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ABSTRACT
This paper is primarily tutorial in nature and presents a simple ap-
proach (norm minimization under linear constraints) for deriving
computable lower bounds on the MSE of deterministic parameter
estimators with a clear interpretation of the bounds. We also address
the issue of lower bounds tightness in comparison with the MSE of
ML estimators and their ability to predict the SNR threshold region.
Last, as many practical estimation problems must be regarded as
joint detection-estimation problems, we remind that the estimation
performance must be conditional on detection performance, leading
to the open problem of the fundamental limits of the joint detection-
estimation performance.

Index Terms— Estimation, MSE lower bounds, Signal detec-
tion

1. INTRODUCTION

Lower bounds on the mean square error (MSE) in estimating a set
of deterministic parameters [4] from noisy observations provide the
best performance of any estimators in terms of the MSE. They allow
to investigate fundamental limits of a parameter estimation problem
or to assess the relative performance of a specific estimator. All ex-
isting bounds on the MSE of unbiased estimators are different so-
lutions of the same norm minimization problem under sets of ap-
propriate linear constraints defining approximations of unbiasness
in the Barankin sense (2) (§2). The weakest and the strongest defini-
tion of unbiasness (§2.2) leads respectively to the Cramér-Rao bound
(CRB) and to the Barankin bound (BB), which are, the lowest (non
trivial) and the highest lower bound on the MSE of unbiased estima-
tors. Therefore, the CRB and BB can be regarded as key represen-
tative of two general classes of bounds, respectively the Small-Error
bounds and the Large-Error bounds. Indeed, in non-linear estima-
tion problems three distinct regions of operation can be observed. In
the asymptotic region, the MSE of estimators is small and, in many
cases, close to the Small-Error bounds. In the a priori performance
region where the number of independent snapshots and/or the signal-
to-noise ratio (SNR) are very low, the observations provide little
information and the MSE is close to that obtained from the prior
knowledge about the problem. Between these two extremes, there
is an additional ambiguity region, also called the transition region.
In this region, the MSE of maximum likelihood estimators (MLEs)
deteriorates rapidly with respect to Small-Error bounds and gener-
ally exhibits a threshold behavior corresponding to a ”performance
breakdown” highlighted by Large-Error bounds (§2.3). Additionally,
in nearly all fields of science and engineering, a wide variety of pro-
cessing requires a binary detection step (detector) designed to decide

if a signal is present or not in noise. As a detector restricts the set of
observations available for parameter estimation, any accurate MSE
lower bound must take into account this initial statistical condition-
ing. If the derivation of any lower bound with statistical conditioning
is straightforward for realizable detectors (which do not depend on
the true parameter values) by resorting to the norm minimization
approach (§3.1), it remains an open problem for clairvoyant detec-
tors (which depend on the true parameters value) (§3.2), including
optimal detectors (Bayes or Neyman-Pearson criteria). As a conse-
quence, it is not yet possible to compute the fundamental limits of
the joint detection-estimation problem, such as, for example, lower
bounds on the MSE conditioned by the optimal detector.

2. LOWER BOUNDS AND NORM MINIMIZATION

For the sake of simplicity we will focus on the estimation of a single
real function g (θ) of a single unknown real deterministic parameter
θ. In the following, unless otherwise stated, x denotes the random
observations vector, Ω the observation space, and p (x; θ) the proba-
bility density function (p.d.f.) of observations depending on θ ∈ Θ,
where Θ denotes the parameter space. Let FΩ be the real vector
space of square integrable functions over Ω. A fundamental prop-

erty of the MSE of a particular estimator ĝ
`
θ0
´
(x) ∈ FΩ of g

`
θ0
´
,

where θ0 is a selected value of the parameter θ, is that it is a norm
associated with a particular scalar product 〈 | 〉θ:

MSEθ0

h
ĝ
`
θ0
´i

=
‚‚‚ĝ
`
θ0
´
(x)− g

`
θ0
´‚‚‚

2

θ0

〈g (x) | h (x)〉θ0 = Eθ0 [g (x) h (x)] =

Z
g (x) h (x) p

`
x; θ0

´
dx.

