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ABSTRACT

In this paper, we address the problem of detecting a signal whose
associated spatial signature is subject to uncertainties, in the pres-
ence of subspace interference and broadband noise, and using mul-
tiple snapshots from an array of sensors. To account for steering
vector uncertainties, we assume that the spatial signature of inter-
est lies in a given linear subspace 〈H〉 while its coordinates in
this subspace are unknown. The generalized likelihood ratio test
(GLRT) for the problem at hand is formulated. We show that the
GLRT amounts to searching for the best direction in the subspace
〈H〉 after projecting out the interferences. The distribution of the
GRLT under both hypotheses is derived and numerical simulations
illustrate its performance.

1. PROBLEM FORMULATION

An ubiquitous task in many applications of radar, sonar or com-
munications consists in detecting the presence of and recovering a
signal of interest in the presence of interferences and noise using
an array of L sensors [1]. In most cases, the spatial (or space-
time) signature of interest a is assumed to be known. However,
exact knowledge of a is a rather idealistic assumption since many
factors can possibly give rise to uncertainties about a. These in-
clude uncalibrated arrays, uncertainties about the direction of ar-
rival (DOA) of the source, local scattering, etc. Whenever the
actual signature differs from the presumed one, and unless some
proper measures are taken, performance degradation is observed.
In order to account for these mismatches, we assume that the steer-
ing vector of interest belongs to a known linear subspace 〈H〉 but
that its coordinates within this subspace are otherwise unknown.
To motivate this type of modelling, let us consider the case of a
Ricean channel for which the steering vector can be written as

a = a0 +
1√
q

q∑
k=1

gka(θk) (1)

where a0 corresponds to the line-of-sight component. The gk are
zero-mean, independent and identically distributed random vari-
ables with power σ2

g , and θk are independent random variables
with probability density function p(θ). The covariance matrix of
the steering vector errors is then Ca = σ2

g

∫
a(θ)aH(θ)p(θ) dθ.

When the standard deviation of θk (referred to as angular spread in
the literature) is small, it is well-known that the covariance matrix
of the Slepian matrix Ca is close to rank-deficient. Therefore, one
can define an “effective rank” r that contains most of the energy in
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the eigenvalues of Ca. That is, Ca � U rΛrU
H
r where U r con-

tains the r dominant eigenvectors and Λr is the diagonal matrix
of the r dominant eigenvalues. Consequently the actual steering
vector approximately lies in the subspace spanned by

[
a0 U r

]
.

A subspace approach to model spatial signatures in the presence
of local scattering is also advocated in [2] where it is referred
to as a generalized array manifold. This modelling is also rele-
vant in space-time problems to account for straddling, i.e. when
the presence of a target is detected on a grid of potential spatial
and Doppler frequencies whereas the actual spatial and Doppler
frequencies lie in between the grid [3]. See also [4] where the
space-time steering vector is modelled as the rank-one Kronecker
product of a spatial and a temporal signature, each subject to un-
certainties and assumed to belong to a linear subspace. Therefore,
the overall space-time signature belongs to some subspace.

Hereafter, we thus consider the following model for the L-
dimensional received signal

y(t) = x(t) + i(t) + n(t); t = 1, · · · , N

x(t) = as(t); i(t) = Au(t) (2)

where a = Hθ is the steering vector of interest which belongs
to the p-dimensional subspace 〈H〉 and s(t) is the emitted sig-
nal waveform. In (2) A stands for the J-dimensional interference
subspace and u(t) denotes the interferences waveforms. Finally,
n(t) is a zero-mean complex-valued Gaussian noise with covari-
ance matrix σ2I . In this paper we assume that H and A are
known full-rank matrices, and that the subspaces 〈H〉 and 〈A〉
are linearly independent. Furthermore, we consider the case where
J + p < L. Moreover, it is assumed that s(t) and u(t) are deter-
ministic sequences such that

lim
N→∞

1

N

N∑
t=1

[
s(t)
u(t)

] [
s∗(t) uH(t)

]
=

[
P 0H

0 Π

]
(3)

where Π is a full-rank matrix. Finally, we assume that the noise
level σ2 is known. Since there exists an inherent scaling ambiguity
between θ and s(t) in (2), a constraint may be enforced on θ. A
meaningful constraint, when the first column of H is a0, is to set
the first element of θ to 1. This is the convention we adopt in the
sequel.

