one positive root
a` sthe limit of a` when ubu goes to infinityd given by

a` =
Ce2

0 Cscs1 + dd

4sCe2
0 − 1d

+
ÎCe2

0 2Csc
2 s1 + dd2 + 8CmsCe1 − 1dsCe2

0 − 1d

4sCe2
0 − 1d

.

In practice, the value ofCsc will be drawn from this equation
after having specified a value ofa` fhigher thanCm

1/2 in
agreement with conditionsddg. Eliminating d with Eq. s25d,
we get

Csc=
f3a`sCe2

0 − 1d + Ce1 − 1gs2a` − 3Cmd

6a`Ce2
0 . s26d

At this stage, we note that the expression ofCe2 is dependent
on the shear ratein the absence of rotation.This dependency
takes the form
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Ce2 = Ce2
0 +

Ce2
0 − 1

1 + as2ad3/2 +
CscCe2

0

a
stanhc − dd,

and should not affect the generality of the model if the value
of Ce2 is adequate in the usual calibration case: the logarith-
mic layer of wall-bounded flows. With thesk,ed model, the
behavior of the main variables is known there, given by

e =
ut

3

ky
, k =

ut
2

ÎCm

,
]Ū

]y
=

ut

ky
,

whereut is the friction velocity andk the Kármán constant.
According to our expression ofCe2, this coefficient would
take the following value in the logarithmic layer:

Ce2
k = Ce2

0 +
Ce2

0 − 1

1 + as2ÎCmd3/2
+

CscCe2
0

ÎCm

stanhc − dd.

The standard valueCe2
k =1.92 can thus be recovered by tak-

ing

tanhc = d − SCe2
0 − Ce2

k +
Ce2

0 − 1

1 + as2ÎCmd3/2D ÎCm

CscCe2
0 . s27d

B. Generalization and final calibration of model
constants

Generalization will be performed by defining objective
Rossby and Bradshaw–Richardson numbers that should re-
duce tog andu in the HI-V and HS-V flows, respectively.
We retain

Rõ=
e

Ṽk

and

BR˜ = −
2k

S̃3e
WikSjkSdSi j

dt
+ Vms«imnSjn + « jmnSindD .

The definition of Rõdirectly follows from the suggestion of
Bardinaet al.,28 while the definition ofBR˜ is adapted from
the proposal of Spalart and Shur.24 The model expression for
Ce2 can now be written as

Ce2 = Ce2
0 +

Ce2
0 − 1

1 + a Rõ3/2
+ Ce2

0 Csc
S̃k

e
ftanhsbBR˜ + cd − dg.

s28d

Calibration of the constants involves two sets of standard
values: those given by Launder and Sharma40 for the sk,ed
model and those recommended by Park and Chung37 for
their Coriolis correction, that is,

Cm = 0.09, Ce1 = 1.44, Ce2
k = 1.92

and

Ce2
0 = 1.83, a = 4.3.

At this stage, a value ofK about 0.4 and a value ofa` higher
thanCm

1/2 have to be selected. We choose

K = 0.5, a` = ÎCm = 0.3.

The remaining constants are determined using the relations
established in the preceding section, Table III gives the de-
termining equation and the final value obtained for each of
them.

Figures 4 and 5 show the fixed-point diagram obtained
with the present model and illustrate the influence of the
constantsa` andK on this diagram. All plots are obtained by
numerically solving Eq.s7d; they exhibit the desired proper-
ties: a single, stable, and realizable fixed point exists for any
value of b, the lower bound of the unstable-flow range is
slightly belowb=0, and the upper bound is close tob=0.5.
With K=0.5 and a`=0.3, we find that the unstable-flow
range goes fromb<−0.039 to 0.518. The figures show that
the effect of each constant is rather distinct: The influence of
a` is limited to the stable-flow range and that ofK to the
transition between stable and unstable flows. Calibration of
the model in the stable-flow range is not easy due to the lack
of physical data, the valuea`=0.3 selected here is in agree-
ment with the RDT results of Bertoglio17 ssee following sec-
tiond. As the transition range is concerned, Fig. 5 shows that
the sensitivity to the value ofK is not high, the choiceK
=0.5 has been made primarily for simplicity. However, the
channel flow with spanwise rotation presents such a transi-
tion. Calculations presented in the following section do not
contradict this choice.

