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Specific features of the variable-density mixing layers without gravity effects are studied using
self-similar solutions to the laminar and time-evolving variant of this flow. Density variations come
from either mass or temperature mixing, accounting for, in the latter case, the effect of the Mach
number. The transverse profiles of the flow quantities, as well as the time evolutions of the global
characteristic scales of the mixing layer, are given for a wide range of density ratio and
Mach-number values. When compared to the constant-density case, it appears that most of the
specificity of these flows comes from the emergence of a nonzero transverse component of the
velocity. First, it produces a deflection of the flow that can be either confined in the core of the layer
or global, the whole layer being tilted at an angle from the initial flow direction. In most cases, this
deflection is such that some part of the higher-density fluid is “entrained” in the direction of the
lower-density fluid, leaving no possibility to define a dividing streamline. Second, it leads to a shift
between the density profile and the profiles of the other flow quantities. This shift scales on the
�time-increasing� mixing-layer thickness and therefore appears as a time drift. When global
deflection is present, the tilting of the layer can be shown to be equivalent to a global drift of the
mixing/shear layer toward the light-fluid side of the flow. Third, transport by the transverse velocity
component affects the spreading of the mixing layer, giving rise to an additional effect referred to
as advective growth. Examination of the density-ratio and Mach-number effects leads to surprising
results: While the momentum thickness is always observed to decrease when increasing these
parameters, conventional thicknesses �based on the profiles of the different variables� can show
opposite behaviors depending on the form of the diffusion model for the considered variable.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2772901�

I. INTRODUCTION

Mixing of mass, momentum, or temperature is the key to
performance in a wide range of technologies, including aero-
dynamics, combustion, thermal engineering, and chemical
engineering, among others. The basic flow configuration for
studying these phenomena is the mixing layer between two
parallel streams, with different densities and/or temperatures,
flowing with different velocities—possibly in the compress-
ible range. Since the work of Brown and Roshko,1 the de-
pendency of the spreading rate of the layer �a direct measure
of the mixing efficiency� to various parameters, and the
mechanisms by which mixing occurs in the variable-density
case, have been studied extensively. Due to the fact that tur-
bulence is the most frequent state of motion in a number of
practical applications, it is no surprise that most of the effort
has been focused on the turbulent variant of this flow. Ex-
periment, numerical simulation, and theoretical consider-
ations all agree on the point that the spreading rates are
strongly modified when compared to those obtained in the

constant-density case. The significant parameters appear to
be �i� the density ratio between the two fluids �the cases of
temperature or mass inhomogeneity seem to be roughly
equivalent from this point of view�, �ii� the velocity ratio
between the two streams �in the space-evolving configura-
tion�, and �iii� the convective Mach number �the velocity
difference normalized by the average speed of sound2�.
Semiempirical relations such as those given by Brown3 or
Dimotakis4 are well supported by experiment and indicate
significant modifications to the spreading rate when the den-
sity and velocity ratio are varied. The well-known Langley
curve gathers a substantial number of experimental data that
indicate an important reduction of the spreading rate when
the convective Mach number is increased. Direct numerical
simulations of Vreman, Sandham, and Luo5 and Pantano and
Sarkar6 have been essential to understand the mechanism by
which the mixing efficiency is altered in the variable-density
case. They reveal the influence of compressibility effects on
the turbulent motion, which in turn modifies the mean flow.
Paradoxically, the laminar situation, which is an ideal frame-
work to investigate the direct influence of density variation
on the global characteristics of the flow, has seldom been
investigated. Sanchez, Vera, and Linan7 have given analyti-
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cal solutions to several laminar mixing problems, including
the case of the time-evolving mixing layer between two
gases of different densities. They give limited information on
the emergence of a transverse component of velocity, which,
as we shall see hereafter, is specific to the variable-density
situation. Self-similar solutions have also been used by sev-
eral authors �see, for example, Kozusco et al.8 and Lardjane,
Fedioun, and Gökalp9� to initiate stability analysis or numeri-
cal simulations of dissimilar gases with different tempera-
tures and velocities in the compressible range. These have
been performed with elaborate models for the variations of
the fluid properties and precise combination of gases, but do
not give a systematic account of the separate effects of the
different sources of density variation on the global character-
istics of the flow.

In this paper, we use simple models for the fluid proper-
ties to obtain self-similar solutions to the time-evolving
mixing-layer problem. Density variations due to temperature
differences, use of dissimilar gases, and the compressible-
flow regime are investigated separately in order to analyze
the specific mechanisms involved in variable-density mixing.
The problem is precisely stated in Sec. II, and the self-
similarity analysis is presented in Sec. III. Calculations per-
formed in the three different configurations are presented and
discussed in Sec. IV.

II. STATEMENT OF THE PROBLEM

We consider the problem of a time-evolving variable-
density mixing layer, in the case in which gravity can be
neglected. At some initial time �t=0�, the half-spaces z�0
and z�0 contain two parallel-flowing fluids that will be re-
ferred to as fluid A and fluid B, respectively. For the sake of
brevity, the higher- and lower-density fluids will be qualified
as “heavy” and “light,” respectively, although these terms
would only be relevant in the presence of gravity. Initially,
the velocity is aligned with x and the pressure is uniform
throughout the flow. The temperature, density, and velocity
of fluid A will be denoted as TA, �A, and −U0 �U0�0�; those
of fluid B will be denoted as TB, �B, and U0. The uniform
value of the pressure at t=0 will be denoted as P� and re-
lated to the state variables by the ideal-gas relation

P� = �ARATA = �BRBTB,

where RA and RB are the ideal-gas constants of fluid A and
fluid B, respectively.

We are interested in one-dimensional �invariant along x
and y� and unsteady �starting at t=0� solutions to this prob-
lem. Under these assumptions, the continuity equation
d� /dt+�� ·U=0 can be written as

��

�t
= − W

��

�z
− �

�W

�z
,

where W denotes the transverse velocity component �along
z�. Setting W=0 in the above equation leads to the obviously
incorrect result that the density will remain constant in the
flow at any location and at any time. It appears, therefore,
that, contrary to the constant-density case, variable-density
mixing layers necessarily involve some deflection of the flow

�that is, nonzero values of the transverse velocity compo-
nent�.