The problem we consider herein is to decide for the presence
of the component x(t), having observed N snapshots {y(t)}N

t=1.
It is worth pointing out at this stage that the problem considered
here is related to that in [1, 5]. However, the model in (2) con-
siders multiple snapshots and shows a major difference with that
of [1, 5]. The model in [1, 5] for multiple snapshots would be
y(t) = Hs(t)+Au(t)+n(t) with s(t) a p× 1 vector, whereas
the model herein writes y(t) = Hθs(t) + Au(t) + n(t), with
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s(t) forced to be θs(t). Hence, the problems are different, as will
be the associated estimators. However, for N = 1 the problems
become identical and we will show later that the GLRT derived
here reduces to that of [5] in the single-snapshot case. We will
further elaborate on this aspect after the derivation of the GLRT.

2. GENERALIZED LIKELIHOOD RATIO TEST

Our problem can thus be recast as that of deciding between the two
hypotheses {

H0 : µ = 0

H1 : µ = 1
(4)

in the model
Y = µHθsT + AU + N (5)

where Y =
[
y(1) · · · y(N)

]
, s =

[
s(1) · · · s(N)

]
and

U =
[
u(1) · · · u(N)

]
. In order to derive the GLRT, the

maximum likelihood estimator (MLE) must be obtained as a first
step. Towards this end, observe that the observations are proper
Gaussian distributed so that the likelihood function is given by [1]

�(Y ) =
(
πσ

2)−mN
e
− 1

σ2

∑
N

t=1
‖y(t)−µHθs(t)−Au(t)‖2

. (6)

The MLE amounts to maximizing �(Y ) or equivalently minimiz-
ing

Λ =
N∑

t=1

‖y(t) − µHθs(t) − Au(t)‖2

= Tr

{(
Y − µHθsT − AU

) (
Y − µHθsT − AU

)H
}
(7)

with respect to (w.r.t.) s, U and θ. For any given s and θ, the
matrix U which minimizes (7) is given by [1]

U =
(
AHA

)−1

AH
(
Y − µHθsT

)
. (8)

Under hypothesis H0, U is the only unknown component and the
estimation procedure ends with (8). Under H1, s and θ are still to
be determined. To obtain them, let us report (8) in (7) which yields
the problem of minimizing

Λ̂ = Tr

{(
Y − HθsT

)H

P ⊥
A

(
Y − HθsT

)}
=

(
θHHHP ⊥

AHθ
) ∥∥∥∥s∗ − Y HP ⊥

AHθ

θHHHP ⊥
AHθ

∥∥∥∥2

+ Tr
{

P ⊥
AY Y H

}
− θHHHP ⊥

AY Y HP ⊥
AHθ

θHHHP ⊥
AHθ

(9)

where P A denotes the orthogonal projection onto 〈A〉 and P ⊥
A =

I −P A the projection onto its orthogonal complement. Note that
P ⊥

AH �= 0 under the hypotheses made. The maximum likelihood
estimate of θ is thus given, up to a scaling factor, by the principal

generalized eigenvector of
(
GHR̂G, GHG

)
with G = P ⊥

AH

and
R̂ = N

−1Y Y H
. (10)

R̂ is the sample covariance matrix. In other words

θ̂ = βP
{(

GHG
)−1

GHR̂G

}
(11)

where P {.} stands for the principal eigenvector of the matrix be-
tween braces, and the scalar β is determined such that θ̂1 = 1.
This result shows that, when multiple snapshots are available, a
preferred direction in the subspace 〈G〉 may be determined. When

A = 0, the preferred direction in 〈H〉 is P
{

P H R̂
}

where P H

denotes the orthogonal projection onto 〈H〉.
The (logarithmic) GLR is given by

L1(Y ) = ln
�̂(Y |H1)

�̂(Y |H0)
=

1

σ2

[∥∥∥N̂ 0

∥∥∥2

−
∥∥∥N̂ 1

∥∥∥2
]

