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Amplitude Estimation of a Signal With Known Waveform
in the Presence of Steering Vector Uncertainties

Olivier Besson, Gleb Varfolomeev, and François Vincent

Abstract—In this correspondence, we address the problem of estimating
the amplitude of a signal with known waveform received on an array of
sensors and we consider the case where there exist uncertainties about the
spatial signature of the signal of interest. Closed-form expressions for the
Cramér–Rao bound are derived and the respective influence of the uncer-
tainties and the number of snapshots is studied. The maximum likelihood
estimator (MLE) of the signal of interest amplitude along with the covari-
ance matrix of the interferences and noise is also derived and an iterative
algorithm is presented to obtain the ML estimates.

I. PROBLEM STATEMENT

In this correspondence, we consider the problem of estimating the
amplitude of a signal with known waveform received by an array of
sensors in the presence of spatially correlated noise. This problem has
practical relevance inmany applications, including active radar systems
[1] where the reflection from a target is a scaled and delayed version
of the emitted signal. It can also be encountered in mobile communica-
tions when, for instance, a training sequence is used. Finally, the same
type of problem arises in quadrupole resonance techniques [2]. Briefly
stated, the problem amounts to estimating the scalar � from N snap-
shots drawn from the following model:

xxxt = �aaast + nnnt: (1)

In the previous equation, xxxt is the array output collected at time t, st is
the known signal waveformwhile� denotes its unknown amplitude and
aaa corresponds to the array’s response for the signal of interest (SOI).
The noise nnnt is assumed to be a zero-mean, complex-valued Gaussian
process with unknown covariance matrix CCC , i.e., nnnt � CN (0; CCC).
The problem of estimating � in the model (1) has already received
much attention in the literature. More precisely, different methods were
proposed in [2]–[5] corresponding to various assumptions on aaa, which
are summarized in Table I.

In [2], the steering vector of interest is assumed to be known and the
maximum likelihood estimator is derived and compared to the Capon
estimator. Reference [2] also considers the extension to a temporally
correlated (i.e., multichannel autoregressive) noise. In [3]–[5], the
multiple signal version of (1) is considered (i.e., multiple signals with
known waveforms impinge on the array) but the SOI’s steering vector
is assumed to be of the form aaa = aaa(�) where � is the direction-of-ar-
rival (DOA) of the source. Hence, [3]–[5] address the problem of
jointly estimating the amplitudes and DOAs of the signals of interest.
[4] also addresses the case of a completely unstructured steering vector
aaa, i.e., aaa is assumed to be an unknown deterministic vector. Since, in
this case, there exists an inherent scalar ambiguity between aaa and �,
only aaa = �aaa can be estimated, unless some constraint is set on aaa to
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TABLE I
SUMMARY OF ARRAY PROCESSING FROM THE MODEL xxxt = �aaast + nnnt

WHERE st IS A KNOWN WAVEFORM

resolve the ambiguity, for instance kaaak is a known constant. Observe
that the a priori knowledge about aaa is less and less pronounced as we
go from the left to the right in Table I.
Herein, we consider the case where the steering vector of interest

is affected by random errors and thus there exist uncertainties about
aaa. This is typically the case when the source is surrounded by mul-
tiple closely spaced scatterers, rendering the spatial signature aaa random
with a full-rank covariance matrix [6], [7]. Randomness in the array’s
response has been considered, e.g., in [8], [9]. It can be due to a non-
perfectly calibrated array with random gains and phases. Accordingly,
there can exist uncertainties about the DOA of the source of interest.
Therefore, in this paper, we assume that the steering vector of interest aaa
is drawn for a complex Gaussian distribution with mean aaa and a known
covariance matrix CCCa which gathers the effects of uncertainties, i.e.,
aaa � CN (aaa;CCCa). Since the errors in the steering vector are typically
a combination of different and independent factors, the central limit
theorem can be advocated to justify the Gaussian assumption. We also
assume that aaa and and nnnt are independent. Within this framework, we
examine the influence of these random steering vector errors onto the
estimation performance. Toward this end we derive the Cramér–Rao
bound (CRB) and study its dependence toward N and CCCa. Then, we
consider the maximum likelihood estimator of the signal amplitude and
the noise covariance matrix. In contrast to the case of known or un-
known but deterministic aaa, it is shown that theMLE cannot be obtained
in closed-form but requires an iterative procedure.