The above simple argument further points out the con-
nection between deflection and divergence of the velocity
field ���W /�z�, and prompts one to examine the possible
causes for a nonzero divergence. To this end, we introduce
the mass fraction C of fluid A �also called concentration be-
low�, and write the equations of the problem for a mixture of
Newtonian fluids following the Fourier and Fick laws, in the
absence of cross-diffusion effects such as the Dufour and
Soret effects �see, for example, Chassaing et al.10�,

P = ��a*C + b*�T , �1�

d�

dt
= − �

�W

�z
, �2�

�
dU

dt
=

�

�z
��

�U

�z
� , �3�

�
dW

dt
= −

�P

�z
+

4

3

�

�z
��

�W

�z
� , �4�

�
dC

dt
=

�

�z
��D

�C

�z
� , �5�

�
d�CpT�

dt
= −

dP

dt
+

4

3
�� �W

�z
�2

+ �� �U

�z
�2

+
�

�z
��

�T

�z
� .

�6�

In these equations, �, �, D, and Cp denote, respectively, the
molecular viscosity, thermal conductivity, mass diffusivity,
and specific heat at constant pressure. The equation of state
�1� involves two constants a* and b* connected to the uni-
versal ideal-gas constant R and molecular weights MA and
MB of the two fluids through the relations

a* = R
MB − MA

MAMB

and b* =
R

MB
.

We may already mention that changing the sign of U leaves
the system �1�–�6� unchanged. It follows that—contrary to
the space-evolving mixing layer—the time-evolving mixing
layer has the same behavior in the cogradient ��� /�z
��U /�z�0� and countergradient ��� /�z��U /�z�0� situ-
ations. As a consequence, we can adopt, without any loss of
generality, the convention that index B always denotes the
heavier fluid. Now, following Chassaing11 or Lele,12 we can
write an equation for the divergence of the velocity field
�� ·U��W /�z�:
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�7�

where � is the specific-heat ratio. Assuming that variations in
the specific heat can be neglected, Eq. �7� shows that nonzero
values of the divergence result from four major sources: �a�
Pressure variation �through the coupling with density in the
equation of state�, �b� viscous dissipation, and �c�, �d� mo-
lecular diffusion.

In order to better analyze these contributions to the gen-
eration of deflection, we define three simplified configura-
tions:

1. Low-speed binary mixing, where we consider the mixing
of two “incompressible” fluids at the same temperature.
The right-hand side of Eq. �7� only involves term �d�.

2. Low-speed thermal mixing, where we consider tempera-
ture mixing without kinetic heating in a single gas, the
density of which only depends on temperature. Equation
�7� only involves term �c�.

3. High-speed thermal mixing, where we consider tempera-
ture mixing in a single gas with kinetic heating. Equa-
tion �7� involves terms �a�, �b�, and �c�.

In the most general case, the physical properties of the
fluid depend on the values of the state variables and concen-
tration. A precise definition of the fluid or mixture considered
is needed prior to the use of accurate variation laws. In order
to be as generic as possible, we shall adopt simple first ap-
proximations that will be detailed below for each of the three
situations under study.

III. SIMILARITY SOLUTIONS

In this section, we look for self-similar solutions intro-
ducing the similarity variable 	=z /
�t�, where 
�t� is some
characteristic thickness of the mixing layer at time t. Noting
that the boundary conditions when 	→ ±� for �� ,T ,U ,C�
do not depend on t, we look for self-similar solutions of the
form

� = �0�̂�	�, T = T0�̂�	�, U = U0û�	� , and C = ĉ�	� ,

where �0, T0, and U0 are constant density, temperature, and
velocity characteristic scales, respectively. Conversely, we

introduce the two remaining similarity functions through the
following relations:

W = W0�t�ŵ�	�, P − P� = P0�t�p̂�	� ,

where the velocity �W0� and pressure �P0� characteristic
scales are allowed to vary with time.

Some results, common to the three configurations, can
be readily found. If we write the continuity equation �2� and
the streamwise momentum equation �3� in their self-similar
forms, we get

−

̇

W0
	�̂� + ��̂ŵ�� = 0, �8�

−

̇

W0
	��̂û�� + ��̂ŵû�� =

�

�0W0

û�, �9�

where the prime and the dot denote differentiation with re-
spect to 	 and t, respectively. Self-similarity then requires

that �1= 
̇ /W0 and �2=� / ��0W0
� remain constant. The lat-
ter can be considered as the inverse of a reference Reynolds
number �based on the reference quantities W0 and 
�, which
should not be confused with the actual transverse Reynolds
number �based on the actual width of the layer, and the
transverse-velocity amplitude across�. In the following, the
reference Reynolds number �1/�2� will be given the same
value whatever the density ratio and Mach number are, while
the actual Reynolds number will vary as a result of the cal-
culations. Now, by subtracting Eq. �8� from Eq. �9� and after
simplification, these two equations can be replaced by

�̂��− �1	 + ŵ� = − �̂ŵ�,

�̂û��− �1	 + ŵ� = �2û�.

This form gives immediate information on the extremum of
the transverse velocity component: setting ŵ� to zero in the
first equation, we find that the extremum is located at a value
of 	 such that

	 = ŵ�	�/�1. �10�

When this result is injected in the second equation, it appears
that u��	� is simultaneously zero. In other words, maximum
deflection coincides with the inflection point of the �longitu-
dinal� velocity profile. Equation �10� also shows that the ve-
locity profile—referenced with the location of its inflection
point—does not remain centered: the shift from the origin
amounts to

ŵmax
/�1,

or equivalently,

Wmax
/
̇ .

From the first expression, we conclude that the shift in-
creases at the same rate as 
 and appears, therefore, as a
continuous time drift of the shear layer. The second expres-
sion shows that its direction follows directly from that of the

deflection—since 
 / 
̇ is obviously positive.
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A relation similar to Eq. �10� was obtained by Pantano
and Sarkar6 in the self-similar analysis of the turbulent case.
Note, however, that the drift was not defined with reference
to the inflection point of the velocity profile, but to the point
of zero velocity. Pantano and Sarkar6 also indicated that the
drift is always directed toward the light fluid—a conclusion
that will be confirmed below for our case, but that we cannot
draw at this stage.