In the search for a lower bound on the MSE, this property allows
the use of two equivalent fundamental results: the generalization
of the Cauchy-Schwartz inequality to Gram matrices (generally re-
ferred to as the “covariance inequality”) and the minimization of
a norm under linear constraints. Nevertheless, we shall prefer the
”norm minimization” form as its use provides a better understand-
ing of the hypotheses associated with the different lower bounds on
the MSE. Then, let U be a Euclidean vector space of any dimension
(finite or infinite) on the body of real numbers R which has a scalar
product 〈 | 〉. Let (c1, . . . , cK) be a free family of K vectors of U
and v = (v1, . . . , vK)T a vector of RK . The problem of the min-
imization of ‖u‖2 under the K linear constraints 〈u | ck〉 = vk,
k ∈ [1, K] then has the solution:

min
˘‖u‖2¯ = vT G−1v for uopt =

KP
k=1

αkck

(α1, . . . , αK)T = α = G−1v, Gn,k = 〈ck | cn〉
(1)
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2.1. Highest lower bound for unbiased estimators

An unbiased estimator ĝ
`
θ0
´
(x) of g (θ) is an estimator unbiased

for all possible values of the unknown parameter (∀θ ∈ Θ):

Eθ

h
ĝ
`
θ0
´
(x)
i

= g (θ) . (2)

Thus, the locally-best (at θ0) unbiased estimator is the solution of:

min
n

MSEθ0

h
ĝ
`
θ0
´io

under Eθ

h
ĝ
`
θ0
´
(x)
i

= g (θ) . (3)

This problem can be solved by applying the work of Barankin based
on a point discretization of (2). Indeed, any unbiased estimator

ĝ
`
θ0
´
(x) of g (θ) must verify, ∀θn ∈ Θ:

Eθn

h
ĝ
`
θ0
´
(x)
i

= g (θn) =

Z
ĝ
`
θ0
´
(x) p (x; θn) dx,

and more generally, ∀w ∈ RN :

Eθ0

h“
ĝ
`
θ0
´
(x)− g

`
θ0
´” `

wT π
`
x; θ0

´´i
= wT ∆g

where (∆g)n = g (θn) − g
`
θ0
´

and
`
π
`
x; θ0

´´
n

= p(x;θn)

p(x;θ0)
.

Therefore, according to (1), the minimization of MSEθ0

h
ĝ
`
θ0
´i

under the constraint as above - valid for any subset of test points
{θn}[1,N ] of Θ and w ∈ RN - implies:

MSEθ0

h
ĝ
`
θ0
´i ≥ lim

N→∞
sup

w,{θn}[1,N]

(wT ∆g)2

wT Rw

where R = Eθ0

h
π
`
x; θ0

´
π
`
x; θ0

´T i, which is the original form
of the BB. From a computational point of view, a more efficient

form (McAulay-Seidman) can be derived by noting that (wT ∆g)2

wT Rw

≤∆gT R−1∆g with equality if w = λR−1∆g. Therefore:

MSEθ0

h
ĝ
`
θ0
´i ≥ lim

N→∞
sup

{θn}[1,N]

n
∆gT R−1∆g

o
(4)

It is then worth noting that (4) is also the solution of, {θn}[1,N ] ∈ Θ:

min
n

MSEθ0

h
ĝ
`
θ0
´io

under Eθn

h
ĝ
`
θ0
´
(x)
i

= g (θn)

Finally, the locally best unbiased estimator ĝ
`
θ0
´

opt
satisfies (4):

lim
N−→∞

˛̨
˛̨
˛̨
˛̨
˛

R
`
w
λ

´
= ∆g

ĝ
`
θ0
´

opt
(x)− g

`
θ0
´

=
NP

n=1

wn
λ

p(x;θn)

p(x;θ0)

MSEθ0

h
ĝ
`
θ0
´i ≥ ∆gT R−1∆g = ∆gT

`
w
λ

´

that leads to, defining 1
λ

= dθ = θn+1 − θn, :
Z

K
`
θ, θ′

´
w
`
θ′
´
dθ′ = g (θ)− g

`
θ0´ (5a)