II. CRAMÉR–RAO BOUND

In this section, we derive the CRB for estimation of the unknown
parameters in the model, namely the parameter vector

��� =
����

���c

with ���� = [Re [�] Im [�] ]T = [ �R �I ]
T and where ���c is the

m2� 1 vector build from the (real-valued) diagonal elements ofCCC and
the real and imaginary parts of the elements below the main diagonal.
Since we are mostly interested in estimating �, we will concentrate
on deriving a closed-form expression for the CRB associated with �.
Let XXX = [xxx1 � � � xxxN ] and xxx = vec (XXX) be the vector obtained
by stacking the columns ofXXX . Accordingly, let sss = [ s1 � � � sN ]T

be the vector of signal waveforms. Then, under the stated hypotheses,
xxx is a Gaussian vector whose mean ��� and covariance matrix CCCx are,
respectively, given by

��� =�sss
 aaa (2a)

CCCx = IIIN 
CCC + j�j2 ssssssH 
CCCa (2b)

where 
 stands for the Kronecker product [10]. The (k; `) element of
the Fisher information matrix (FIM) can be written as [10], [11]

FFF k;` = 2Re
@���H

@���k
CCC
�1

x

@���

@���`
+ Tr CCC

�1

x

@CCCx

@���k
CCC
�1

x

@CCCx

@���`
: (3)
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The FIM will have the following partitioned form:

FFF =
FFF��� ��� FFF T

��� ���

FFF��� ��� FFF��� ���

(4)

where the partitioning corresponds to that of ���. We now derive the FIM
on a block-by-block basis. Prior to that, we introduce some notations
and derive matrix relations that will be used repeatedly in the sequel.
For any invertible matrices AAA and CCC and any matrices BBB and DDD of
conformable size, one can show that [10]

[AAA+BBBCCCDDD]�1 = AAA�1 �AAA�1BBB CCC�1 +DDDAAA�1BBB
�1

DDDAAA�1: (5)

Applying (5) to (2b) and observing that ssssssH 
 CCCa =
(sss
 IIIm)CCCa sssH 
 IIIm , we obtain

CCC�1x = (IIIN 
CCC) + j�j2 (sss
 IIIm)CCCa sssH 
 IIIm
�1

= IIIN 
CCC�1 � j�j2 ssssssH 
CCC
�1

(6)

where CCC
�1

CCC�1 j�j2 EsCCC
�1 +CCC�1a

�1
CCC�1 and Es = sssHsss.

Let us also define

ZZZ�1 CCC�1 � j�j2 EsCCC
�1

= CCC + j�j2 EsCCCa
�1

(7)

where, to obtain the second equality, we again made use of (5). Let us
consider now the block FFF��� ��� . Since ��� = �sss
 aaa, it follows that

@���

@�R
= sss
 aaa;

@���

@�I
= isss
 aaa: (8)

Therefore

@���H

@�R
CCC�1x

@���

@�R

= sssH 
 aaaH IIIN 
CCC�1 � j�j2 ssssssH 
CCC
�1

(sss
 aaa)

=Esaaa
H CCC�1 � j�j2 EsCCC

�1
aaa = Esaaa

HZZZ�1aaa

=
@���H

@�I
CCC�1x

@���

@�I
(9)

and

Re
@���H

@�R
CCC�1x

@���

@�I
= 0: (10)

Similarly, we have that

@CCCx

@�R
= 2�Rssssss

H 
CCCa;
@CCCx

@�I
= 2�Issssss

H 
CCCa: (11)

Additionally, using (6), it is straightforward to show that for any set of
matrices fMMMkg

4
k=1 of conformable size

Tr CCC�1x (MMM1 
MMM2)CCC
�1
x (MMM3 
MMM4)