FIG. 4. Influence of the value ofa` on the fixed-point diagram obtained
with the present model in homogeneously sheared turbulence. All calcula-
tions are performed with K=0.5. s—d, a`=Cm

1/2; s– –d , a`=2Cm
1/2;

s- - -d , a`=3Cm
1/2.

TABLE III. Calculation of the modeling constants for the present model.
Given the initial choicea`=0.3 andK=0.5, calculation of the coefficients
proceeds from left to right.

Constant Csc d c b

Determining equation s26d s25d s27d s22d

Value 0.119 0.682 0.453 5.13
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C. Validation

In the situation of initially isotropic turbulence in a ro-
tating frame, the present model becomes strictly equivalent
to the model of Park and Chung.37 In Ref. 37, the authors
show that the model is in excellent agreement with the ex-
perimental results of Wigeland and Nagib26 when a value of
1.83 is selected forCe2

0 . A similar agreement with the experi-

ments of Jacquinet al.,27 and direct numerical simulations by
Mansour, Cambon, and Spezialessee Ref. 37d is also claimed
when the value ofCe2

0 is adjusted so as to account for the
initial spectra of the experimental data.

When shear is present, the LES results of Bardinaet al.11

can be used to assess the performance of the model in the
unstable-flow range. Figure 6 shows the results of calcula-
tions performed for the three cases documented by Bardina
et al. sb=0, 0.25, and 0.5d together with results obtained
using the HPB-correctedsk,ed model. Whenb=0, the latter
model reduces to the standard model and gives the same
evolutions of turbulent kinetic energy and dissipation rate.
The present model remains very close to the standard model
with a`<0.205sinstead of 0.202d andCe2<1.95sinstead of
1.92d. As a result, the evolution of the closure variables is
virtually identical for the two models. Whenb=0.25, the
figure illustrates the blowup at finite time experienced with
the HPB-correctedsk,ed model, while the present model
shows a physically consistent behavior: the growth rates of
the closure variables remain finite, although slightly lower
than those obtained in LES. In the last casesb=0.5d, the flow
should be close to neutral; the present model again shows a
sensible improvement over the HPB-correctedsk,ed model,
even if the predicted flow remains slightly unstable. Com-
parison with the RDT results of Bertoglio17 in Fig. 7 unables
one to assess the behavior of the model in the stable range.
Time evolution of the turbulent kinetic energy is plotted for
b=0 and −0.25; the figure shows that the rates of

FIG. 5. Influence of the value ofK on the fixed-point diagram obtained with
the present model in homogeneously sheared turbulence. All calculations are
performed witha`=Cm

1/2. s– –d, K=0.25; s—d , K=0.5; s- - -d , K=0.75.

FIG. 6. Time evolutions of the turbulent kinetic energy and dissipation rate for homogeneously sheared turbulence in a rotating frame.(: LES results of
Bardina, Ferziger, and ReynoldssRef. 11d. Model calculations are performed witha0=0.296.s–d, Present model;s– –d, HPB-correctedsk,ed model.
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increase/decrease are in good agreement as soon as the
memory of the initial condition is lost. Attention is brought
to the fact that trying to catch the evolution of the flows
simulated by Bertoglio17 and Bardinaet al.11 at early times
with an eddy-viscosity model like ours is illusive: This kind
of model instantaneously correlates the velocity fluctuations
when mean shear is present, while LES as well as RDT take
some time to buildup significant shear stress, and hence tur-
bulence production.

As already mentioned, the plane-channel flow with span-
wise rotation is an important test case for practical applica-
tions. The DNS results of Kristoffersen and Andersson,4 and
Lamballais, Lesieur, and Métais5 have been used here to
validate the model. We shall denote asut the quadratic mean
of the friction velocities on the pressure wallsutpd and suc-
tion wall sutsd, and introduce the corresponding Reynolds
number: Ret=uth/n. Model calculations have been per-
formed with the HPB-correctedsk,ed model and the present
model so as to match the mean Reynolds and Rossby num-
bers obtained in the simulations: Rem=5800 and Rom=2 for
the data of Kristoffersen and Andersson, Rem=5000 and

