
Design, implementation and evaluation of a QoS-aware
transport protocol

Guillaume Jourjon a,b,c,*, Emmanuel Lochin a, Patrick Sénac c

a National ICT Australia Ltd., Australia
b University of New South Wales, Australia

c CNRS/LAAS – ENSICA, France
Abstract

In the context of a reconfigurable transport protocol framework, we propose a QoS-aware Transport Protocol (QSTP), specifically
designed to operate over QoS-enabled networks with bandwidth guarantee. QSTP combines QoS-aware TFRC congestion control mech-
anism, which takes into account the network-level bandwidth reservations, with a Selective ACKnowledgment (SACK) mechanism in
order to provide a QoS-aware transport service that fill the gap between QoS enabled network services and QoS constraint applications.
We have developed a prototype of this protocol in the user-space and conducted a large range of measurements to evaluate this proposal
under various network conditions. Our results show that QSTP allows applications to reach their negotiated QoS over bandwidth guar-
anteed networks, such as DiffServ/AF network, where TCP fails. This protocol appears to be the first reliable protocol especially
designed for QoS network architectures with bandwidth guarantee.

Keywords: Transport protocol; TFRC; SACK; QoS networks
1. Introduction

Specifications of transport layer protocols have tradi-
tionally considered only basic QoS parameters such as reli-
ability and order constraints. Some solutions to provide
QoS-oriented information to the application, such as the
Real-time Transport Protocol (RTP) [1], have been pro-
posed but these solutions, above the transport layer,
require an application support for QoS control because
they do not provide any explicit QoS control mechanisms.
Following the increase of end-systems and network perfor-
mances, new application QoS requirements have emerged
and induce new QoS constraints in underlying communica-
tion services, such as delay or bandwidth requirements.
* Corresponding author. Address: National ICT Australia Ltd., NPC,
Locked Bag 9013, Alexandria, NSW 1435, Australia. Tel.: +61 2
83745594.

E-mail addresses: guillaume.jourjon@nicta.com.au (G. Jourjon),
emmanuel.lochin@nicta.com.au (E. Lochin), senac@ensica.fr (P. Sénac).
These new requirements drive an evolution toward QoS
awareness of the two fundamental layers of any communi-
cation architecture: the network and transport layers. At
the network layer level, many architectures have been pro-
posed such as IntServ, DiffServ or MPLS [2–4]. In particu-
lar, the DiffServ architecture provides two classes of
service, the first one, Expedited Forwarding (EF), offers
bounds for the delay and the jitter. The second class,
Assured Forwarding (AF), provides a high delivery proba-
bility as long as the aggregated traffic does not exceed the
negotiated rate (also called target rate). The DiffServ/AF
class is well suited for continuous multimedia streaming
applications as well as bulk data transfer, which need some
level of bandwidth guarantee and are resilient to packets
losses. Nevertheless, these kinds of network services do
not address the whole set of applications requirements
(e.g. reliability, order).

As a result, a transport protocol aims at complementing
the underlying network service. The use of TCP in this con-
text is still very popular. However, TCP is designed for

mailto:guillaume.jourjon@nicta.com.au
mailto:emmanuel.lochin@nicta.com.au
mailto:senac@ensica.fr

1 http://www.euqos.eu/.
applications that, in the context of the classical best-effort
(BE) Internet service, need reliable and ordered packets
delivery without considering other QoS constraints (e.g.
time constraints). Several studies have shown that TCP
does not fit well with network-level QoS services [5]. Some
new transport layer mechanisms or protocols have been
recently introduced in order to deliver a transport service
more compliant with multimedia application QoS con-
straints. In particular, the TCP Friendly Rate Control
mechanism (TFRC) [6] entails smoother rate variations
than the AIMD based TCP congestion control mechanism.
Nevertheless, neither TCP nor TFRC take into account the
QoS guarantee offered at the network-level by the DiffServ/
AF service.

Therefore, to date, there is no transport protocol able to
take into account consistently both multimedia applica-
tions needs and the QoS offered by an underlying QoS net-
work infrastructure. This paper aims to fill that gap and to
deliver an efficient mapping between application QoS needs
and QoS network services while enforcing flows’ TCP
friendliness of their out-profile part (i.e. best-effort). The
new QoS-aware Transport Protocol (QSTP) introduced
in this paper is implemented in a reconfigurable transport
framework [7], that makes possible to combine dynamically
several transport mechanism (or micro-protocols) for deliv-
ering the transport service that best fits to the application
needs and to the underlying network services. QSTP results
from the specialization of the TFRC congestion control
mechanism and its composition with a Selective Acknowl-
edgment error control mechanism.