(12)

where �̂(Y |Hk) is the likelihood function under hypothesis k with
the unknown parameters replaced by their ML estimates. N̂ 0 and
N̂ 1 are the ML estimates of N under H0 and H1 respectively.
Using (9), we have∥∥∥N̂ 0

∥∥∥2

= Tr
{

P ⊥
AY Y H

}
(13)∥∥∥N̂ 1

∥∥∥2

= Tr
{

P ⊥
AY Y H

}
− λmax

{
P GY Y H

}
(14)

where λmax {.} is the largest eigenvalue of the matrix between
braces. It follows that the GLRT takes the following form

L1(Y ) =
1

σ2
λmax

{
P GY Y H

}
≶ η. (15)

Briefly stated, the detector consists of searching for the direction
of maximum energy in the subspace 〈G〉, i.e. in the part of 〈H〉
which is orthogonal to the interference subspace. Equivalently, it
computes the covariance of Y in the subspace 〈G〉 and tests the
energy along its principal direction. Hence, the detector here can
be called a matched direction detector. This contrasts with the
corresponding detector in [5] which would use Tr

{
P GY Y H

}
,

the total energy in 〈G〉, as the signal would be allowed to move
around in the subspace 〈H〉 from snapshot to snapshot. In the
present paper, the signal is fixed in the subspace 〈H〉 and multiple
snapshots may be used to estimate its fixed location Hθ̂. There-
fore, the detector searches for a single vector in 〈G〉, namely the
one which bears most energy, and then compares this energy to a
threshold. This is illustrated in Figure 1 in the simplest case of no

R (H)

Hθ̂

Fig. 1. Differences between the matched subspace detector and the
matched direction detector.

interference. When multiple snapshots (represented by the arrows)
are available, the detector in [5] would project them anywhere in
〈H〉 (the circles) with no additional constraint while the rank-one
model here imposes that they lie along one direction (the squares).

In order to set the threshold η of the test for a given proba-
bility of false alarm PFA and to obtain the probability of detec-
tion, it is required to derive the probability density function (PDF)
of σ−2λmax

{
P GY Y H

}
or at least its cumulative distribution
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function (CDF). For notational convenience, let us define s =
min(p, N), t = max(p, N) and let us denote by φs the largest
eigenvalue of σ−2P GY Y H . Also, let UG ∈ C

L×p be a unitary
basis for 〈G〉. Under the null hypothesis

L1(Y |H0) = σ
−2

λmax

{
P GY Y H

}
= σ

−2
λmax

{
P G [AU + N ] [AU + N ]H

}
= λmax

{
σ
−2P GNNH

}
= λmax

{
σ
−2UGUH

GNNH
}

= λmax

{
σ
−2UH

GNNHUG

}
= λmax

{
σ
−2ÑÑ

H
}

(16)

where Ñ = UH
GN is a p×N matrix whose columns are indepen-

dent p-variate complex Gaussian vectors with covariance matrix
σ2I . Then, the CDF of φs is given by [6]

Pr (φs ≤ η|H0) =
|Ψc(η)|∏s

k=1 Γ(t − k + 1)Γ(s − k + 1)
(17)

where Ψc(η) is an s × s Hankel matrix function of η ≥ 0 whose
(k, �) element is given by

[Ψc(η)]k,� = γ(t − s + k + � − 1, η) (18)

and γ(n, x) =
∫ x

0
tn−1e−t dt stands for the incomplete gamma

function. Equation (17) provides the necessary material to com-
pute the threshold η for a given PFA = 1 − Pr (φs ≤ η|H0).

Under H1, the GLR can be written as

L1(Y |H1) = λmax

{
σ
−2P G

[
asT + N

] [
asT + N

]H
}

= λmax

{
σ
−2UH

G

[
asT + N

] [
asT + N

]H

UG

}
= λmax

{
σ
−2Ỹ Ỹ

H
}

(19)

with Ỹ = UH
G

[
asT + N

]
. Hence, Ỹ has a multivariate normal

distribution with mean M = UH
GasT and covariance matrix σ2I .