Rom=2/3 for the data of Lamballaiset al. Both models are
used with the low-Reynolds-number treatment of Launder
and Sharma.40 Figure 8 shows the mean-velocity profiles ob-
tained in these flows, and it can be seen that the two models
perform well in this situation. We note that the slope of the
profile in the neutral-stability region is slightly better pre-
dicted with the present model. This is consistent with our
theoretical estimates according to which the slope should be
equal toV /0.518=1.93V instead ofV /0.551=1.81V with
the HPB correction. Location of the mean-velocity maxi-
mum is also better predicted with the present model; this is
striking at the highest rotation rate. As the friction coeffi-
cients are concerned, Tables IV and V indicate that the HPB
correction is more accurate at these low Reynolds numbers.
However the Launder–Sharma low-Reynolds-number treat-
ment is known to underestimate the friction coefficient at
low bulk Reynolds numbers, and our results are more in line
with those obtained in the absence of rotation. The good
result obtained for the friction coefficient with the HPB cor-
rection could therefore be a case of compensating errors.

V. CONCLUSION

We have presented the development and validation of a
linear sk,ed model modified so as to account for the main
influences of system rotation on turbulence: the inhibition of
the cascade to small scales and the shear/Coriolis instability.

The development of the model is based on our sugges-
tion that physical consistency of the turbulence model should
be examined with reference to the equilibrium states ob-
tained in time-evolving homogeneous turbulenceswith and
without homogeneous sheard. This is a distinction with ear-

FIG. 7. Time evolution of the turbulent kinetic energy for homogeneously
sheared turbulence in a rotating frame. Comparison between the results ob-
tained with the present model and the RDT results of BertogliosRef. 17d.
Model calculations are performed witha0=0.204.

FIG. 8. Mean-velocity profiles ob-
tained in the channel flow with span-
wise rotation. Comparison between
the DNS results obtained by Kristof-
fersen and AnderssonsRef. 4d and
Lamballais, Lesieur, and MétaissRef.
5d with model calculations performed
using the present model and the HPB-
correctedsk,ed model.

TABLE IV. Channel flow with spanwise rotation at Rem=5800 and Rom
=2. Model calculations compared with the DNS data of Kristoffersen and
AnderssonsRef. 4d. The friction coefficient is defined asCfm=2ut

2/Um
2 .

Ret Cfm utp/ut

DNS 194 0.008 60 1.207

HPB correction 190 0.008 59 1.24

Present model 172.4 0.007 07 1.22
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lier proposal41 and practices. Our motivation is that a first
guess on the effect of a model constant can be misleading:
For instance, the fact that the HPB correction leads to the
decrease of the destruction coefficientCe2 when rotation is
increased led Spezialeet al.41 to reject such modifications on
the ground that the predicted dissipation rate should increase
with rotation. However, the dynamical-system analysis of the
unsheared flow indicates without any doubt that this is not
the case in the equilibrium state, where it is the evolution of
the turbulent kinetic energy which is questionable.

Another issue is the treatment of the eddy viscosity and
its coefficientCm. From a phenomenological point of view,
sensitizingCm to the rotation rate would be natural: Model
spectra like those cited in Sec. II B lead to rotation-sensitive
expressions of the eddy-viscosity coefficient in unsheared
turbulence.34,34 Also, the basic mechanism responsible for
the shear/Coriolis instability affects the Reynolds shear
stress, and would therefore probably need another correction
to Cm. However, we consider that the eddy viscosity is un-

defined in unsheared turbulencesnt=−uvf]Ū /]yg−1d, and
that the dynamical-system analysis of the sheared flow
shows unambiguously that a modification to the eddy-
viscosity coefficient alone is not able to bring the prediction
from unstable flow to stable flow when the rotation-to-shear
ratio varies. This points out that our modification toCe2 for
the shear/Coriolis cannot be considered as phenomenologi-
cal. Instead, our approach is based on the idea that physically
consistent predictions can be obtained in target configura-
tions if some mathematical properties are satisfied.

We believe that the present model should prove useful in
practical computation of turbulent flows in rotating frames:
Its results are physically consistent with the known effects of
the Coriolis acceleration on turbulence, and it should be free
from the problem of blowup at finite time. The definition of
the Bradshaw–Richardson number used here as a sensor of
the rotation-to-shear ratio was initially proposed by Spalart
and Shur,24 it is an objective form that unifies rotation and
curvature. As such, it handles streamline curvature on the
basis of Bradshaw’s analogy between rotation and
curvature.42 It follows that our model should also mark some
improvement in the prediction of strongly curved flows. Fu-
ture work will involve an assessment of its behavior in com-
plex turbomachinery flows.
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APPENDIX A: ANALYTICAL SOLUTIONS OBTAINED
WITH THE HPB-CORRECTED „k ,e… MODEL IN
THE HS-V FLOW

We suppose thatCsc.Csc1. In this case, bothb1 andb2

exist; otherwise, the solutions can be immediately deduced
from those given here. The evolution equations can be recast
in the form

da

dt*
= − aa2 − b,

1

k

dk

dt*
=

Cm

a
− a,

1

e

de

dt*
=

Cm − b

a
− Ce2

0 a,

with

a = Ce2
0 − 1, b = CscCe2

0 bs1 − 2bd − CmsCe1 − 1d.

The first equation can be directly integrated, integration of
the k and e equations follows. We remark thata is always
positive, and that the sign ofb depends on the value ofb,
leading to consider three different cases.

1. Case 1: b <0Ùb« ‡−` ,b1†�‡b2 ,`†

The fixed point is given bya`=Î−b/a. Depending on
the initial condition we get the following expressions:

sid If a0.a`,

a

a0
=

tanhsC0d

tanhsÎ− abt* + C0d
,

k

k0
= F coshsC0d

coshsÎ− abt* + C0d
GCm/b

3 F sinhsC0d

sinhsÎ− abt* + C0d
G1/a

,

e

e0
= F coshsC0d

coshsÎ− abt* + C0d
GCm/b−1

3 F sinhsC0d

sinhsÎ− abt* + C0d
GCe2

0 /a

.

sii d If a0,a`,

a

a0
=

tanhsÎ− abt* + C0d
tanhsC0d

,

k

k0
= F sinhsC0d

sinhsÎ− abt* + C0d
GCm/b

3 F coshsC0d

coshsÎ− abt* + C0d
G1/a

,

TABLE V. Channel flow with spanwise rotation at Rem=5000 and Rom
=2/3. Model calculations compared with the DNS data of Lamballais, Le-
sieur, and MétaissRef. 5d.

Ret Cfm utp/ut

DNS 113 0.004 09 1.15

HPB correction 110.8 0.003 93 1.13

Present model 99.6 0.003 17 1.07
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e

e0
= F sinhsC0d

sinhsÎ− abt* + C0d
GCm/b−1

3 F coshsC0d

coshsÎ− abt* + C0d
GCe2

0 /a

.

siii d If a0=a`,

a

a0
= 1,

k

k0
=

e

e0
= expSaCm + b

Î− ab
t*D ,

where

C0 =
1

2
lnUa` + a0

a` − a0
U .

2. Case 2: b =0Ùb=b1 or b=b2

Whatever the initial condition is, we get the following
expressions:

a

a0
= s1 + aa0t

*d−1,

k

k0
= s1 + aa0t

*d−1/aexpSCm

a0
t* + aCm

t*2

2
D ,

e

e0
= s1 + aa0t

*d−Ce2
0 /aexpSCm

a0
t* + aCm

t*2

2
D .

The flow is unstable witha going to zero andk ande going
to infinity when t* goes to infinity.

3. Case 3: b >0Ùb« ‡b1 ,b2†

The equilibrium state does not exist; we get the follow-
ing expressions:

a

a0
=

tansC0d

tansÎabt* + C0d
,

k

k0
= F cossC0d

cossÎabt* + C0d
GCm/bF sinsC0d

sinsÎabt* + C0d
G1/a

,

e

e0
= F cossC0d

cossÎabt* + C0d
GCm/b−1

3F sinsC0d

sinsÎabt* + C0d
GCe2

0 /a

,

with

C0 = arctan
Îb/a

a0
.

The system develops a blowup at finite time:t1
* =sp /2

−C0d /Îab.

APPENDIX B: FIXED-POINT DIAGRAM OBTAINED
WITH THE INITIAL FORM OF HELLSTEN’S
CORRECTION „REF. 20…

The fixed points have been obtained from a numerical
solution of Eq.s7d. The result is given in Fig. 9. The calcu-
lation has been performed with

Cm = 0.09, Ce1 = 1.44, Ce2
0 = 1.92, Csc= 0.4,

and

Ce2 = Ce2
0 F1 − Csc

uS− 2VusS− uS− 2Vud

e2/k2 G−1

The unstable-flow range goes fromb<−0.035 tob<1.035
and blowup is expected when b
P g0.09,0.491fø g0.509,0.991f.
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