The present contribution also aims at demonstrating
how the combined use of a TFRC specialization (guaran-
teed TFRC) and SACK can improve a TCP compliant
transport service, especially during losses bursts. Indeed,
these mechanisms share the common goal of improving
the QoS delivered to flows by offering, respectively, a mech-
anism for enhancing flows’ rate smoothness and a mecha-
nism for loss recovery. Their combined use offers
potential performance improvements that this paper aims
at exploring. Therefore, we show how two QoS parameters,
i.e. bandwidth and reliability, can be managed jointly in a
non-conflicting way (i.e. conversely to TCP) for delivering
a better transport service than TCP, regardless the underly-
ing class based network service. In addition, the composi-
tion of the SACK and TFRC has two other main
advantages: first, SACK allows fully or partially reliable
error control disciplines to be achieved; second, the SACK
information can be easily integrated within TFRC feed-
back packets.

In order to illustrate the benefit of using QSTP over
bandwidth guaranteed network services, we show that
QSTP is able to deliver throughput guarantee either on
top of the DiffServ/AF class of service or on top of a gen-
eric guaranteed bandwidth network service.

This paper is structured as follows: Section 2 briefly pre-
sents related work about transport protocol over DiffServ/
AF class. Then, Section 3 introduces the context of this
study and provides some background information about
the mechanisms used in QSTP. Section 4 presents in details
the design of QSTP protocol and Section 5 is dedicated to
the performance evaluation of the proposed protocol.
Finally, Section 6 provides some conclusions and future
directions.
2. Related work

The DiffServ/AF class has been specifically designed for
elastic traffic such as the TCP traffic. Nevertheless, guaran-
teeing a minimum throughput to a TCP flow associated to
this class of service is not feasible under certain network
conditions [5]. In order to cope with this problem, many
research works have focused on efficient TCP traffic condi-
tioning. Unfortunately, the numerous proposed solutions
[8–11] are still much sensitive to the network conditions
and sometimes difficult to implement. In summary, we
can say that TCP is not able to efficiently map its transport
service toward network layer AF differentiated service
without specific conditioning scheme. Moreover, TCP con-
ditioning is complex since the timescales used, respectively,
by the network and transport layer are different (i.e. the
network uses a packet timescale and TCP uses an Round
Trip Time (RTT) timescale). Finally, the parameters that
allow a good flow conditioning to be achieved are hard
to evaluate at the network level. Indeed, loss probability
and RTT are difficult to measure in a passive manner at
the edge of the network.

The main potential source of discrepancy between TCP
and the AF service results from the TCP congestion control
mechanism. Indeed, following packet losses, the TCP con-
gestion control mechanism strongly reduces the sending
rate and is totally oblivious of the rate guarantee offered
by the underlying network service. Therefore, we have pre-
viously proposed the use of a QoS-aware congestion con-
trol mechanism to solve this issue [12].
3. Context

This study is achieved in the framework of the EuQoS
project1 funded by the 6th framework European research
program. The EuQoS project aims at designing and exper-
imenting scalable multi-domain communication architec-
ture for the global delivery of QoS-centred commu-
nication services. In the context of the EuQoS project, we
have investigated the concept of adaptive transport archi-
tecture simultaneously aware of the QoS application needs
and underlying network services. The resulting adaptive
transport architecture aims to be configured from a set of
fundamental transport layer mechanisms (i.e. congestion,
rate, error, order, or even time control) for applying the
most efficient adaptation between the application needs
and the available network services. We detail in the follow-

http://www.euqos.eu/

2 In any cases a minimum rate of one packet every 64 s is insured.
ing of this paper a specific instance of this generic transport
framework which results from the composition of two spe-
cific mechanisms, that are, a congestion control (i.e.
TFRC) and an error control mechanisms (i.e. SACK).

3.1. The TFRC congestion control

A TFRC sender [6] estimates its TCP equivalent sending
rate X from Eq. (1) which takes as parameters the mean
packet size s and two periodically processed parameters,
the packet loss event rate p, and the round trip time
RTT. In this equation RTO refers to the retransmission
timeout value.

X ¼ s

RTT �
ffiffiffiffi
p�2
3

q
þRTO �

ffiffiffiffiffiffi
p�27

8

q
� p � ð1þ 32 � p2Þ

� � ð1Þ

During the initialization phase, TFRC acts as TCP during
the slow start algorithm. This slow start phase can also oc-
cur during the transfer if the RTO timeout expires. This
phase is followed by a congestion avoidance phase, driven
by Eq. (1), as soon as the receiver detects a loss. During the
congestion avoidance phase, TFRC needs an estimation of
the loss event rate in order to compute the sending rate, X.
The packet loss rate is evaluated at the receiver side with
the help of a sliding window based structure that maintains
a history of loss events [6].