A. Low-speed binary mixing

The first case under study is the isothermal mixing of
two incompressible fluids. In this situation, the only source
of deflection comes from molecular mass transfer. At this
stage, we have to introduce some assumptions regarding the
physical properties of the mixture. First, we note that, ac-
cording to the Chapman-Enskog formula �see, for example,
Bird, Stewart, and Lightfoot13�, the mass-diffusivity coeffi-
cient D does not depend on concentration. Second, according
to Wilke’s formula �see also Bird, Stewart, and Lightfoot13�,
the viscosity � of the mixture depends mainly on tempera-
ture and only loosely on concentration. We shall therefore
assume that both diffusion coefficients are constant in our
problem �as well as their ratio given by the global Schmidt
number Sc=��0

−1D−1�.
Now, the mass fraction C of fluid A can be linked to the

density of the mixture, and the equation of state �1� simpli-
fies to

� =
�A − �B

�A
�C + �B.

This equation together with Eqs. �2�–�5� fully define the
problem. Introducing the Atwood number A= ��B−�A� / ��B

+�A� and setting �0 to ��B+�A� /2, the self-similar form of
the governing system can be written as

�̂�2Aĉ + 1 − A� = 1 − A2, �11�

− �1	�̂� + ��̂ŵ�� = 0, �12�

− �1	��̂ĉ�� + ��̂ŵĉ�� = �2��̂Sc−1ĉ���, �13�

− �1	��̂û�� + ��̂ŵû�� = �2û�, �14�

− �1	��̂ŵ�� + ��̂ŵ2�� + �3�̂ŵ =
4

3
�2ŵ� − �4p̂�, �15�

with �3=
Ẇ0 /W0
2 and �4= P0 / ��0W0

2�. It is to be solved sub-
ject to the boundary conditions given in Table I. It is now
required that �1–�4 be constants, which gives the time-
dependent characteristic scales of the problem in the follow-
ing forms:


�t� =�2
�

�0

�1

�2
t, W0�t� =� �

2�0�1�2
t−1, �16�

and

P0�t� =
��4

2�1�2
t−1. �17�

The values of the � coefficients can be chosen arbitrarily,
provided that �1 and �2 have the same sign, and that �3

=−�1. From Eqs. �16� and �17�, we can conclude that the
width of the mixing layer increases as the square root of
time, while the amplitude of the deflection decreases as its
inverse.

In order to proceed with the solution of the spatial prob-
lem, we notice that Eqs. �11�–�13� can be solved for ��̂ , ĉ , ŵ�
independently of Eqs. �14� and �15�. Using Eq. �11� to write
ĉ as a function of �̂, substituting this expression in Eq. �15�,
and subtracting Eq. �8�, we find

ŵ� +
�2

Sc
	 �̂�

�̂

�

= 0 ⇔ ŵ +
�2

Sc

�̂�

�̂
= const.

Obviously, the constant must be zero in order to satisfy the
initial conditions at infinity. We can then write �̂ŵ
=−�2�̂� /Sc and inject this quantity into Eq. �8� to find

�1	�̂� +
�2

Sc
�̂� = 0. �18�

Integration is straightforward; the expressions of ŵ and ĉ
follow. Integration of Eq. �15� can then be easily performed
to give the solution for p̂. Taking, arbitrarily,

�1 = 2, �2 = Sc, �3 = − 2, and �4 = 1,

the final expressions read

�̂ = 1 + A erf 	 , �19�

ŵ = −
2A
�

exp�− 	2�
1 + A erf 	

, �20�

ĉ =
1 − A

2

1 − erf 	

1 + A erf 	
, �21�

p̂ = −
4A
�

	 exp�− 	2� −
4A2



exp�− 2	2�
1 + A erf 	

+ Sc
16A
3

exp�− 	2�
�1 + A erf 	�2

���	�1 + A erf 	� + A exp�− 	2�� . �22�

TABLE I. Initial and boundary conditions for the self-similarity analysis
�with A= ��B−�A� / ��B+�A�, T0= �TB+TA� /2, and �0= ��B+�A� /2�.

Variable

Boundary conditions Initial conditions

z→−� z→ +� z�0 z�0

ĉ 1 0 1 0

�̂ 1+A 1−A 1+A 1−A
�̂ 1−A 1+A 1−A 1+A
û −1 1 −1 1

ŵ ŵ�=0 ŵ�=0 0 0
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Unfortunately, a closed-form solution for û is not obvi-
ous, and numeric integration of Eq. �14� will be needed to
obtain the evolution of the longitudinal velocity component.

B. Low-speed thermal mixing

We now consider the mixing layer between two flows of
the same fluid with different temperatures. We assume that
the dissipation can be neglected �low Mach number� and that
the density of the fluid only depends on the temperature
�purely dilatable gas�. The only source for flow divergence is
now viscous diffusion. Usually, the viscosity � and thermal
diffusivity � both depend on temperature, their ratios—
proportional to the Prandtl number Pr=�Cp /�—remaining
approximately constant. However, we shall consider for sim-
plicity that both diffusivities remain constant.

In this situation, we use the following equation of state:

�T = �ATA = �BTB.

Setting T0 to �TA+TB� /2, the self-similar form of the govern-
ing system becomes

�̂�̂ = 1 − A2, �23�

− �1	�̂� + ��̂ŵ�� = 0, �24�

− �1	��̂�̂�� + ��̂ŵ�̂�� = �2�Pr−1�̂���, �25�

− �1	��̂û�� + ��̂ŵû�� = �2û�, �26�

− �1	��̂ŵ�� + ��̂ŵ2�� + �3�̂ŵ = 4
3�2ŵ� − �4p̂�. �27�

It is to be solved subject to the boundary conditions given in
Table I, and with the same definitions of the � coefficients as
in the previous case. The time-dependent characteristic
scales of this problem are thus still given by relations �16�
and �17�.

