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Abstract

This paper examines performance of the knock detection tech-
nique typically used in engine control systems, and the margin
for possible improvement. We introduce a knock signal model
and obtain an analytical result for the associated receiveroper-
ating characteristic of the standard knock detector. To show the
improvement potential, we derive the theoretical upper bound
of performance. A special case with unknown model parame-
ters is also considered. Numerical results stimulate the research
of improved detectors.

1 Introduction

A high compression ratio and a proper spark timing advance
are necessary to attain good efficiency of internal combustion
gasoline engines. Both parameters are limited by the apparition
of knock which is a spontaneous ignition of unburned air-fuel
mixture that occurs after ignition by spark plug [1]. Knock
consequences are harmful, from excessive emission of pollu-
tants, efficiency decrease, to engine damage [2]. Its detection
and prevention are thus an important part of engine control.

For economic reasons, the direct method of measuring knock
by in-cylinder pressure transducers is usually replaced byex-
ploiting the vibration signal from one or more accelerometers
mounted on engine block surface. Knock being constituted of
several resonances determined by cylinder geometry [3], the
standard treatment is to apply a band-pass filter followed by
computation of signal energy in a predefined time window. The
result is compared to base engine noise to make a decision
whether knock is present or not. Parameters of the treatment
like the resonance to choose, filter frequency and time window
are determined for each engine type during calibration phase.

In this paper, we investigate the detection performance result-
ing from the described knock signal processing scheme by
means of detection theory. Contrary to [4] where a similar
analysis is performed by simulation on real training data, an-
alytical results give access to arbitrary false alarm ratesas we
are not limited by sample data size. The analysis is based on
a simple signal model including some unknown parameters.
The detection performance is compared to that of the optimal
Neyman-Pearson test which gives the theoretical upper limit
for performance of any real world detector. The gap between

the two curves shows how much place there is left for possible
improvement of actual knock detection method.

The paper is organised as follows. In Section 2, we intro-
duce the signal model. Section 3 gives the associated optimal
Neyman-Pearson detector performance. The case where some
model parameters are unknown is discussed in Section 4. We
derive the performance of the standard knock detection system
in Section 5. A numerical example is given in Section 6, before
the paper is concluded in Section 7.

2 Knock signal model

Time-frequency analysis of knock vibrations clearly showsa
multi-frequency signal structure [5]. It also reveals thatres-
onance frequencies decrease with time which is due to tem-
perature and sound speed decrease. Theoretical analysis and
experiments show that a linear frequency modulation (i.e. a
2nd order polynomial phase) is a good approximation [6]. In a
similar manner as in [7], we write the signal model as a sum
of P resonances in zero mean white Gaussian additive noise of
varianceσ2:

x(t) = s(t) + n(t) =

=

P
∑

p=1

ap wp(t) cos
(

2π(αpt
2 + βpt) + φp

)

+ n(t). (2.1)

The normalised envelope functionswp have two parameters de-
scribing time scaling and instant of knock begin:

wp(t) =
t − t0,p

τp

exp

(

− t − t0,p

τp

+ 1

)

Θ
(

t − t0,p

)

, (2.2)

Θ(t) being the Heaviside unit step function. The form of en-
velope functions is shown in figure 1. Each resonance thus has
a six-element parameter vectorθp = [ap, αp, βp, φp, t0,p, τp]

T .
The sampled signal written as a vector isx = [x(0), . . . , x(N−
1)]T = s + n.