3.2. SACK mechanism

The concept of Selective ACKnowledgments (SACK)
was originally introduced in [13] as a TCP option that aims
to optimize its fully reliable service by allowing faster
recovery of bursts of packet losses [14]. By sending selective
acknowledgments, the receiver of data can inform the sen-
der about which segments or packets have been success-
fully received and which ones have to be selectively
retransmitted. On the other hand, SACK can make easier
the design of a partially reliable transport service in accor-
dance with the application data units importance [15].

4. QSTP design and implementation

This section presents the core mechanisms used to build
the QSTP protocol. Firstly, the QoS-aware TFRC special-
isation mechanism (gTFRC) is presented. Secondly, we will
show how reliability is performed through an adaptation of
SACK to gTFRC.

4.1. gTFRC

In the DiffServ/AF service class, the throughput of a
flow is divided into two parts. The first one is a fixed part
which corresponds to a minimum assured throughput;
packets belonging to this part are marked in-profile. The
second one is an elastic part which corresponds to an
opportunist flow of packets marked out-profile. In the
event of network congestion, the in-profile packets are pre-
served from losses. At the contrary, out-profile packets are
conveyed on a best-effort principle and are dropped first if
congestion occurs.

In case of excess network bandwidth, the application can
send more than its target rate (i.e. more than its in-profile
part), according to this policy, in this case the network
has to mark out-of-profile the excess traffic. Conversely,
when the network becomes congested, out-of-profile pack-
ets losses occur and the resulting loss rate estimated by
TFRC, that integrates both in profile and out profile pack-
ets, can fall down bellow the target rate requested by the
application. TCP would react in the same situation by halv-
ing its congestion window. As for TCP over the AF class
[5], the TFRC mechanism is not aware that the loss is oper-
ated on out-profile packets and that it should not decrease
its actual sending rate below the target rate. Concerning
TCP, solutions proposed in [10,11] introduce a conditioner
able to better mark the TCP flows by taking into account
their sporadic nature. As TFRC explicitly computes the
actual sending rate thanks to Eq. (1), gTFRC directly con-
straints this resulting rate to avoid the under-utilization of
the allocated network bandwidth. The aim of this TFRC
specialization consists in making the sending rate estimator
aware of the target rate. This scheme avoids the cost of traf-
fic conditioners while enhancing efficiently performances in
terms of application throughput and TCP-friendliness.

In the TFRC standard algorithm, when the loss event
rate p is not nil, the update of the sending rate X is basically
computed as a minimum between the rate computed by the
TFRC equation and two times the estimated rate of the
receiver.2 Our proposed TFRC specialization to the AF
service consists in enforcing the TFRC rate estimation to
be always higher than the target rate as follows:

X ¼ minðmaxðX calc; gÞ; 2 � X recvÞ ð2Þ

where X is the updated transmit rate in bytes/s, g is the tar-
get rate in bytes/s, X calc is the rate in bytes/s computed
from Eq. (1) and X recv the estimated received rate. This
mechanism has been thoroughly evaluated through ns-2
simulation and implementation. Further details about
gTFRC measurements and design are, respectively, avail-
able in [12,16].
4.2. Reliable gTFRC

The previous section focuses on the first component of
our QoS-aware reliable transport protocol. Indeed,
gTFRC allows the target rate negotiated by the application
to be insured while being TCP friendly. The next step is the
integration of gTFRC with a SACK-based mechanism to
provide a reliable transport service. We have seen in Sec-
tion 3 that SACK offers a powerful foundation to provide
a sophisticated error control mechanism much more effi-

sequence
numberty

pe Timestamp current RTT Payload

proto ID

sequence
numberty

pe Timestamp current RTT

proto ID

PayloadADU number nbSeq sync

number
last sequence Packet Lost

Rate Rate
Receiving

ty
pe Last Timestamp Processing Time

proto ID

number
last sequence Packet Lost

Rate Rate
Receiving

Modified TFRC header

Standard TFRC header

Standard TFRC ACK header

Modified TFRC ACK header

ty
pe Length OffsetLast Timestamp Processing Time SACK

proto ID

Fig. 1. Modification in TFRC header.
cient than the basic Go back N error recovery mechanism
even in its TCP variant. As specified in [14], the SACK
mechanism aims to return information about the set of
missing TPDU.3 Since TFRC is a datagram oriented mech-
anism and SACK is byte stream oriented, we adapt SACK
to a datagram oriented transport service.