K
`
θ, θ′

´
=

Z
p (x; θ) p (x; θ′)

p
`
x; θ0

´ dx (5b)

ĝ
`
θ0
´

opt
(x)− g

`
θ0´ =

Z
p (x; θ)

p
`
x; θ0

´w (θ) dθ (5c)

MSEθ0

h
ĝ
`
θ0
´i ≥

Z `
g (θ)− g

`
θ0´´w (θ) dθ (5d)

Unfortunately it is generally impossible to find either the limit of
(4) or an analytical solution of (5a) to obtain an explicit form of

ĝ
`
θ0
´

opt
and of the lower bound on the MSE. Therefore, the search

for an easily computable but tight approximation of the BB is a sub-
ject of great theoretical and practical importance.

2.2. Computable lower bounds: approximations of the BB

All existing computable bounds on the MSE of unbiased estimators
are different solutions of the same norm minimization problem un-
der sets of appropriate linear constraints defining approximations of
unbiasness (2). Indeed, let us consider that both p (x; θ) and g (θ)
can be approximated by piecewise Taylor series expansions of order
Ln (Θ = ∪In):

g(θn + dθ) = g(θn) +
LnP
l=1

∂lg(θn)

∂lθ
dθl

l!
+ o

`
dθLn

´
, θn + dθ ∈ In

p (x; θn + dθ) = p (x; θn) +
LnP
l=1

∂lp(x;θn)

∂lθ
dθl

l!
+ ox

`
dθLn

´

Then, under the required regularity conditions to allow order of inte-
gration and differentiation interchange, a possible local approxima-
tion of unbiasedness (2) on every sub-interval In is:

Eθn+dθ

h
ĝ
`
θ0
´
(x)
i

= g (θn + dθ) + o
“
dθLn

”
(6)

provided the Ln + 1 linear constraints are verified:
Z

ĝ
`
θ0
´
(x)

∂lp (x; θn)

∂lθ
dx =

∂lg(θn)

∂lθ
, l ∈ [0, Ln] (7)

Thus, the set of
NP

n=1

(Ln + 1) constraints (7) deriving from the N

piecewise local approximation of (2) defines a given approximation
of the BB denoted by BBI1,...,IN

L1,...,LN
(1):

BBI1,...,IN
L1,...,LN

= vT G−1v (8)

v =
ˆ
vT

1 , ...,vT
N

˜T
, G = Eθ0

ˆ
ccT

˜
, c =

ˆ
cT
1 , ..., cT

N

˜T
cn =

h
p (x; θn) , ∂p(x;θn)

∂θ
, ..., ∂Ln p(x;θn)

∂Ln θ

i

vn =
h
g(θn)− g(θ0), ∂g(θn)

∂θ
, ..., ∂Ln g(θn)

∂Ln θ

i

Moreover, if min {L1, ..., LN} tends to infinity, BBI1,...,IN
L1,...,LN

con-
verges in mean-square to the BB. An immediate generalization of
expression (8) consists of taking its supremum over existing de-
grees of freedom (sub-interval definitions and series expansion or-
ders). Lastly, it is worth noting that the set of BBI1,...,IN

L1,...,LN
allows

exploration of the unbiasedness assumption from its weakest to its
strongest formulation.
Designating the BB approximations as:
•N -piecewise BB approximation of homogeneous order L, if on all
sub-intervals In the series expansions are of the same order L,
• N -piecewise BB approximation of heterogeneous orders
{L1, ..., LN}, if otherwise,
• the CRB [4] is a 1-piecewise BB approximation of homogeneous
order 1, since the constraints are:

Eθ0

h
ĝ
`
θ0
´
(x)
i

= g
`
θ0
´
, Eθ0

"
ĝ
`
θ0
´
(x)

∂p(x;θ0)
∂θ

p(x;θ0)

#
=

∂g(θ0)
∂θ

• the Bhattacharyya bound [4] of order L is a 1-piecewise BB ap-
proximation of homogeneous order L, since the constraints are:

Eθ0

h
ĝ
`
θ0
´
(x)
i

= g
`
θ0
´
, Eθ0

2
4ĝ
`
θ0
´
(x)

∂lp(x;θ0)
∂lθ

p(x;θ0)

3
5 =

∂lg(θ0)
∂lθ

• the Hammersley-Chapman-Robbins bound [1] (HCRB) is the supre-
mum of a 2-piecewise BB approximation of homogeneous order 0,
over a set of constraints of type:

Eθ0

h
ĝ
`
θ0
´
(x)
i

= g
`
θ0
´
, Eθ1

h
ĝ
`
θ0
´
(x)
i

= g
`
θ1
´

• the McAulay-Seidman bound [1] (MSBN ) with N test points is an



N + 1-piecewise BB approximation of homogeneous order 0, since
the constraints are:
Eθ0

h
ĝ
`
θ0
´
(x)
i

= g
`
θ0
´
, Eθn

h
ĝ
`
θ0
´
(x)
i

= g (θn)

• the Hybrid Barankin-Bhattacharyya bound (Abel Bound) [1] (HBBN
L )

is an N + 1-piecewise BB approximation of heterogeneous order
{L, 0, ..., 0}, since the constraints are:

Eθ0

h
ĝ
`
θ0
´
(x)
i

= g
`
θ0
´
, Eθ0

2
4ĝ
`
θ0
´
(x)

∂lp(x;θ0)
∂lθ

p(x;θ0)

3
5 =

∂lg(θ0)
∂lθ

Eθn

h
ĝ
`
θ0
´
(x)
i

= g (θn)

• the BBN
1 [3] is an N + 1-piecewise BB approximation of homo-

geneous order 1, since the constraints are:

Eθ0

h
ĝ
`
θ0
´
(x)
i

= g
`
θ0
´
, Eθ0

"
ĝ
`
θ0
´
(x)

∂p(x;θ0)
∂θ

p(x;θ0)

#
=

∂g(θ0)
∂θ

Eθn

h
ĝ
`
θ0
´
(x)
i

= g (θn) , Eθn

»
ĝ
`
θ0
´
(x)

∂p(x;θn)
∂θ

p(x;θn)

–
= ∂g(θn)

∂θ

2.3. Lower bounds and threshold region determination

In non-linear estimation problems, ML estimators exhibit a thresh-
old effect, i.e. a rapid deterioration of estimation accuracy below a
certain SNR or number of snapshots. This effect is caused by out-
liers and is not captured by standard techniques such as the CRB.
The search of the SNR threshold value (where the CRB becomes
unreliable for prediction of ML estimator variance) can be achieved
with the help of the BB approximations introduced above. For ex-
ample, let us consider the single tone estimation problem:

x = sθ+n, sθ = aψ(θ), ψ(θ) =
h
1, ej2πθ, ..., ej2π(M−1)θ

iT

,

where θ ∈ ]−0.5, 0.5[, a2 is the SNR (a > 0) and n is a com-
plex circular zero mean white Gaussian noise (Cx = Id). Then
bθML = max

θ

˘
Re
ˆ
ψ(θ)Hx

˜¯
. The MSBN , HBBN

1 , BBN
1 are

computed as supremum over the possible values of {θn}[1,3] =˘
θ0, θ0 + dθ, θ0 − dθ

¯
where θ0 = 0. Curves with solid lines of

figure (1) shows the evolution of the various bounds as a function of
SNR in the case of M = 10 samples. The MSE of the MLE is also
shown in order to compare the threshold behaviour of the bounds.

2.4. Lower bounds for biased estimators

Additionally, these curves highlight that the achievable performance
predicted by any lower bounds for unbiased estimators becomes less
informative as the SNR decreases, since most realizable estimators
(including MLEs) can not remain unbiased at low SNR. To over-
come this limitation, one can resort to biased lower bounds where
(2) becomes:

Eθ

h
ĝ
`
θ0
´
(x)
i

= g (θ) + b (θ)

where b (θ) is the bias function. It is an attractive theoretical re-
finement if analytical expression of the bias is available [2] (figure
(2)). Unfortunately the bias depends on the specific estimator and
furthermore is hardly ever known in practice.