The results of [6] -especially Corollary 1 and Appendix B- can
again be used to obtain the PDF or CDF of L1(Y |H1). More pre-

cisely, let λ1 = σ−2
∥∥UH

Ga
∥∥2 ‖s‖2 be the single nonzero eigen-

value of σ−2M HM . Then, the CDF of L1(Y |H1) is given by [6]

Pr (φs ≤ η|H1) =
e−λ1

Γ(t − s + 1)λs−1
1

|Ψi.i.d(η)|∏s−1
k=1 Γ(t − k)Γ(s − k)

(20)
where Ψi.i.d(η) is a s × s matrix whose expression can be found
in [6]. Equation (20) enables us to calculate the probability of
detection, PD = 1 − Pr (φs ≤ η|H1).

3. NUMERICAL ILLUSTRATIONS

In this section, we illustrate the performance of the GLRT detec-
tor. Throughout this section, we consider a uniform linear array
of L = 10 sensors spaced a half-wavelength apart. The source
of interest impinges from broadside and we consider the case of a

Ricean channel. We assume a Gaussian distribution for the scatter-
ers with standard deviation σθ = 15◦. The actual steering vector
is generated as

a = a0 + U rΛ
1/2
r θ2 = a0 + H2 θ2 (21)

where U r is the matrix formed by the r principal eigenvectors of
Ca. Unless otherwise stated, r = 2 and θ2 is drawn from a proper
complex-valued multivariate normal distribution with zero-mean
and unit variance. We define the uncertainty ratio (UR) as

UR = 10 log10

(
Tr

{
HH

2 H2

}
aH

0 a0

)
. (22)

UR as defined above measures the ratio of the average power of
the non-line of sight component to the power of the line of sight
component. In all simulations, we consider that the noise compo-
nent consists of a proper complex white noise contribution with
power σ2 and two interferences whose DOAs are −20◦, 30◦ and
whose powers are 20dB and 30dB above the white noise level,
respectively. The signal to noise ratio (SNR) is defined as

SNR = 10 log10

(
P

[
aH

0 a0 + Tr
{
HH

2 H2

}]
σ2

)
.
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Fig. 2. Theoretical and empirical probability of detection versus
SNR. UR = −6dB and N = 10.

First, we validate the theoretical expression of PD as given by
(20). Towards this end, a fixed a is drawn from (21) and 500 000
simulations are run to evaluate the empirical probability of detec-
tion. The latter is compared with the theoretical probability of
detection in Figure 2. As can be observed the empirical and theo-
retical results are in perfect agreement, which validates (20).

Next, we characterize the average behavior of the GLRT by
changing a in each of the 500 000 runs. Figure 3 displays the
average probability of detection versus the SNR for different PFA.
Comparing Figures 2 and 3 it follows that the “average” behavior
is similar to that obtained with a single realization of a. In Figure
4 we investigate the influence of the number of snapshots N on
the detection performance. The false alarm probability is set to
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Fig. 3. Average probability of detection versus SNR. UR =
−6dB and N = 10.

PFA = 10−3. It can be observed that N has a significant influence
on the detection performance, especially in moderate SNR where
PD can be significantly improved. For instance, for PD = 0.9, a
5.4 dB SNR improvement is observed when N goes from N = 1
to N = 5, an additional 2.1 dB improvement occurs from N = 5
to N = 10.

Finally, we test the robustness of the detector when a is no
longer exactly in a subspace but is generated according to (1). Fig-
ure 5 displays PD for different values of the subspace’s dimension.
It can be observed that the best results are obtained with p = 2,
and that no real improvement is achieved when increasing p. Note
however that a0 is always included in 〈H〉. Also, the optimal
value of p depends on both the uncertainty ratio and the eigen-
value spread of Ca. In conclusion, for detection purposes, sub-
space modelling of the spatial signature seems to be a robust and
effective solution.

4. CONCLUSIONS

In this paper, we have considered the problem of detecting a signal
whose spatial signature lies in a given linear subspace. This work
can be viewed as an extension of the matched subspace detectors
of [5] to the case of multiple snapshots. The main difference is that
the present detector looks for a preferred direction in a subspace
and computes energy along this direction instead of the energy in
the whole subspace.
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