3 Neyman-Pearson performance limit

We formulate the knock detection as a two hypothesis testing
problem:

H0 : x = n (no knock),

H1 : x = s + n (knock is present).
(3.1)

If all the model parameters are known, the optimal test in the
sense of maximising the probability of detectionPd for a given
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Figure 1:Envelope function given by equation (2.2).

probability of false alarmPfa is the Neyman-Pearson (NP)
likelihood ratio test [8]:

decideH1 if Lnp(x) =
p(x;H1)

p(x;H0)
> γ (3.2)

wherep(x;Hi) is the probability density function (PDF) of
datax underi-th hypothesis. For a given signal-to-noise ra-
tio, the thresholdγ parametrises the receiver operating char-
acteristic (ROC) curve asPfa(γ) = Pr[Lnp(x) > γ;H0],
Pd(γ) = Pr[Lnp(x) > γ;H1]. These two probabilities can
be analytically calculated. The PDFs to be inserted in (3.2)are

p(x;H0) =
1

(2πσ2)
N

2

exp

(

− x
T
x

2σ2

)

, (3.3)

p(x;H1) =
1

(2πσ2)
N

2

exp

(

− (x − s)T (x − s)

2σ2

)

. (3.4)

Since taking a monotonous function ofLnp(x) does not change
the test, we can use the equivalent test statistic

decideH1 if Tnp(x) = σ2 lnLnp(x) +
1

2
s
T
s =

= x
T
s > γ′ (3.5)

which is found to beTnp(x) ∼ N (0, σ2E) underH0 and
Tnp(x) ∼ N (E, σ2E) underH1, where we defined the signal
energyE = s

T
s, andN (µ, σ2) denotes a normal distribution

with meanµ and varianceσ2. Note that the form of the test
as written in (3.5) corresponds to computing the correlation of
measured data with signal model. Like the standard treatment
discussed in section 5, it is an energy detector but here onlythe
contribution of the useful signal part is extracted. Finally, we
find

Pd(γ
′) = Q

(

γ′ − E√
σ2E

)

, Pfa(γ′) = Q

(

γ′

√
σ2E

)

(3.6)

whereQ(x) =

∫ ∞

x

1√
2π

exp(− t2

2
)dt is the right-tail proba-

bility function.

In practice, signal parameters are not all known and the
Neyman-Pearson test cannot directly be applied. Replacingthe
true parameter values by their estimates degrades detection per-
formance and the NP detector can be seen as the upper limit of
performance that any detector can reach.

4 Case of unknown amplitudes and phases

We now consider the situation where the signal parameters are
all known except the resonance amplitudesap and phasesφp.
This is equivalent to assuming that the knock signal has a fixed
form but the intensity of each resonance can vary. Although
without any proof of optimality similar to that of the NP test,
the standard approach is to replace the unknown parameters by
their maximum likelihood (ML) estimates, which is known as
the generalised likelihood ratio test (GLRT).

We rewrites(t) from (2.1) as

s(t) =

P
∑

p=1

[

Ap wp(t) cos
(

2π(αpt
2 + βpt)

)

+

+Bp wp(t) sin
(

2π(αpt
2 + βpt)

)]

(4.1)

with Ap = ap cos(φp), Bp = −ap sin(φp). Introducing the
unknown parameter vectora = [A1, B1, . . . , AP , BP ]T , we
can write

x = Sa + n (4.2)

where the structure of theN × 2P matrix S is obvious from
equation (4.1). The ML estimate ofa is â = (ST

S)−1
S

T
x.

The detection can be reformulated as testing whethera = 0

(H0) or a 6= 0 (H1).

Replacings by Sâ and proceeding as in section 3, we obtain

decideH1 if Tglrt(x) = x
T
S(ST

S)−1
S

T
x > γ′. (4.3)

The test is thus a projection of measured data onto the signal
subspace. In this case, the test statistic is found to be chi-
squared distributed with2P degrees of freedom [8]. The distri-
bution is central underH0 and noncentral underH1, the non-

centrality parameter beingλ =
E

σ2
. Hence, the ROC curve can

be calculated from

Pd(γ
′) = Qχ′2

2P
(λ)(γ

′), Pfa(γ′) = Qχ2

2P

(γ′) (4.4)

where the twoQ-functions denote the corresponding right-tail
probabilities.