3. CONDITIONAL LOWER BOUNDS

In many practical problems of interest, the observations vector x can
be modelled as a mixture of a signal of interest sθ and a noise n
(x = sθ + n) where the signal of interest sθ is not always present.
Such problems require first a binary detection step (decision rule) to

decide if the signal of interest sθ is present (H1) or not (H0) in the
noise before running any estimation scheme [2]:

H0 : x = n
H1 : x = sθ + n

The derivation of optimal decision rules [4] require knowledge of
the p.d.f. of observations under each hypothesis and the a priori
probability of each hypothesis (P (H0) , P (H1)), if known (Bayes
criterion). If no a priori probability of hypotheses is available, then
the Neyman-Pearson criterion is often used:

max {PD = P (D | H1)} under PFA = P (D | H0) = α,

where D denotes the event of detection of sθ . Both criteria lead to
the likelihood ratio test (LRT)

P (x|H1)
P (x|H0)

H1
≷
H0

T

which is generally not realizable since it almost always depend at
least on one of the unknown parameters θ. Therefore, a common
approach to designing realizable tests is to replace the unknown pa-
rameters by estimates, the detection problem becoming a composite
hypothesis testing problem (CHTP) [4]. Although not necessarily
optimal for detection performance, the estimates are generally cho-
sen in the maximum likelihood sense, thereby obtaining the gener-
alized likelihood ratio test (GLRT). Additionally, as a detection step
restricts the set of observations available for parameter estimation,
any MSE lower bound must take this statistical conditioning into ac-
count, which is straightforward for realizable test by resorting to the
norm minimization approach.

3.1. Lower Bounds conditioned by a realizable detection test

If D is a realizable conditioning event (detection test) with proba-
bility PD (θ) =

R
D

p (x; θ) dx, the conditional lower bounds are
obtained by substituting D and p (x | D; θ) = p(x;θ)

PD(θ)
for Ω and

p (x; θ) in the MSE norm definition:

MSEθ0|D
h
ĝ
`
θ0
´i

=
‚‚‚ĝ
`
θ0
´
(x)− g

`
θ0
´‚‚‚

2

θ0|D
〈g (x) | h (x)〉θ0|D = Eθ0 [g (x) h (x) | D]

=

Z

D

g (x) h (x) p
`
x | D; θ0

´
dx.

As a result, the Conditional Fisher Information Matrix (CFIM) is:

F (θ | D)i,j = Eθ

h
∂ ln p(x;θ)

∂θi

∂ ln p(x;θ)
∂θj

| D
i
− ∂ ln PD(θ)

∂θi

∂ ln PD(θ)
∂θj

F (θ | D)i,j = −Eθ

h
∂2 ln p(x;θ)

∂θi∂θj
| D
i

+ ∂2 ln PD(θ)
∂θi∂θj

The possible influence of the detection step on parameter estimation
performance can be illustrated by the study of the influence of the
energy detector:

xHx
H1
≷
H0

T

on the single tone estimation problem (§2.3) [3] and on the estima-
tion of the direction of arrival (DOA) of a signal source by means of
a 2 sensors array called monopulse antenna [2]. This high-precision
technique is widely used in tracking systems where:

x = βg + n, g = [1, r (θ)]T

θ is the deviation angle from array boresight, r (θ) is the monopulse
ratio. If β is of Rayleigh type, then the p.d.f. of dr (θ) =

(x)2
(x)1

with-
out conditioning follows a Student distribution with mean value 0
and a smoothly increasing variance [2] as the SNR decreases. It is
the alternative case where the transition region is smooth when the
detection threshold effect is negligible. Intuitively, the detection step
is expected to modify MSE behavior mainly in the transition region
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where it plays a crucial role in selecting instances with relatively
high signal energy - sufficient to exceed the detection threshold -
and disregarding instances mainly consisting of noise that deterio-
rate the MSE. The former analysis is confirmed theoretically by the
lower bounds behavior in both figures (1 - dot curves) (2). As a
consequence, such a detection step is expected to improve the lower
bounds tightness in the transition region and to significantly modify
the conditions required to attain the CRB and thus to obtain an effi-
cient estimator (figure (2)).
A more unexpected and non intuitive result highlighted by figure (1)
is the increase of the MSE of the MLE in the transition region as
the detection threshold increases (as the PFA decreases). Indeed,
if we consider the stochastic case, i.e. a ∼ CN 1 (0, snr), then
bθML = max

θ

n˛̨
ψ(θ)Hx

˛̨2o
and one can check that the behavior of

its MSE is the opposite and true to the common intuition.