Here again, we notice that the subsystem �23�–�25� can
be solved independently. With the same kind of algebra as in
Sec. III A, we can obtain a simple differential equation for
the density,

�1	�̂� +
�2

Pr
	 �̂�

�̂

�

= 0. �28�

This equation is the analog of Eq. �18�, obtained in the pre-
vious case. The main difference comes from the fact that the
Prandtl number is a constant, whereas, in the case of binary
mixing, its equivalent �the local Schmidt number �c=Sc/ �̂�
varies as the inverse of the density. This difference prevents
one from giving a closed-form solution to Eq. �28�. How-

ever, the solutions for �̂, ŵ, and p̂ directly follow from the
solution for �̂: Taking

�1 = 2, �2 = Pr, �3 = − 2, and �4 = 1

�the same as above except for �2�, we find that

�̂ =
1 − A2

�̂
, ŵ = −

�̂�

�̂2 , �29�

and

p̂ = 2	�̂ŵ − �̂ŵ2 +
4Pr

3
ŵ�, �30�

while the determination of the longitudinal velocity compo-
nent still needs a numeric integration of Eq. �26�.

C. High-speed thermal mixing

In the last case under study, we again consider the mix-
ing layer between two flows of the same fluid and different
temperatures, but the longitudinal velocity component is now
high enough for kinetic heating to be significant. It follows
that the dependence of the density on pressure cannot be
neglected a priori, and all the possible sources of divergence
for a single gas must be considered.

Still assuming that both the viscosity � and thermal dif-
fusivity � do not depend on temperature, and using the ideal-
gas equation of state P=�RT, the governing system can be
cast under the following self-similar form:

�̂�̂ = 1 − A2 + �4�Mw
2 p̂ ,

− �1	�̂� + ��̂ŵ�� = 0,

− �1	��̂�̂�� + ��̂ŵ�̂�� = �2��Pr−1�̂��� − �� − 1��̂�̂ŵ�

+ �2��� − 1��Mu
2û�2 +

4

3
Mw

2 ŵ�2� ,

− �1	��̂û�� + ��̂ŵû�� = �2û�,

− �1	��̂ŵ�� + ��̂ŵ2�� + �3�̂ŵ =
4

3
�2ŵ� −

�1

�Mw
2 p̂�,

where the energy equation has been taken under its internal-
energy form, and the longitudinal and transverse Mach num-
bers are defined by

Mu
2 =

U0
2

�RT0
and Mw

2 =
W0

2

�RT0
.

With our definitions of the characteristic temperature and
streamwise velocity scales, Mu corresponds to the convective
Mach number. Self-similarity now requires that both Mach
numbers remain constant, as well as the previously defined �
coefficients. Taking Mw and �1 as constants leads to 

=const, which is obviously unacceptable. We can thus con-
clude that there is no general self-similar solution to this
problem. However, considering that the transverse velocity
should be small as compared to the speed of sound, we shall
study the limiting case in which Mw goes to zero. The con-
ditions on the � coefficients then lead to evolutions of the
time-dependent characteristic scales, which are similar to re-
lations �16� and �17�. These are rewritten in the form


 = 	
1
2 +

2�

�0

�1

�2
�t − t1�
1/2

, �31�

P0 = �4	 1

�0W1
2 +

2�1�2

�
�t − t1�
−1

, �32�
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W0 = 	 1

W1
2 +

2�0�1�2

�
�t − t1�
−1/2

, �33�

where 
1 is the characteristic thickness of the mixing layer at
time t1 and W1=� / ��0
1�2�. Introduction of the reference at
t= t1 follows from the fact that, according to relation �33�, the
value of W0 can be seen to decrease as time proceeds. The
hypothesis on the transverse Mach number will therefore be
satisfied for t� t1 if t1 is sufficiently large, and our solution
appears to approximate the evolution of the high-speed ther-
mal mixing layer at large times. In this regime, the transverse
momentum equation reduces to p̂�=0, and the self-similar
form of the governing system becomes

�̂�̂ = 1 − A2 �� p̂� , �34�

− �1	�̂� + ��̂ŵ�� = 0, �35�

�2�Pr−1�̂��� − �1 − A2�ŵ� = − �2�� − 1�Mu
2û�2, �36�

− �1	��̂û�� + ��̂ŵû�� = �2û�. �37�

A solution to these equations along with the boundary con-
ditions given in Table I cannot be obtained in closed form.
However, some information on the deflection is available at
this stage: Integrating Eq. �36� across the layer, and assuming
that the temperature gradients vanish when 	 goes to ±�,
leads to

ŵB − ŵA = �2
� − 1

1 − A2 Mu
2�

−�

+�

û�2d	 . �38�

The right-hand side of this relation cannot be zero as soon as
Mu is nonzero. As a consequence, ŵB is necessarily higher
than ŵA, the difference being proportional to the total amount
of dissipation in the flow. The physical mechanism at work is
easy to understand: Overheating in the core of the mixing
layer is responsible for the dilatation of the fluid there, and
subsequent generation of transverse velocity toward the outer
parts of the flow. Transport by this transverse velocity com-
ponent should contribute to the growth rate of the mixing
layer—which usually results from purely diffusive transport.
We shall refer to this effect as advective growth in the fol-
lowing. Note that advective growth should not be confused
with entrainment �observed in space-evolving mixing lay-
ers.�

The integral constraint �38� further shows that the trans-
verse velocity component cannot be simultaneously zero at
	= ±�. Moreover, it can be readily seen that changing ŵ into
ŵ+w0 and 	 to 	+w0 /�1 leaves the system �34�–�37� un-
changed whatever the �constant� value of w0 is. Since the
solution is only valid at large times, we do not have any
reason to choose one value or another for w0 �such a value
should be deduced from the initial condition�, and we shall
impose without any loss of generality that ŵA=−ŵB.

IV. RESULTS

In order to fully solve the three self-similar problems
presented in the preceding section, we need to resort to vari-
able amounts of numeric integration:

• of Eq. �14�, for the case of binary mixing;
• of Eqs. �28� and �26�, for the case of low-speed thermal

mixing;
• of Eqs. �34�–�37�, for the case of high-speed thermal

mixing.

These ordinary differential equations are discretized using
second-order finite-difference schemes, and then iterated un-
til convergence. The size of the computational domain is
roughly twice that of the mixing layer, and we use 600 points
across the full domain �half that number of points gives vir-
tually the same results�. The calculations have been per-
formed with

Pr = Sc = 0.7 and � = 1.4.