In Fig. 1, the two first protocol data units represent,
respectively, the TFRC header and the new header that
results from the composition of gTFRC and SACK. The
two last PDU represent, respectively, the feedback given
by the receiver for the classical TFRC protocol and
TFRC/SACK composition. In these headers, each field is
either 4 or 8 bytes encoded field except for the proto ID

(one byte), the type (one byte) and the SACK payload

(variable length). The datagram oriented SACK mechanism
is defined in the same way as the stream oriented one. The
SACK payload is constituted by a sequence of pairs of
sequence numbers.4 These pairs represent the edge of inter-
vals of correctly received contiguous packet. The length
represents the number of pairs to analyse for the sender.
Finally the Offset represents the sequence number of the
first packet of the first pair. We can note that the SACK
mechanism can help to implement a partial order transport
service that would retransmit mandatory packets only.

4.3. Discussion about the composition of the SACK and

gTFRC mechanisms

In our proposal, the application has to provide the tar-
get rate negotiated with the QoS network to the transport
protocol. This is done at the socket level through a set-

sockopt() function. Such an approach could potentially
allow the application to abuse the network by giving a
higher value than the guarantee g. Another potential issue
is the case where the QoS service provider gives a wrong
configuration to the application and the edge router. In
the following sections, we tackle both problems.
3 Transport Protocol Data Unit.
4 This SACK structure could also be implement as a bit field.
4.3.1. Preserving the provider interest against a denial of

service

As we give the possibility to instantiate through a set-
sockopt() function the target rate negotiated between
the network service provider and the user, we can easily
envisage that a misbehaving user could take part of feature
by giving to g a higher value than the negotiated one.

In the context of a DiffServ/AF class, the edge router
marks in-profile the packets according to the negotiated
profile and out-profile the excess part. A misbehaving client
will increase its out-profile traffic part and when a network
congestion occurs, the dropping precedence set in the core
router will entail the dropping of this excess traffic. There-
fore, the misbehaving application will increase its own
packet loss rate and will not get any bandwidth advantage.
In summary, increasing the value of g at the user level does
not impact on the in-profile traffic that is bounded by the
SLA between the service user and the provider. Therefore,
this kind of denial of service is avoided by the DiffServ con-
ditioning mechanisms.
4.3.2. Preserving the network service user and provider
against wrong network configurations

This second case can potentially induce issues both for the
network service user and provider. Indeed, in this case a dis-
crepancy between the user and provider configurations
either would induce a risk for the service user to get a poorer
service than the negotiated one or for the service provider a
risk to dedicate to the service user more resources than
needed. For instance, such an inconsistency could occur if
the service provider miscalculates the resource needed for
the related service layer agreement. In a DiffServ context,
the in-profile traffic is not guaranteed anymore when a QSTP
flows gets losses while emitting below its target rate. In such a
case, two actions are possible for the sender. The first one is
to pursue to emit at the guaranteed rate, g. This is a legitimate
behavior since the service provider must provide to his client
the service he has paid for. The second type of action would
be to react to the observed congestion and to warn the appli-
cation or the user that the SLA has been broken off. This can

5 RED In Out queue.
be done thanks to an additional mechanism that would be
able to detect that a bunch of losses occurred in the in-profile
part. Anyway, in the case of an under-provisioned network,
TCP (and TFRC) would react as if the target rate is lower
than the expected one.

The TFRC algorithm prevents in a certain manner these
problems. Indeed, the algorithm will not return a sending
rate higher than twice the receiving rate (given by
2 � X recv in (2)). However, we believe that these security
concerns are out of the transport layer scope. We claim
that it is definitely not the responsibility of the protocol
to detect a selfish user behaviour or to react to a wrong set-
ting. We therefore do not present results concerning an
under-provisioning network.

4.4. Implementation

In this section we present the implementation of QSTP
protocol based on a compositional transport protocol
framework [7]. Basically, this framework, developed in
Java language, allows to easily instantiate transport layer
mechanisms and to compose them to build a transport pro-
tocol which applies an efficient adaptation between appli-
cation needs and underlying network characteristics [7].
Fig. 2 gives an overview of the micro-protocols (i.e. pro-
cessing modules) that have been composed for the instanti-
ation of the QSTP protocol. QSTP is composed on both
sides by seven Processing Modules (PM), respectively, ded-
icated to (see Fig. 2(a) for details):

• the processing of the outgoing flow (Add Header, Set
Header-Rate Ctrl and Send Sock);

• the processing of the ingoing flow (Remove Header,
Process IN, Receive Sock);

• the Process Feedback and the Create Feedback

deal with the management of the feedback messages
(i.e. creation and analysis).