3.2. Lower Bounds conditioned by a clairvoyant detection test

If the conditioning event Dθ is clairvoyant, the MSE becomes:

MSEθ0

h
ĝ
`
θ0
´ | Dθ0

i
=

Z

D
θ0

“
ĝ
`
θ0
´
(x)− g

`
θ0
´”2

p
`
x | Dθ0 ; θ0

´
dx

where p (x | Dθ; θ) = p(x;θ)
PDθ

ΠDθ (x), ΠD (x) being the indicatrice
function over the subset D. Unfortunately the linear transformation
〈 | 〉θ0|D

θ0
based on p

`
x | Dθ0 ; θ0

´
is a scalar product only over

Dθ0 as it is no longer definite over any Dθ not included in Dθ0 ,
which prevents from rewriting the unbiased estimator constraint (2)

g (θ) = Eθ

h
ĝ
`
θ0
´
(x) | Dθ

i
=

Z

Dθ

ĝ
`
θ0
´
(x) p (x | Dθ; θ) dx,

by resorting to 〈 | 〉θ0|D
θ0

. Nevertheless, the above difficulty can
be partially overcome if we restrict our search to best locally-unbiased
estimator of g

`
θ0
´
. Let us denote U = Dθ1 ∪ Dθ0 . Then the

lower bound of
Z

U

“
ĝ
`
θ0
´
(x)− g

`
θ0
´”2 p(x;θ0)

PD
θ0

dx under the

constraints:Z

U

“
ĝ
`
θ0
´
(x)− g

`
θ0
´”

p
`
x | Dθ1 ; θ1

´
dx = g

`
θ1
´− g

`
θ0
´

Z

U

“
ĝ
`
θ0
´
(x)− g

`
θ0
´”

p
`
x | Dθ0 ; θ0

´
dx = 0

exists (1). Under the smooth condition of a set of events Dθ satis-
fying lim

θ′→θ
Dθ′ = Dθ, ∀ {θ, θ′} ∈ Θ, the above minimization prob-

lem, where θ1 → θ0, converges to:

min
n

MSEθ0

h
ĝ
`
θ0
´ | Dθ0

io
under

Eθ1

h
ĝ
`
θ0
´
(x) | Dθ1

i
= g

`
θ1
´

Eθ0

h
ĝ
`
θ0
´
(x) | Dθ0

i
= g

`
θ0
´

whose lower bound is the HCRB where θ1 → θ0, that is the CRB,:

MSEθ0

h
ĝ
`
θ0
´ | Dθ0

i
≥

"
∂g(θ0)

∂θ

#2

lim
θ→θ0

z(θ;θ0)
(θ−θ0)2

z
`
θ; θ0

´
=

Z
p(x;θ)2PD

θ0

p(x;θ0)P2
Dθ

ΠDθ (x) dx−
„Z

p(x;θ)
PDθ

ΠDθ∩D
θ0 (x) dx

«2

The above inequality provides the most general form of the CRB.
Examination of the function z

`
θ; θ0

´
shows that it is:

• second order in
`
θ − θ0

´
if the conditioning event is realizable

(Dθ = D, ∀θ ∈ Θ) leading to a non-trivial bound (§3.1),
• and first order in

`
θ − θ0

´
if the conditioning event is clairvoyant

leading unfortunately to the trivial zero bound.
Therefore the derivation and the computation of a non-trivial esti-
mation lower bound conditioned by a clairvoyant optimal test, re-
mains an open problem of great importance.
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