The values adopted for the Prandtl number and specific-heat
ratio are those applicable to air at the temperature and pres-
sure normal conditions. For the Schmidt number, a value of
order unity—applicable to ordinary gaseous mixtures—has
been chosen. We have further set Pr=Sc in order to keep the
same definitions of the time-dependent characteristic scales
in either binary and thermal mixing, and ease the comparison
between the two cases.

The evolutions of the main flow quantities are reviewed
in the following paragraphs for the three configurations un-
der study.

A. Transverse velocity component

The most specific feature of the variable-density mixing
layer is flow deflection. For this reason, we start with an
examination of the transverse component of the velocity pro-
file in Fig. 1. For each of the three configurations, the pro-
files are plotted for a wide range of density ratios �B /�A

=1,3 ,7 ,15,31 �corresponding to A=0,0.5,0.75,0.875,
0.9375� in Figs. 1�a�–1�c�.

In the cases of low-speed binary and thermal mixing, the
deflected region is �asymptotically� confined in the center of
the mixing layer, and the effect of the density ratio is to
increase its extent as well as the value of the deflection. As
indicated by Eqs. �20� and �29�, deflection is directed toward
the light side of the flow. Moreover, the thickening of the
deflected region when A increases seems to occur at the light
edge of this region. This can be explained in the case of
binary mixing by setting A to unity �its maximum value� in
the exact solution �20�. The resulting expression,

ŵ = −
2

�

exp�− 	2�
1 + erf 	

, �39�

is singular toward the light side of the flow �	→−��, but
remains defined above where it constitutes the limiting curve
for the velocity profiles when the density ratio increases. One
can observe the same kind of behavior in the case of low-
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speed thermal mixing, but an exact expression of the limiting
curve cannot be given in this configuration.

In the case of high-speed thermal mixing �Fig. 1�c��, a
global deflection is superimposed onto the “local” deflection
observed in the low-speed cases. It is apparent on the plots
from the nonzero asymptotic values of the velocity as 	
→ ±�, while the “local” deflection �of diffusive nature, see
terms �c� and �d� of Eq. �7�� can still be observed in the
negative-	 region with a local maximum oriented toward the
light side of the flow. In agreement with its dilatational ori-
gin, the global deflection is oriented from the center of the
layer toward the upper and lower free streams. Interestingly,
it is amplified by an increase in the density ratio, even if the
value of the Mach number remains constant. This is obvi-
ously due to the presence of the term �1−A2� in the right-end
side of Eq. �38�.

The transverse velocity profiles obtained for different
values of the Mach number and the same value of the At-
wood number have been plotted in Fig. 1�d�. The increase of
the global deflection with increasing Mach number is appar-
ent. A slight decrease in the maximum of the “diffusive”
deflection can be observed at the same time so that �for A
=0.75 and Mu=2 for instance� the velocity profile can expe-
rience a local minimum at the light side of the flow, the
absolute value of the deflection being higher in the free
stream than in the center of the layer.

B. Density

The density profiles obtained in the case of binary mix-
ing and different values of the Atwood number are plotted in
Fig. 2�a�. They are centered at 	=0 and symmetric across
the mixing layer, in agreement with the exact solution �19�.

These properties are lost in the case of low-speed ther-
mal mixing �see Fig. 2�b��. The profiles seem to drift toward
the heavy side of the flow, the drift being enhanced with
increasing values of the Atwood number. The self-similar
equations can be used to confirm this observation: Setting ��
to zero in Eq. �28� and using the expression of w as a func-
tion of � in Eq. �29� leads to 	=−ŵ /2 at the inflection point
of the density profile. Since ŵ is negative everywhere in the
mixing layer, we can conclude that 	 is positive at the in-
flection point of the density profile. On the other hand, the
loss of symmetry is easy to understand considering that the
product Pr−1�̂−1 acts as a diffusion coefficient in Eq. �28�
and, therefore, increases with decreasing �̂. Consistently, the
density profile appears as “smoother” toward the light edge
of the mixing layer.

In the case of high-speed thermal mixing �Fig. 2�c��, the
same observations can be made. The drift of the density pro-
file is still present, but significantly enhanced by advective
growth. �The inflection point of the density profile is moved
slightly above the axis, maximum heat release due to dissi-
pation coinciding with the inflection point of the velocity

FIG. 1. Profiles of the transverse ve-
locity component across the mixing
layer. �a� Low-speed binary mixing,
�b� low-speed thermal mixing, and �c�
high-speed thermal mixing at Mu=1.4,
with different values of the Atwood
number. A=0,0.5,0.75,0.875,
0.9375. On each plot, the arrow indi-
cates increasing values of A and con-
nects the points of maximum deflec-
tion in agreement with relation �10�;
the dashed line in plot �a� corresponds
to Eq. �39�. �d� High-speed thermal
mixing with A=0.75 and different val-
ues of the Mach number: Mu

=0,1 ,1.5,2.
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profile, i.e., well below the axis.� The Mach-number effect
can be examined in Fig. 2�d�. The drift of the profile is en-
hanced when the Mach number increases; this is obviously
due to increasing advective growth.

C. Concentration and temperature

In order to compare the binary and thermal mixing con-
figurations, we introduce a new similarity variable c̃ derived
from the concentration and such that

c̃ = 2Aĉ + 1 − A .

This “pseudo” concentration plays strictly the same role in
the equation of state �11� for binary mixing as the tempera-
ture in the equation of state �23� for low-speed thermal mix-
ing. Moreover, an equation for c̃ is easily derived from Eq.

�13�, which has the same structure as Eq. �25� for �̂ �except
for the difference in diffusion coefficients already men-

tioned�. Finally, note that c̃ and �̂ share the same boundary
conditions:

c̃�− �� = �̂�− �� = 1 + A

and

c̃�+ �� = �̂�+ �� = 1 − A .

All of this is an incitement to compare the pseudoconcentra-
tion and temperature profiles, as we do in Fig. 3.