The main components of QSTP are:

• the Process IN component: this component imple-
ments, at the sender side, the gTFRC mechanism;

• the buffer Application Buffer IN: this buffer is the
transmission queue upstream the rate control component,
packets to retransmit are placed on top of this queue;

• the buffer Retransmission Buffer: this buffer
stores sent data but not yet acknowledged;

• the Process Feedback component: this component is
in charge of the processing of feedback messages. This
component applies error control on packets stored in
the Retransmission Buffer;

• the Create Feedback component: this component
computes the loss event rate and creates the Feedback
message with the SACK structure.

Detailed descriptions of this framework can be found
in [7].
5. Performance evaluation of QSTP

This section evaluates the QSTP service over a band-
width guarantee networks. We firstly present the experi-
mentation model used and the general hypothesis. Then,
the results and their analysis are provided over various net-
work conditions. In a sake of comparison, the chosen
parameters are those used in other well-known papers
about TCP over AF such as [5,8–10].

5.1. Model and general hypothesis

QSTP is implemented in Java language and evaluated
over the DiffServ topology presented in Fig. 3. All the
nodes are PC, the end-hosts run GNU/Linux and the rou-
ters run FreeBSD with ALTQ [17] in order to implement
the DiffServ service and at the core router dummynet [18]
is used to emulated the network. The experiments have
been carried out using the following configuration:

• the packet size is fixed to 1500 bytes;
• a two-colour token bucket marker with a bucket size of

104 bytes is used on the edge router [19];
• routers are configured with a queue size of 50 packets

and RIO5 parameters in the core router correspond to
ðminout, maxout, pout, minin, maxin, pinÞ ¼ ð10; 20; 0:1;
20; 40; 0:02Þ;

• the bottleneck between the core and the egress router
has a fixed capacity of 1000 Kbits/s;

• measurements are carried out 10 times during 180 s for
an FTP-like transfer.

We made experiments with a large set of different initial
Round Trip Time delays (i.e. minimum measured RTT)
and target rates. Only a representative part of these results
are given in the next section. The choice of these results has
been made since the various scenarii presented represent
some of the worst cases for a unique flow (TCP and TFRC)
to reach its target rate. In the following section we measure
in a first time the throughput obtained at the network level
at the receiver side. Then we present the ‘‘goodput’’ which
measure the throughput at the application level. Finally,
we present the jitter obtained for TCP and QSTP flow.

5.2. Analysis of the QSTP behaviour over a standard

DiffServ/AF network scenario

This section aims at illustrating the QSTP behaviour
above a DiffServ service. The measurements presented in
Fig. 4 gives the corresponding instantaneous throughput
at the network level on the receiver side. This throughput
is computed using a time-sliding window algorithm of
one second as explained in [20].

Send Sock

Add Header

Retransmission
Buffer

Rate Control

Set Header

N
et

w
or

k
Si

de
Pr

oc
es

si
ng

 S
id

e
Ap

pl
ic

at
io

n
Si

de

Sending Receiving

Remove Header

Recv Sock

Process IN

Reception
Buffer

Buffer OUT
ApplicationApplication

Buffer IN

Process Feedback

Send Sock

Add Header

N
et

w
or

k
Si

de
Pr

oc
es

si
ng

 S
id

e
Ap

pl
ic

at
io

n
Si

de

Sending Receiving

Remove Header

Recv Sock

Process IN

Reception
Buffer

Buffer OUT
ApplicationApplication

Buffer IN

Create FeedbackSet Header

Fig. 2. Internal mechanisms of the protocol at the sender and receiver side.
In this first experiment, we analyse the behaviour of one
flow (i.e. a TCP, TFRC, or QSTP flow) versus a TCP
aggregate of 15 micro-flows.6 As QSTP provides an end-
to-end per-flow guarantee, the aim of this first experiment
is to verify whether QSTP is able to maintain the target rate
negotiated whatever the network load. All the flows have
6 We define as a microflow, a single instance of an application-to-
application flow of packets which is identified by source address,
destination address, protocol id, and source port, destination port (where
applicable) following [21]. And we define an aggregate a set of two or more
microflows.
an RTT of 30 ms. This flow has a target rate of
500 Kbits/s and crosses the (A,B) path of the DiffServ test-
bed while the TCP flows aggregate has a target rate of
300 Kbit/s and crosses the (C,D) path. In all experiments,
the TCP aggregate has always outperformed its target rate.
In Fig. 4, we only report the results for the flow alone
against the TCP aggregate. First, we give the result
obtained by a TCP flow in Fig. 4(a). As explained in [5],
the TCP flow is not in the best condition to reach its target
rate since it has the highest target rate. Moreover, because
of the TCP multiplexing behaviour, when two aggregates
with a different number of micro-flows are in a network,

1 Mbits/s

100 Mbits/s

B

DC

A

Edge Router Core Router Edge Router

Fig. 3. The testbed topology for DiffServ experiments.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140

Th
ro

ug
hp

ut
 (K

b/
s)

Time

Average window Throughput

Recever
Target Rate

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140

Th
ro

ug
hp

ut
 (K

b/
s)

Time

Average window Throughput

Receiver
Target Rate

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140

Th
ro

ug
hp

ut
 (K

b/
s)

Time

Average window Throughput

Receiver
Target Rate

Fig. 4. Throughput of one TCP, TFRC/SACK, QSTP flow versus a 15 TCP flows aggregate.
the larger outperforms the smaller [5]. Fig. 4 shows that the
TCP flow does not reach its target rate.

In the next Fig. 4(b), we give the result obtained for a
TFRC/SACK flow multiplexed with the same 15
micro-flows aggregate. In this experiment, TFRC/ SACK
does not reach its target rate either. Since TFRC repro-
duces the TCP window congestion control behaviour and
since we have added a reliability mechanism, we could
expect to obtain a behaviour almost similar to TCP on
average. Nevertheless, the smoothing TFRC property
makes the TFRC/SACK flow less aggressive than the
TCP ones. As the bottleneck of the network becomes
loaded, the RTT and the losses in the network increase.
As a result, we can see between t = [40 s, 100 s] that
TFRC mechanism recovers slowly to the after a transient
congestion [22].

To cope with the unawareness problem, the QSTP pro-
tocol composes gTFRC and SACK mechanisms. The
results depicted in Fig. 4(c) illustrates that, conversely to
the TCP and TFRC flows, the QSTP flow is able to achieve
the requested target rate. As a conclusion, thanks to the
composition of these two mechanisms, QSTP can be con-
sidered as a DiffServ/AF compliant reliable protocol.
Indeed, we only use for these experiments standardized
and implemented DiffServ mechanisms such as the token
bucket two-colour marker on the edge and the RIO queue
on the core.

The next section will focus on the study of the impact of
these three transport services on the QoS offered to the
application layer (i.e. the transport service user). In this
context, measurements focus on the application through-
put (or goodput) at receiver side. In case of a FTP transfer,
it corresponds to the throughput data transfer.

5.3. Impact of QoS perceived at the user level

In this study, one flow (from host A to host B) is in com-
petition with a variable size aggregate. The aggregate (from

host C to host D) has a variable number of micro-flows
 0

 200

 400

 600

 800

 1000

 20 15 10 5 1

Th
ro

ug
hp

ut
 (K

bi
t/s

)

Number of flows in TCP aggregate

Average throughput of TCP aggregate
Average throughput with TCP

Target Rate

 0

 200

 400

 600

 800

 1000

 5 1

Th
ro

ug
hp

ut
 (K

bi
t/s

)

Number o

Aver
A

Fig. 5. Average throughput according to the
ranging from 1 to 20. The RTT of all flows is set to
30 ms and target rates of (A,B) and (C,D) are equal to
400 Kbits/s. Fig. 5 gives the results obtained for TCP,
TFRC/SACK and QSTP flow versus the variable
aggregate.

We report in Fig. 5 the average throughput of the single
flow and the average throughput of the aggregate (both
computed after 150 s) with the min/max values of ten con-
secutive measurements As already evaluated in a DiffServ
network [5], Fig. 5(a) illustrates that TCP flow does not
reach its target rate. Concerning the TFRC/SACK compo-
sition, Fig. 5(b) shows that the distance between the
throughput variation amplitude is inferior to the one of
TCP. This is due to the smoother property of TFRC con-
gestion control. Nevertheless, on average, the obtained
throughput is in the same order of magnitude than TCP.
Finally, Fig. 5(c) confirms the previous results, showing
that the QSTP flow (A,B) reaches the requested target rate
no matter the number of micro-flows in competition in the
(C,D) aggregate.

Note that the difference between the target rate at the
network level and the throughput delivered at the user level
is simply due to the QSTP/IP protocol overhead. More-
 0

 200

 400

 600

 800

 1000

 20 15 10 5 1

Th
ro

ug
hp

ut
 (K

bi
t/s

)

Number of flows in TCP aggregate

Average throughput of TCP aggregate
Average throughput with TFRC/SACK

Target Rate

 20 15 10
f flows in TCP aggregate

age throughput of TCP aggregate
verage throughput with QTP_AF

Target Rate

number of micro-flows in the aggregate.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 15 105