5 Bandpass filter energy detector

As stated before, the classical knock detector compares the
bandpass filter output energy to a threshold. We suppose that
the filter can be written in a finite impulse response form. The
filtered knock signal is

xf = Hx = nf underH0

xf = Hx = sf + nf underH1

(5.1)
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where H is the filtering matrix. Let the filtered noise co-
variance matrix and its diagonalisation beC = E[nfn

T
f ] =

U
T
ΛU. For convenience, we now definexu = Uxf = su +

nu and thereforexf = U
T
xu. Note that sinceE[nun

T
u ] = Λ,

the samples ofxu are decorrelated.

The test statistic is the filtered signal energy:

decideH1 if Lbpe(x) = x
T
f xf = x

T
u UU

T
xu =

= x
T
u xu =

N
∑

i=1

(xu)2i > γ. (5.2)

The sum terms(xu)2i are independent by construction and we
can apply the central limit theorem with Lyapunov condition
[9] to approximate the PDF of test statistic (5.2), supposing
thatN is large enough. In this case,Lbpe(x) will be normally

distributed with mean and variance equal to
N
∑

i=1

E[(xu)2i ] and

N
∑

i=1

var[(xu)2i ] respectively. Defining the filtered signal energy

Ef = s
T
f sf , we find

Lbpe(x) ∼ N
(

Tr(C), 2Tr(C2)
)

underH0

Lbpe(x) ∼ N
(

Ef + Tr(C), 4sT
f Csf+

+ 2Tr(C2)
)

underH1.

(5.3)

The covariance matrix ofn is σ2
I and thusC = σ2

HH
T .

Finally, the ROC curve for this detector can be calculated as
follows:

Pd(γ) = Q

(

γ − Ef − Tr(C)
√

4sT
f Csf + 2Tr(C2)

)

,

Pfa(γ) = Q

(

γ − Tr(C)
√

2Tr(C2)

)

.

(5.4)

6 Numerical example

We now give an example of the ROC curves discussed in the
paper. The parameters’ orders of magnitude are determined
from a real knock signal. The values taken are the following:
P =3, θ1 = [1.0, -2.3·105 Hz/s, 7 kHz, 3.9, 0.61 ms, 0.6 ms]T ,
θ2 = [0.8, -2.8·105 Hz/s, 12 kHz, 1.1, 0.64 ms, 0.56 ms]T ,
θ3 = [0.5, -3.2·105 Hz/s, 17 kHz, 5.7, 0.67 ms, 0.57 ms]T ,
N =167 (corresponding to 10◦–50◦ crank angle window at
3000 RPM and 75 kHz sampling frequency). Figure 2 shows
the ROC curves for signal-to-noise ratio of -6 dB. The filterH

from (5.1) is a 50-point finite impulse response approximation
of a second order infinite impulse response filter with quality
factor 2.3, centered onβ1 (the strongest resonance).

As we see, the model of actual knock detection scheme is quite
far below the NP bound, showing that there is space left for pos-
sible performance improvement. This can be explained by the
fact that bandpass filtering is a non-coherent treatment where
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Figure 2:ROC curves for SNR=-6 dB.

the integration gain does not increase with sample size. To il-
lustrate the results, suppose that a detection probabilityof 0.9
is prescribed. In this case, there is aPfa gain factor of≈103

between BPE and GLRT(ap, φp). For a 4-cylinder engine run-
ning at 3000 RPM without knock, the number of false alarms
passes from 136 to 0.13 per minute. Since false alarms engage
a useless spark advance correction and thus engine efficiency
decrease, this is considerable.

7 Conclusions

The present document considered the standard engine knock
detection processing system. Based on a simple signal model,
analytical results for detector performance were derived in
terms of receiver operating characteristic. They were compared
to the theoretical upper bound given by the Neyman-Pearson
test, as well as to the ROC curve of the case with unknown
amplitudes and phases. The results show how much perfor-
mance improvement can be expected. To exploit this option,
our further investigations will consider the usage of a priori
knowledge on unknown parameters and/or their estimation.
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