When the pseudoconcentration profiles obtained in the
case of binary mixing �Fig. 3�a�� and the temperature profiles
obtained in the case of low-speed thermal mixing �Fig. 3�b��
are considered, it appears that all of them drift toward the
light edge of the mixing layer. As for the other flow quanti-
ties, the drift is increased with increasing Atwood numbers.
With the same kind of algebra as that used for the density
profiles, it is a simple matter to show that the inflection point
of the concentration profile is located at a value of 	 such
that 	= ŵ, and that the inflection point of the temperature
profile is located at 	 such that 	= ŵ /2. Both values are
obviously negative and increase in magnitude with the At-
wood number �since the transverse velocity does�. On the
other hand, the variations in the width of the mixing layer
with increasing Atwood number appear as fairly different in
the two cases. In the case of thermal mixing, the width of the
layer increases significantly as the Atwood number increases.
The way this thickening proceeds—mainly at the light edge
of the layer—is reminiscent of the evolution of the transverse
velocity component, so that the thickening of the mixing
region can most presumably be attributed to increased de-
flection. In the case of binary mixing, the deflection also
increases with the Atwood number. In this case, however, the
diffusion coefficient for concentration is proportional to den-
sity �see Eq. �5��, so that diffusion at the light edge decreases
as the Atwood number increases. As a result, the effect of

FIG. 2. Density profiles across the
mixing layer. �a� Low-speed binary
mixing, �b� low-speed thermal mixing,
and �c� high-speed thermal mixing at
Mu=1.4, with different values of the
Atwood number. A=0.5,0.75,0.875,
0.9375. �d� High-speed thermal mix-
ing with A=0.75 and different values
of the Mach number: Mu=0,1 ,1.5,2.
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FIG. 4. Profiles of the longitudinal ve-
locity component across the mixing
layer. �a� Low-speed binary mixing,
�b� low-speed thermal mixing, and �c�
high-speed thermal mixing at Mu=1.4,
with different values of the Atwood
number. A=0.5,0.75,0.875,0.9375.
�d� High-speed thermal mixing with
A=0.75 and different values of the
Mach number: Mu=0,1 ,1.5,2.

FIG. 3. Concentration or temperature
profiles across the mixing layer. �a�
Low-speed binary mixing, �b� low-
speed thermal mixing, and �c� high-
speed thermal mixing at Mu=1.4, with
different values of the Atwood num-
ber. A=0.5,0.75,0.875,0.9375. �d�
High-speed thermal mixing with A
=0.75 and different values of the
Mach number: Mu=0,1 ,1.5,2.
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reduced diffusion counteracts the effect of increased deflec-
tion and the width of the layer barely varies �actually de-
creases, see Sec. IV F�.

As compared to the low-speed case, the shift observed in
the situation of high-speed thermal mixing seems to be re-
duced �Fig. 3�c��, it even appears to be positive for A=0.5
and Mu=1.4. This is a direct consequence of the overheating
by viscous dissipation that takes place in the middle of the
mixing layer. This phenomenon is well evidenced in Fig.
3�d�, which shows that, with the same value of the Atwood
number, increasing the Mach number leads to the appearance
of a local maximum and a reduction of the observed drift.

D. Streamwise velocity component

The profiles of the longitudinal velocity component
across the flow are plotted in Fig. 4 for the three configura-
tions and different Atwood and Mach numbers. In the case of
a constant-density mixing layer, the velocity profiles should
be centered and symmetrical. Both properties are lost in the
three configurations of variable-density mixing layers stud-
ied here. In agreement with the similarity analysis, the pro-
files can be seen to drift more and more toward the light side
of the flow with increasing Atwood numbers. Also obvious
in the figure is the thickening of the shear layer at the same
time. As previously observed from the temperature profiles,
this thickening occurs mainly at the light edge of the layer,
and likely results from increased deflection. Finally, the

Mach-number effect can be observed in Fig. 4�d�: increasing
the value of this number also leads to a moderate thickening
of the shear layer.

E. Streamlines

Plots of the streamlines obtained at any time in the three
configurations under study are presented in Fig. 5. The pres-
ence of a deflected layer in the low-speed configurations, as
well as that of a global flow deflection in the high-speed
configuration, are the most striking features of these plots.
Another important point is that, for all three configurations
and as soon as the Atwood number is nonzero, one can ob-
serve that heavy fluid is deflected toward the light side of the
flow before being entrained backwards with the lower free
stream. In a time-dependent flow like this, streamlines are
indeed not fully representative of the real flow motion; how-
ever, we have calculated the trajectories of the fluid particles,
and the plots �not reported here� definitely confirm such a
change in the direction of the flow motion. Note also that, in
the low-speed cases, all the initially heavy fluid particles will
experience such a change in their flow direction at more or
less long term. On the other hand, when kinetic heating is
present, Fig. 5�c� shows that this phenomenon only applies to
a limited region of the initially heavy fluid, comprised be-
tween 	=0 and the point where ŵ changes sign. Figure 1�c�
showed that this point is located above the x axis, rises up
with increasing Atwood number, but obviously reaches some

FIG. 5. Instantaneous streamlines in
the mixing layer. �a� Low-speed binary
mixing with A=0.75, �b� low-speed
thermal mixing with A=0.75, �c�
high-speed thermal mixing with A
=0.75 and Mu=1.4, and �d� high-
speed thermal mixing with A=0 and
Mu=1.4. The dotted line corresponds
to the z=0 axis, and the scale ratio be-
tween the x and z axis is arbitrary.
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finite limit �the highest value of the Atwood number used in
Fig. 1�c� is about 0.94, which correspond to a density ratio as
high as 31�. A consequence of these observations is that the
notion of dividing streamline for variable-density mixing lay-
ers can be considered as meaningful only if kinetic heating is
present. Moreover, in this case, it does not delimit the ini-
tially heavy fluid from the lighter one, but only some part
of it.