=Tr fMMM1MMM3gTr CCC�1MMM2CCC
�1MMM4

� j�j2 sssHMMM3MMM1sss Tr CCC�1MMM2CCC
�1
MMM4

� j�j2 sssHMMM1MMM3sss Tr CCC
�1
MMM2CCC

�1MMM4

+ j�j4 sssHMMM1sss sssHMMM3sss Tr CCC
�1
MMM2CCC

�1
MMM4 : (12)

Using (12), one can write that

Tr CCC�1x ssssssH 
CCCa CCC�1x ssssssH 
CCCa

=E2
sTr CCC�1� j�j2 EsCCC

�1
CCCa CCC�1 � j�j2 EsCCC

�1
CCCa

=E2
sTr ZZZ�1CCCaZZZ

�1CCCa : (13)

Therefore, FFF��� ��� can be compactly written as

FFF��� ��� = 2Es aaaHZZZ�1aaa III + 4E2
sTr ZZZ�1CCCaZZZ

�1CCCa �������
T
� :

(14)
Let us now turn to the derivation of the other blocks of the FIM. As
will be shown later, it is more convenient to work with ccc = vec (CCC)
rather than with ���c: the two are linearly related by the Jacobian matrix
JJJ such that ccc = JJJ���c. First, observe that

@CCCx

@ccck+m(`�1)

= IIIN 

@CCC

@ccck+m(`�1)

(15)

and @CCC=@ccck+m(`�1) is am�mmatrix with all elements equal to zero
except the (`; k) which equals one. In particular, this implies that for
any TTT 2 m�m

Tr TTT
@CCC

@ccck+m(`�1)

= TTT k;`: (16)

Using (12), we get

Tr CCC�1x IIIN 

@CCC

@ccck+m(`�1)

CCC�1x ssssssH 
CCCa

=EsTr ZZZ�1
@CCC

@ccck+m(`�1)

ZZZ�1CCCa =EsZZZ
�1CCCaZZZ

�1

k;`
(17)

which, along with (11), implies that

FFFccc��� = 2Esvec ZZZ�1CCCaZZZ
�1 ���T� : (18)

Finally, using (12) and after some straightforward calculations, it
comes

Tr CCC�1x IIIN 

@CCC

@ccck+m(`�1)

CCC�1x IIIN 

@CCC

@ccc�
p+m(q�1)

=Tr ZZZ�1
@CCC

@ccck+m(`�1)

ZZZ�1
@CCC

@ccc�
p+m(q�1)

+ (N � 1)Tr CCC�1
@CCC

@ccck+m(`�1)

CCC�1
@CCC

@ccc�
p+m(q�1)

= ZZZ�1
q;`

ZZZ�1
k;p

+ (N � 1) CCC�1
q;`

CCC�1
k;p

= ZZZ�T
ZZZ�1+(N�1)CCC�T
CCC�1
k+m(`�1);p+m(q�1)

(19)

and hence

FFFcccccc = ZZZ�T 
ZZZ�1 + (N � 1)CCC�T 
CCC�1: (20)

Equations (14), (18), and (20) provide all necessary material to com-
pute the FIM and hence the CRB. Since we are mainly interested in
estimating �, we now derive a closed-form expression for CRB(�).
Using the fact that FFF��� ��� = JJJHFFFccc��� , FFF��� ��� = JJJHFFFccccccJJJ along with
a lemma for the inverse of partitioned matrices [10], we obtain

CRB(����)= FFF��� ��� � FFFH
ccc��� JJJ JJJHFFFccccccJJJ

�1

JJJHFFFccc���

�1

= FFF��� ��� �FFFH
ccc��� FFF�1cccccc FFFccc���

�1

= �III + ��������
T
�

�1

(21)

with

�=2Es aaaHZZZ�1aaa (22a)

�=4E2
svec(CCCa)

H ZZZT
ZZZ+
CCCT 
CCC

N � 1

�1

vec (CCCa) (22b)
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and where, to derive �, we made use of (5), (7), and (20) to obtain

FFF�1cccccc = ZZZT 
ZZZ

� ZZZT 
ZZZ ZZZT 
ZZZ +
CCCT 
CCC

N � 1

�1

ZZZT 
ZZZ : (23)

Note that CRB(����) is not diagonal and that its diagonal elements are
not identical. For any unbiased estimate � = �R + i�I of �

E � � �
2

= E �R � �R
2

+ E �I � �I
2

�Tr fCRB(����)g CRB(�): (24)

Since the eigenvalues of �III + ��������
T
� are � and � + j�j2 �, it follows

that

CRB(�) =
1

�
+

1

� + j�j2 �
: (25)

Equations (22) and (25) provide closed-form expressions for the CRB.
The following remarks are in order.