St
an

da
rd

 D
ev

ia
tio

n

Number of flows in TCP aggregate

TCP
TCP aggregate vs TCP

TFRC/SACK
TCP aggregate vs TFRC/SACK

QTP_AF
TCP aggregate vs QTP_AF

Fig. 6. Throughput standard deviation.
over, the min/max interval is the smallest one. The mea-
surement overhead at the application level explains the
gap between the target rate line (expressed at network level)
and the QSTP average application throughput in Fig. 5(c).
For the sake of accuracy and in order to quantify the min/
max values, we give separately in Fig. 6 the standard devi-
ation of these results. This figure confirms the stability of
TFRC and gTFRC over a differentiated network. Indeed,
 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120 140

Th
ro

ug
hp

ut
 (K

b/
s)

Time

Sender
Receiver

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Ji
tte

r d
el

ay
 (m

s)

Packet Number

Fig. 7. Jitter of one TCP, QSTP flow versus
we can see that the standard deviation for these two con-
gestion controls mechanism is small. The non-compliant
TCP behaviour with a DiffServ network is highlighted by
its large standard deviation.
5.4. Illustration over a QoS network with a bandwidth

guarantee

In this section, we focus on the behaviour of QSTP on
top of another network level QoS mechanism. This allows
us to verify that the proposed protocol can be used over
any kind of network providing a bandwidth guarantee.
To perform this evaluation, we configure a QoS network
with a Class Based Queueing (CBQ) scheduling mechanism
[23] that provides a guaranteed pipe of 300 Kbit/s for the
studied flow (i.e. TCP or QSTP). The network topology
used in these experiments remains identical to the one pre-
sented in Fig. 3. The emulated QoS network does not use
any admission control. The CBQ is configured in ‘‘borrow
mode’’. It means that in case of non-congestion, the BE
traffic can borrow bandwidth into the reserved pipe. This
case of configuration is more general as this kind of sched-
uling algorithm is currently available in commercial routers
such as CISCO 4000 and above series. Fig. 7(a) and (b)
 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120 140

Th
ro

ug
hp

ut
 (K

b/
s)

Time

Sender
Receiver

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Ji
tte

r d
el

ay
 (m

s)

Packet Number

a UDP flow with various throughputs.

show, respectively, the throughput of TCP and QSTP at
the sender and receiver side. Fig. 7(c) and (d) show the jitter
of these two flows. In these experiments, both flows com-
pete with an UDP flow.

During the experiment, the UDP flow emits at 300 Kbit/
s except between [60,120] s where it emits at 1000 Kbit/s.
As a result, during this interval the bottleneck is full.
Fig. 7(a) and (b) give the throughput measured at the sen-
der and receiver side. Once the congestion occurs, the CBQ
algorithm starts (i.e. when the UDP flow sends above
700 Kbit/s). Thanks to the CBQ scheduling, both flows
obtain their guarantee as shown in these figures.

Fig. 7(c) and (d) give the network level jitter in millisec-
onds obtained by both flows. We can see that TCP 7(c)
obtains a higher jitter than QSTP 7(d). This is an expected
result as TFRC congestion control algorithm has the prop-
erty to emit a non-bursty traffic. In an obvious way, the
resulting jitter must be lower. However, these graphs show
that the composition of TFRC with SACK does not impact
on this standard behaviour and the resulting jitter for
QSTP is lower than for TCP.
6. Conclusion and future works

In this paper, we have presented the design of a QoS
transport protocol based on TFRC congestion control
and SACK mechanisms. This proposal has been imple-
mented and evaluated in the context of a compositional
transport protocol framework. QSTP proposes a transport
service that results from the composition of a reliability
mechanism with a QoS-aware congestion control mecha-
nism. Measurements show that this composition defines
the first reliable transport protocol compliant with Diff-
Serv/AF class. In particular, we show that applications by
using QSTP obtain their negotiated target rate with a small
standard deviation under various network conditions.

The next step of this work is the deployment and the per-
formance evaluation of QSTP over a large scale European
QoS aware network designed in the framework of the EuQoS
European project. We expect a large range of measurements
in order to complete this study with real network conditions
and various DiffServ/AF classes. We are currently starting a
standardization process of this protocol at the IETF. A first
draft concerning the gTFRC congestion control is under
revision [16]. We expect to integrate the full definition of
the presented protocol into the next draft version.
Acknowledgments

This research work has been conducted in the frame-
work of the EuQoS European project (http://www.euqo-
s.eu). This work has been supported by funding from
National ICT Australia. The authors are also grateful
Dr. Sebastien Ardon and Dr. Laurent Dairaine and Dr.
Ernesto Exposito for their useful comments.
References

[1] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, RTP: A
Transport Protocol for Real-Time Applications, Request for Com-
ments 3550, IETF, Jul. 2003.

[2] R. Braden., D. Clark, S. Shenker, Integrated Services in the Internet
Architecture: AnOverview,Request for Comments 1633, IETF,Jun. 1994.

[3] J. Heinanen, F. Baker, W. Weiss, J. Wroclawski, Assured Forwarding
PHB Group, Request for Comments 2597, IETF, Jun. 1999.

[4] E. Rosen, A. Viswanathan, R. Callon, Multiprotocol Label Switching
Architecture, Request for Comments 3031, IETF, Jan. 2001.

[5] N. Seddigh, B. Nandy, P. Pieda, Bandwidth Assurance Issues for
TCP Flows in a Differentiated Services Network, in: Proc. of IEEE
GLOBECOM, Rio De Janeiro, Brazil, 1999, p. 6.

[6] M. Handley, S. Floyd, J. Pahdye, J. Widmer, TCP Friendly Rate
Control (TFRC): Protocol Specification, Request for Comments
3448, IETF, Jan. 2003.

[7] E. Exposito, Specification and Implementation of a QoS Oriented
Transport Protocol for Multimedia Applications, PhD Thesis,
LAAS-CNRS/ENSICA, Dec. 2003.

[8] X. Chang, J.K. Muppala, On improving bandwidth assurance in AF-
based DiffServ networks using a control theoric approach, Computer
Networks 49 (6) (2005) 816–839.

[9] B. Nandy, P. Pieda, J. Ethridge, Intelligent traffic conditioners for
assured forwarding based differentiated services networks, in: IFIP
High Performance Networking, Paris, France, 2000.

[10] M. El-Gendy, K. Shin, Assured forwarding fairness using equation-
based packet marking and packet separation, Computer Networks 41
(4) (2002) 435–450.

[11] E. Lochin, P. Anelli, S. Fdida, Penalty shaper to enforce assured
service for TCP flows, in: IFIP Networking, Waterloo, Canada, 2005.

[12] E. Lochin, L. Dairaine, G. Jourjon, gTFRC: a QoS-aware Conges-
tion Control Algorithm, in: Proc of the 5th International Conference
on Networking, Mauritius, 2006.

[13] V. Jacobson, R. Braden, TCP Extensions for Long-Delay Paths,
Request for Comments 1072, IETF, Oct. 1988.

[14] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP Selective
Acknowledgment Options, Request for Comments 2018, IETF, Oct. 1996.

[15] Ernesto Exposito, Michel Diaz, Patrick Sénac, Design principles of a
QoS-oriented Transport Protocol, in: IFIP International Conference
on Intelligence in Communication Systems, Bangkok, 2004.

[16] E. Lochin, L. Dairaine, G. Jourjon, Guaranteed TCP Friendly Rate
Control (gTFRC) for DiffServ/AF Network, Internet Draft draft-
lochin-ietf-tsvwg-gtfrc-01, IETF, Jun. 2006.

[17] K. Cho, Managing Traffic with ALTQ, in: Proceedings of USENIX
Annual Technical Conference: FREENIX Track.

[18] L. Rizzo, Dummynet: a simple approach to the evaluation of network
protocols, in: ACM Computer Communications Review 27 (1) (1997).

[19] J. Heinanen, R. Guerin, A Single Rate Three Color Marker, Request
for Comments 2697, IETF, Sep. 1999.

[20] W. Fang, N. Seddigh, A.L., A Time Sliding Window Three Colour
Marker, Request for Comments 2859, IETF, Jun. 2000.

[21] K. Nichols, S. Blake, F. Baker, D. Black, Definition of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6
Headers, Request for Comments 2474, IETF, Dec. 1998.

[22] J. Widmer, Equation-Based Congestion Control, Diploma Thesis,
University of Mannheim, Germany, Feb. 2000.

[23] S. Floyd, V. Jacobson, Link-sharing and resource management
models for packet networks, IEEE/ACM Transactions on Network-
ing 3 (4) (1995) 365–386.

http://www.euqos.eu
http://www.euqos.eu

	Design, implementation and evaluation of a QoS-aware transport protocol
	Introduction
	Related work
	Context
	The TFRC congestion control
	SACK mechanism

	QSTP design and implementation
	gTFRC
	Reliable gTFRC
	Discussion about the composition of the SACK and gTFRC mechanisms
	Preserving the provider interest against a denial of service
	Preserving the network service user and provider against wrong network configurations

	Implementation

	Performance evaluation of QSTP
	Model and general hypothesis
	Analysis of the QSTP behaviour over a standard DiffServ/AF network scenario
	Impact of QoS perceived at the user level
	Illustration over a QoS network with a bandwidth guarantee

	Conclusion and future works
	Acknowledgments
	References