The global deflection associated with kinetic heating can
be observed in Figs. 5�c� and 5�d�, where it is evidenced by
a “tilting” of the velocity field �especially apparent in the
free stream.� Comparison of Figs. 5�c� and 5�d�, where the
Mach number is the same and the Atwood number has been
set to zero in the latter, illustrates that the global deflection is
reduced with decreasing Atwood numbers. Such tilts obvi-
ously arise from the choice ûB=−ûA�=1� and ŵB

=−ŵA�=�w /2�, and one may wonder how the global deflec-
tion would appear in a coflowing mixing layer with ûB� ûA

�1. The question can be answered by considering the trans-
lational invariances of the problem: As stated in Sec. III C,
the coflowing mixing layers defined by

ûB = uc + 1, ûA = uc − 1

and

ŵB = w0 + �w/2, ŵA = w0 − �w/2,

with uc�1, are strictly equivalent to those computed above
whatever the value of w0 is. Now, taking w0=uc�w /2 can-
cels the “tilting” of the velocity field in the high-speed ther-
mal mixing case since, with such a choice, ŵB / ûB=−ŵA / ûA.
The corresponding streamline pattern is plotted in Fig. 6 for
the same flow as that illustrated in Fig. 5�d�. One can see that
the dividing streamline has moved toward the light side of
the layer, thus indicating a global drift of the mixing/shear

layer as time goes on �given by a fixed fraction of 
̇�t��. As a
conclusion, we can consider that the global deflection ob-
served in high-speed thermal mixing can manifest itself ei-
ther by a tilting of the velocity field or by a global drift of the

layer. Hence, it can be conjectured that the drift toward the
light side of the flow observed in space-evolving mixing lay-
ers could be a combination of this global drift �Mach-number
effect� and the drift between the density and longitudinal-
velocity profiles �mixing effect�.

F. Density-ratio and Mach-number effects

In this section, we are interested in the influences of the
density ratio and Mach number on the time evolution of the
mixing layer. The vorticity and momentum thicknesses �
�

and 
�� are commonly used to study the spreading rate of the
shear layer. They are defined by


� = 2U0� �U

�z
�

max

−1

and


� =
1

4�0U0
2�

−�

+�

��U0 + U��U0 − U�dz .

Introducing the similarity variables and taking the time de-
rivatives of these quantities give the expressions of the cor-
responding spreading rates,


̇� = 
̇ �
2

ûmax�
and 
̇� = 
̇ �

1

4
�

−�

+�

�̂�1 − û2�d	 .

As mixing is concerned, we also introduce conventional
thicknesses based on the concentration and temperature pro-
files: 
C and 
T. These are defined as the distance between
the points where the concentration goes from 0.1 to 0.9 for
the former, and between the points where the temperature
goes from TA−0.1�TA−TB� to TA−0.9�TA−TB� for the latter.
The corresponding expressions of the spreading rates can be
written as


̇C = 
̇ � �	C=0.9 − 	C=0.1�

and


̇T = 
̇ � �	�̂=1−0.8A − 	�̂=1+0.8A� .

The spreading rates normalized by their constant-density
value are plotted against the density ratio in Fig. 7 for the
situations of low-speed binary and thermal mixing. In both
cases, the momentum thickness can be seen to decrease with
increasing values of the density ratio. The spreading rates
based on the conventional �nonintegral� thicknesses exhibit a
different behavior: While those based on the vorticity and
temperature increase with the density ratio, the spreading
rate based on the concentration decreases. This result con-
firms the conclusion drawn from the inspection of the con-
centration and temperature profiles in Sec. IV C, according
to which the difference in the behaviors of the spreading
rates should be attributed to the form of the diffusion coef-
ficients: constant for the velocity and temperature, and pro-
portional to density for the concentration.

Also plotted in Fig. 7 is a measure of the shear-layer
drift. This quantity is denoted as h and defined as the dis-
tance between the inflection points of the density and veloc-
ity profiles. In the case of binary mixing, the density profile

FIG. 6. Instantaneous streamlines in the coflowing mixing layer �ûc=3�.
High-speed thermal mixing with A=0 and Mu=1.4. The dotted line corre-
sponds to the z=0 axis, and the scale ratio between the x and z axis is
arbitrary.
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remains centered so that h reduces to �minus� the z coordi-
nate of the velocity-profile inflection point. When scaled by
the value of the vorticity thickness �at the same density ra-
tio�, the drift can be seen to increase with the density ratio.
Most of the increase is achieved before �B /�A15; for
higher values of the density ratio, the scaled drift remains
nearly constant �in fact, very slowly decreasing�. In the situ-
ation of low-speed thermal mixing, the inflection point of the
density profile is slightly above the axis �see Fig. 2�b�� and
marginally contributes to the value of h. When scaled by the
vorticity thickness, the drift is more than twice that observed
for binary mixing, and it steadily increases with the density
ratio.

The spreading rates obtained in the case of high-speed
thermal mixing are plotted as functions of the Mach number
in Fig. 8. The density ratio is set to unity and the spreading
rates are normalized with their zero-Mach-number value.
Here also, we notice the difference in the behavior of the

integral �momentum� and conventional �vorticity� thick-
nesses: The former decreases with the Mach-number value,
whereas the latter increases.

Specific to the high-speed case is the presence of global
deflection, a measure of which can be the absolute value of
the similarity variable ŵ at infinity. This quantity is also plot-
ted in Fig. 8; it can be seen to increase significantly with the
Mach-number value. An appropriate rescaling of the plot
would show that such an increase follows closely that of the
vorticity thickness, so that the evolution of the spreading rate
in this situation can obviously be attributed to advective
growth.

V. CONCLUSION

Studying the case of the laminar time-evolving mixing
layer provides basic information on the way variable density
influences simple shear flows. Specific to the variable-
density configuration is the generation of a transverse veloc-
ity field. Equation �7� for the divergence of the velocity field
shows that such a deflection of the flow may result from
either diffusive effects �mass or temperature mixing, term �c�
or �d� of Eq. �7��, or dissipative effects �kinetic heating, term
�b� of Eq. �7��.

In the first case, the homogenization of density due to
the diffusive effects in the core of the mixing layer induces a
macroscopic mass transfer from the heavy side of the flow
toward its light side. Deflection of the flow results in some
remarkable consequences: First, it directly produces a shift
between the density and streamwise-velocity profiles: it
could be said that the “shear layer” progressively drifts away
from the “mixing layer.” Second, the transverse motion su-
perimposed onto the main flow causes initially heavy fluid
particles to be entrained backwards into the light stream.
Finally, transport by the transverse velocity component is
responsible for the thickening of the layer with increasing
density ratio. In the case of binary mixing, where the value
of the mass diffusivity per unit mass is a constant, the last
effect is countered by the lessening of the diffusion coeffi-
cient at the light edge of the layer. It is important to note that,
in such a situation, growth rates based on different variables

FIG. 7. Evolutions of the spreading
rates and drift as functions of the den-
sity ratio. �a� Low-speed binary mix-
ing. �b� Low-speed thermal mixing.
The spreading rates are normalized by
their constant-density value ��B /�A

=1�, and the drift by the vorticity
thickness.