• Through numerical evaluation, it was observed that in most
cases, one can accurately approximate the CRB as follows.
Observe thatCCC = O(1) while ZZZ = max fO(1); O (N kCCCak)g
as Es = sssHsss = O(N). Hence, for not too small N ,
(1=(N � 1))CCCT 
 CCC is small compared to ZZZT 
 ZZZ . This
in turn implies that � ' 4E2

sTr ZZZ�1CCCaZZZ
�1CCCa . With this

approximation, the CRB becomes

CRB(�) ' Tr FFF�1��� ��� =
1

Es aaaHZZZ�1aaa

� 1�
j�j2 EsTr ZZZ�1CCCaZZZ

�1CCCa

aaaHZZZ�1aaa+ 2 j�j2 EsTr ZZZ�1CCCaZZZ
�1CCCa

(26)

which provides a rather simple expression for the CRB. It will be
shown through numerical examples that the approximated CRB
(26) is very close to the exact CRB (25).

• Where there are no uncertainties, thenCCCa = 0 and the steering
vector is known to be aaa. In this case, � = 2Es aaaHCCC�1aaa ,
� = 0 and the CRB reduces to

CRB(�)jCCC =0
=

1

Es aaaHCCC�1aaa
(27)

which coincides with the expression derived in [2]. Hence, the
CRB’s expression in (25) generalizes the result obtained in [2]
to the case of random steering vector errors.

• When the steering vector is known the CRB decreases as 1=N
and thus goes to zero asN goes to infinity. In contrast, whenN
tends to infinity, and assuming that kCCCak is constant

� '
N!1

2 aaaHCCC�1a aaa

j�j2
; � '

N!1

4m

j�j4
(28)

and hence the CRB does not go to zero. This is a logical since
the steering vector aaa is random [11] and even whenN !1 the
performance is limited by the steering vector errors covariance
matrix CCCa. For instance, when CCCa = �2aIII and aaaHaaa = m,
the asymptotic (in N ) CRB is approximately j�j2 �2a=m and
is therefore proportional to the variance of the steering vector
errors.

III. MAXIMUM LIKELIHOOD ESTIMATION

We now turn to the derivation of the MLE of � and CCC . The proba-
bility density function (pdf) of the observations can be written as

p(xxx; �;CCC) = p(xxxjaaa; �;CCC)p(aaa) daaa

where p(xxxjaaa; �;CCC) is the conditional pdf, given aaa, p(aaa) is the a priori
pdf of the steering vector of interest and where the semicolon indi-
cates that the pdf depends on � andCCC . For a given aaa, the snapshots are
Gaussian so that the conditional pdf is given by

p(xxxjaaa; �;CCC) =

exp �
N

t=1

(xxxt � �aaast)
H CCC�1 (xxxt � �aaast)

�mN jCCCjN

(29)
where jCCCj stands for the determinant of matrix CCC . Since p(aaa) does
not depend on � and CCC , we consider the derivatives of p(xxxjaaa; �;CCC)
with respect to � and CCC. For notational convenience let us define
�(xxxjaaa; �;CCC) ln p(xxxjaaa; �;CCC). First note that

@p(xxxjaaa; �;CCC)

@�
= p(xxxjaaa; �;CCC)

@�(xxxjaaa; �;CCC)

@�

= p(xxxjaaa; �;CCC)
@

@�

� �

N

t=1

(xxxt � �aaast)
H CCC�1 (xxxt � �aaast)

= p(xxxjaaa; �;CCC) aaaHCCC�1XXXsss��� aaaHCCC�1aaa sssHsss

(30)

and consequently

@p(xxx; �;CCC)

@�
=

@p(xxxjaaa; �;CCC)

@�
p(aaa)daaa

/ aaaHCCC�1XXXsss��� aaaHCCC�1aaa Es p(aaajxxx; �;CCC)daaa

=aaaHpostCCC
�1XXXsss�

��Es aaaHpostCCC
�1aaapost + Tr CCCaaajxxxCCC

�1 (31)

where aaapost E faaajxxx; �;CCCg = aaap(aaajxxx; �;CCC)daaa is the a posteriori
mean andCCCaaajxxx is the a posteriori covariance matrix. In order to derive
the last equality in (31), we used the fact that

aaaH��� p(aaajxxx; �;CCC)daaa=aaaHpost��� (32a)

aaaH���aaa p(aaajxxx; �;CCC)daaa=aaaHpost���aaapost+Tr CCCaaajxxx��� : (32b)

Accordingly

@p(xxxjaaa; �;CCC)

@CCC
= p(xxxjaaa; �;CCC)

@�(xxxjaaa; �;CCC)

@CCC

= p(xxxjaaa; �;CCC)
@

@CCC
f�N ln jCCCjg�p(xxxjaaa;�;CCC)

@

@CCC

�

N

t=1

(xxxt � �aaast)
H CCC�1 (xxxt � �aaast)

= �Np(xxxjaaa; �;CCC)CCC�1

+p(xxxjaaa;�;CCC)CCC�1 XXX��aaasssT XXX��aaasssT
H

CCC�1

(33)
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which yields (34), shown at the bottom of the page. Both aaapost and
CCCaaajxxx can be expressed as a function of the data matrixXXX . More pre-
cisely, the a posteriori covariance matrixCCCaaajxxx is given by [11, p. 532]

CCCaaajxxx =CCCa � j�j2 sssH 
CCCa CCC�1
x (sss
CCCa)

=CCCa � j�j2 CCCa sssH 
 IIIm CCC�1
x (sss
 IIIm)CCCa

= CCC�1
a + j�j2 EsCCC�1 �1

(35)

where we used (5) and the expression of CCC�1
x in (6). Similarly, the

a posteriori mean is given by

aaapost =aaa+ �� sssH 
CCCa CCC�1
x (xxx � ���)

=aaa+ ��CCCa sssH 
 IIIm CCC�1
x (xxx � ���)

=CCCaaajxxx CCC�1
a aaa+ ��CCC�1XXXsss� : (36)

Setting the derivatives in (31) and (34) to zero, it follows that

� =
aaaHpostCCC

�1XXXsss�

Es aaaHpostCCC
�1aaapost + Tr CCCaaajxxxCCC

�1 (37a)

CCC =
1

N
XXX � �aaapostsss

T XXX � �aaapostsss
T

H

+ j�j2 Es
N
CCCaaajxxx:

(37b)

Before pursuing the derivation of the ML estimator, the following re-
marks are in order. The ML estimate of CCC in (37b) is the sum of two
terms. The first corresponds to the MLE ofCCC would the steering vector
be known and equal to aaapost while the second accounts for the infor-
mation brought by the observations. Note also that (37a) corresponds
to the MLE of �, would aaa = aaapost and CCC be known.

Equations (35)–(37) form the basis for computing the ML estimates.
However, it can be observed that � depends on CCC and aaapost, which
itself depends on � and CCC . Similarly, CCC is a function of � and aaapost.
Therefore, there does not exist any closed-form solution for the
problem at hand and we have to resort to an iterative procedure. Equa-
tions (35)–(37) suggest the iterative scheme of Table II to estimate �
and CCC .

In the simulations presented below, aaa(1)post = aaa and the initial guess
of the noise covariance matrixCCC was the unstructured MLE derived in
[4], or equivalently the matrixTTT in [2, eq. (10)]. Note that this is not the
true MLECCCML ofCCC when aaa is known. It is interesting to note that, for
the data model of [2], a better estimate of the covariance matrix, e.g.,
replacing TTT by CCCML does not yield a better estimate of �, in contrast
to theMLE in the present problem. Although it appears very difficult to
prove that the scheme of Table II converges, we did not encounter any
convergence problem in practice. The algorithm typically converges
within 10 to 20 iterations.

IV. NUMERICAL EXAMPLES

In this section, we provide numerical illustrations of the results de-
rived in the previous sections. We consider an uniform linear array with
m = 6 elements separated a half-wavelength. We consider a scenario

TABLE II
ITERATIVE SCHEME FOR COMPUTING THE MLE

where the SOI impinges from the broadside of the array and undergoes
local scattering so that its spatial signature is [6]

aaa = aaa+
1p
L

L

k=1

gkaaa(�k) (38)

where gk are zero-mean, independent and identically distributed
random variables with power �2g and �k are independent uniformly
distributed random variables with standard deviation (i.e., angular
spread) �� = 15�. aaa = aaa(0�) corresponds to the spatial signature of
the line of sight component. The model in (38) is typical of coherent
local scattering for which there exists a line of sight component
along with multiple scatterers randomly distributed around the user of
interest. In the simulations, we use L = 10. We define the uncertainty
ratio (UR) as UR = 10 log10 Tr fCCCag=aaaHaaa . UR is a measure of
the degree of uncertainty in aaa. The noise component comprises a white
noise contribution with power �2 and two interferences with respective
DOAs �30� and 20�, and powers 20 dB above the white noise level.
The signal to noise ratio is defined as SNR = �10 log10 �2 . The
SNR is set to SNR = 3 dB in all simulations.
First, we study the influence of CCCa, N and SNR onto the

Cramér–Rao bound and we examine the validity of the approx-
imated formula (26). Toward this end, we display the exact and
approximated CRBs versus UR for different values of N (see Fig. 1)
and different values of the SNR; see Fig. 2. From inspection of
these figures, it can be observed that (26) provides a very accurate
approximation of the exact CRB. Note also that when UR is very small
the CRB is roughly proportional to (N � SNR)�1, see e.g., the 3 dB
improvement of the CRB when N goes from N = 10 to N = 20
with UR = �30 dB, or the 6 dB improvement when SNR goes from

@p(xxx; �;CCC)

@CCC
=

@p(xxxjaaa; �;CCC)

@CCC
p(aaa) daaa

/ �CCC�1 III �N�1 XXX � �aaasssT XXX � �aaasssT
H

CCC�1 p(aaajxxx; �;CCC)daaa

= �CCC�1 III � N�1 XXX � �aaapostsss
T XXX � �aaapostsss

T
H

+ j�j2 Es
N
CCCaaajxxx CCC�1 : (34)
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Fig. 1. Exact and approximated Cramér–Rao bounds versus the uncertainty
ratio. � = 1 and SNR = 3 dB.

Fig. 2. Exact and approximated Cramér–Rao bounds versus the uncertainty
ratio. � = 1 and N = 20.

SNR = �3 dB to SNR = 3 dB with UR = �30 dB. However, when
UR increases, this improvement decreases. Indeed for UR above some
threshold (say �10 dB), the CRB still depends on N (or SNR) but
more and more on CCCa. Increasing N or having a better SNR does
not result in a significant improvement. For moderate to large UR the
CRB is roughly proportional to UR (i.e., nearly independent of N and
SNR), indicating that the parameter with largest influence onto the
performance is CCCa.

Next, we study the performance of the ML estimator and compare it
with the MLE which assumes that aaa is known and equal to aaa (we refer
to it as theMLEa priori in the figure). Fig. 3 displays the mean-square
errors of the two estimators along with the CRB versus UR. It can be
observed that, for very smallUR, there is hardly no difference between
the two methods. In contrast, when UR increases the difference be-
comes significant indicating that it is really worth taking into account
the steering vector’s uncertainties. Finally, note that theMLE has a per-
formance very close to the CRB for all values of UR.

Fig. 3. Mean-square error of the maximum likelihood estimators versus UR.
� = 1,N = 50 and SNR = 3 dB.

V. CONCLUSIONS

In this paper, we considered the problem of estimating the ampli-
tude of a signal with known waveform received on an array of sensors
with uncertainties about the spatial signature. We examined the influ-
ence of these random errors onto the estimation performance by de-
riving closed-form expressions for the CRB. Furthermore, we derived
the MLE for the problem at hand and showed that the uncertainties
should be taken into account in the ML procedure, even though it re-
sults in a more complicated algorithm.
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