FIG. 8. Evolutions of the spreading rates and global deflection as functions
of the Mach number. The spreading rates are normalized by their value at
Mu=0. The deflection is quantified by the absolute value of the transverse
velocity at infinity, normalized by the time-dependent velocity scale W0.

103601-12 Bretonnet et al. Phys. Fluids 19, 103601 �2007�

Downloaded 03 Oct 2007 to 192.70.110.24. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



can exhibit opposite behaviors when the density ratio in-
creases: the “mixing-layer” thickness can decrease while the
“shear-layer” thickness increases.

When dissipation effects at high convective Mach num-
ber are considered, the dilatation effects due to heat release
in the sheared region produce a global deflection with trans-
verse velocities pointing from the core of the layer toward
the heavy and light free streams, respectively. When the mix-
ing layer between counterflowing streams is considered, this
global deflection produces a tilting of the layer. However, in
a coflowing mixing layer, it would produce a global drift of
the mixing/shear layer toward the light side. In both cases,
the thickening of the shear layer with increasing Mach num-
bers strictly corresponds to transport by the transverse veloc-
ity component �of dilatational origin� from the core of the
flow.

To sum up, and with reference to the constant-density
case, the variations in the growth rates observed in variable-
density mixing layers originate from advective contributions
superimposed onto the classical diffusive-growth mecha-
nisms �observed in constant- and variable-density mixing
layers, and directly linked to the diffusion terms present in
the transport equations�. Hence, we refer to this phenomenon
as advective growth, specific to the variable-density
situation.

Clarification of these issues should be useful in the
analysis of more complex configurations. The space-
evolving mixing layer is one instance of such flows; in this
case, the transverse motion is usually associated with en-
trainment, but variable density obviously adds the specific
contributions considered here. Investigating the mutual influ-
ences of entrainment and advective growth is likely to help
the understanding of the physics involved in this flow. The
case of the turbulent mixing layer is another instance in
which the present analysis should be useful. Indeed, self-
similarity cannot be assumed in this case �see, for instance,
the discussion by de Bruyn Kops and Riley14�, but turbulent
diffusion and dissipation play qualitatively the same role as
molecular diffusion and dissipation in the generation of the
transverse motion. The simulation data of Pantano and
Sarkar6 as well as their self-similar analysis of the turbulent
mixing layer did exhibit drift and deflection. From the mod-
eling point of view, the effect on the growth rates of the
density dependence of the diffusion coefficients is probably a
crucial issue. Catris and Aupoix15 mentioned that point when

dealing with the diffusion coefficients in the closure-
quantities transport equations.

ACKNOWLEDGMENTS

The authors are indebted to an anonymous referee for
pointing out the equivalence between tilting and global drift
in the case of high-speed mixing; numerous suggestions for
improvement of the paper are also acknowledged.

This work has been supported by the French Ministry of
Education and Research and Ministry of Defense through
Grant No. 03T590 and Contract No. DGA-DSP/ENSICA 03,
respectively.

1G. L. Brown and A. Roshko, “On density effects and large structures in
turbulent mixing layers,” J. Fluid Mech. 64, 775 �1974�.

2D. Bogdanoff, “Compressibility effects in turbulent shear layers,” AIAA J.
21, 926 �1983�.

3G. L. Brown, “The entrainment and large structure in turbulent mixing
layers,” in Proceedings of the Fifth Australasian Conference on Hydraulics
and Fluid Mechanics �University of Canterbury, Christchurch, New
Zealand, 1974�, Vol. 1, pp. 352–359.

4P. E. Dimotakis, “Two-dimensional shear layer entrainment,” AIAA J. 24,
1791 �1986�.

5A. W. Vreman, N. D. Sandham, and K. H. Luo, “Compressible mixing
layer growth rate and turbulence characteristics,” J. Fluid Mech. 320, 235
�1996�.

6C. Pantano and S. Sarkar, “A study of compressibility effects in the high-
speed turbulent shear layer using direct simulation,” J. Fluid Mech. 451,
329 �2002�.

7A. Sanchez, M. Vera, and A. Linan, “Exact solutions for transient mixing
of two gases of different densities,” Phys. Fluids 18, 078102 �2006�.

8F. Kozusco, C. E. Grosch, T. L. Jackson, C. A. Kennedy, and T. B. Gatski,
“The structure of variable property compressible mixing layers in binary
gas mixtures,” Phys. Fluids 8, 1945 �1996�.

9N. Lardjane, I. Fedioun, and I. Gökalp, “Accurate initial conditions for the
direct numerical simulation of temporal compressible binary shear layers
with high density ratio,” Comput. Fluids 33, 549 �2004�.

10P. Chassaing, R. A. Antonia, F. Anselmet, L. Joly, and S. Sarkar, Variable
Density Fluid Turbulence �Kluwer Academic, Dordrecht, 2002�.

11P. Chassaing, “Some problems on single-point turbulence modeling of
low-speed variable-density fluid motion,” in IUTAM Symposium on Vari-
able Density Low-Speed Turbulent Flows, edited by L. Fulachier, J. L.
Lumley, and F. Anselmet �Kluwer Academic, Dordrecht, 1997�, pp. 65–
84.

12S. K. Lele, “Flows with density variations and compressibility: Similari-
ties and differences,” in IUTAM Symposium on Variable Density Low-
Speed Turbulent Flows, edited by L. Fulachier, J. L. Lumley, and F. Ansel-
met �Kluwer Academic, Dordrecht, 1997�, pp. 279–301.

13R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena
�Wiley International, New York, 1960�.

14S. M. de Bruyn Kops and J. J. Riley, “Re-examining the thermal mixing
layer with numerical simulations,” Phys. Fluids 12, 185 �2000�.

15S. Catris and B. Aupoix, “Density corrections for turbulence models,”
Aerosp. Sci. Technol. 4, 1 �2000�.

103601-13 Deflection, drift, and advective growth Phys. Fluids 19, 103601 �2007�

Downloaded 03 Oct 2007 to 192.70.110.24. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp


