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In a multilevel optimization frame, the use of surrogate models to approximate 

optimization constraints allows great time saving. Among available metamodelling 

techniques we chose to use Neural Networks to perform regression of static mechanical 

criteria, namely buckling and collapse reserve factors of a stiffened panel, which are 

constraints of our subsystem optimization problem. Due to the highly non linear 

behaviour of these functions with respect to loading and design variables, we encountered 

some difficulties to obtain an approximation of sufficient quality on the whole design 

space. In particular, variations of the approximated function can be very different 

according to the value of loading variables. We show how a prior knowledge of the 

influence of the variables allows us to build an efficient Mixture of Expert model, leading 

to a good approximation of constraints. Optimization benchmark processes are 

computed to measure time saving, effects on optimum feasibility and objective value due 

to the use of the surrogate models as constraints. Finally we see that, while efficient, this 

mixture of expert model could be still improved by some additional learning techniques. 

 

I. Position of the problem in the multilevel optimization chain 

Aeronautical structures are mainly made of stiffened panels, i.e. thin shells (also called skin) enforced with 

stiffeners (respectively called frames and stringers) in both orbital and longitudinal directions (see figure 1). For 

the sake of the study the whole structure is divided into elementary parts called Super Stiffeners, consisting in 

the theoretically union of a stringer and two half panels. These basic structures are subject to highly non linear 

phenomena such as buckling, collapse and damage tolerance.  

In order to determine the optimal size of these super stiffeners, static mechanical criteria must be computed 

using dedicated software that is based on non linear calculation. Thus, the analysis and the dimension estimation 

of the whole structure is currently computed by running a two-level study: at a global level, a Finite Element 

(FE) analysis run on the whole FE model provides internal loads – applied to each S-Stiffener; at a local level, 

these loads are used to compute static mechanical criteria. Most of these criteria are formulated using Reserve 

Factors (RF): a structure is validated provided all its RFs are greater than 1. 

So, detailed design of a aircraft fuselage requires a two-level loop: first, numerous local optimizations are run 

on isolated super stiffeners in order to size them respecting mechanical criteria, depending on current internal 

loads. But changes in local geometry from initial to optimal design involve a new load distribution in the whole 

structure; an update step must then be performed to take these changes into account. This bilevel optimization 

process is then repeated until convergence of load distribution in the whole structure. Nowadays, this loose 

coupling process depicted in figure 2 is practically implemented in real industrial case. Other multi level 

optimization strategies can be found in Ref 1, 2. 
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Local optimizations are computed using local methods that require gradients of the constraint functions -

which can only be obtained by finite differences. Values of mechanical stability constraints are computed using 

dedicated software, through analytical calculation. A call to this software takes up to a second; as a consequence 

the need for finite difference calculations in each numerous local optimization greatly increases the time between 

two update steps.    

Therefore, the dimension estimation step in an aircraft development program is an repetitive, time-consuming 

process. Much time could be saved by using a reduced model instead of performing straightforward 

computing
3.4
. This time saving is the aim of the present study, and is of great importance to engineers working in 

Airbus Structural Analysis Framework.  

In this study, we focus on the metamodelling of static instability phenomena which are the buckling and the 

collapse of a super stiffener. We present here results of two different application cases: the first case deals with a 

super stiffener made of composite material, whereas the second case deals with a metallic one. 

Using a surrogate model, which is based on computer experiments, requires a building strategy of a response 

surface. First, we have to select a family of surrogate models. The classic quadratic polynomial response surfaces 

are not suited to imitate the highly non linear type of functions. Artificial Neural Networks (ANN) seemed to be 

the best suiting model. Indeed, ANN are known to provide good estimates of non linear response surfaces
5
. 

Moreover, as they provide an analytic formulation of the estimated model, ANN allow us rapid access to 

sensitivity by simply chain-differentiating the approximate function. However, despite the universal 

approximation property of the class of ANN as a non-linear model, we encountered some difficulties in 

performing global regression of our optimization constraint functions with sufficient quality. We solved this 

problem using Mixture of Experts (MoE) methodology to fuse local response surface models. Then we improved 

response surfaces quality.   

In the following sections we outline the methods which are used in present research and then detail two 

application cases: composite and metal stiffened panels. We show how prior knowledge of mechanical 

constraints is used to divide the configuration domain in order to improve construction of surrogate models. 

Metamodels are embedded in local optimization benchmarks to check the validity of the approximation and its 

use as a constraint in an optimization process. Lastly, we end this article with some concluding remarks. 

II. Response Surface Methodology and Neural Networks 

A. Recall on ANN regression 4444    
ANN are composed of several elementary nodes (or neurons) that are organized in separate layers. Each node 

i of layer k receives a linear combination of the outputs yj,k-1 of the previous layer, and delivers output yi,k . It is 

computed as a transformation of the linear combination through a smooth function H that is called the “transfer” 

or “activation”  function:  
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Figure 1: View of the stiffened panel structure of an airplane.  
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Coefficients of the linear 

combination wij,k and bi,k are 

respectively called connection 

weights and bias.  

The number of layers, the 

number of neurons in each layer 

and the nature of the activation 

function(s) -sigmoid, Gaussian or 

identity- are discrete 

hyperparameters of the 

architecture; they are set by the 

user. On the other hand, 

connection weights and biases are 

the configuration parameters. 

They vary continuously and are 

computed through an 

optimization algorithm so that the 

network outputs correspond with 

the training data.  

This parameter estimation 

process is referred to as the 

training stage. It consists of 

changing the weight and the bias 

of the neurons in order to 

minimize a cost function that, in 

most cases, is the Mean Squared 

Learning Error (MSLE), i.e. the 

mean of the squared differences between network response to a given input and the desired target. The set of 

known input/target data (or I/O Pairs) is called the “training base” (TrB).  

The number of hidden units (Nhu) determines the complexity of the response surface (RS) model: by adding 

neurons onto the hidden layers, one increases the network ability to fit exactly the data in the TrB. On the other 

hand, the prediction ability of the network, i.e. response to an unknown input, will be less efficient. This is called 

overfitting phenomenon. So, an optimal network architecture exists, depending on the size of the training base. 

Cross-validation criterion may be used to determine the optimal size of the architecture. Moreover, several 

methods allow us to avoid overfitting phenomenon, such as penalization of the cost function, early stopping of 

the training stage or bayes regularization
3
. We used Matlab© “Neural Network toolbox” to perform optimization 

and training.  

We used three-layered feed-forward neural networks. Activation function of the hidden neurons is tangent-

sigmoid or log-sigmoid, and output layer is linear.  

We also used five-fold cross-validation criterion to acquire the most efficient architecture. It consists of 

randomly partitioning the training base into five equal parts. Then, in order to select the most suited architecture, 

for a given Nhu value, one performs 5 consecutive training steps of network using 4 out of 5 parts of the learning 

base gathered and computes the MSE on the last part. For any given architecture, the associated error is averaged 

over the 5 trials. The most efficient architecture is the one which results in the lowest error.  

B. Mixture of Experts. 
Mixture of experts (MoE) methodology was introduced by Jacobs and Jordan

6.7
. It consists of applying the 

principle of “divide and conquer”: indeed it appears that a single network may have difficulties performing 

regression of a function if its variations change too much within the whole design space; for example, in case of 

a target function defined as the minimum of several different functions. To overcome these difficulties, MoE 

methodology suggests dividing the whole training base into subsets that correspond to different parts of the 

output function and to train separate networks on each subset. This partition of the design space can be done 

either by applying prior knowledge of the function and variables, or by a training algorithm. The network 

responses to a given input are then melted using either a Gaussian mixture or a “gating” network that gives 

coefficients of the combination, or in some cases selects a single network response according to the given input.    

In our study, we had some prior knowledge of the effect of variables on output functions (see III.B). We used 

this knowledge to divide loading variables design space into smaller subspaces, corresponding to different cases 

in output variations. On each subspace, networks were trained on several thousand examples sampled as 

described below. 

Figure 2: Bi level loose coupling optimization process 
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Then, expert network outputs were fused using a Gaussian Mixture of Experts, so that the response to an 

input X is:  

∑

∑
=

k

k

k

k

k Xf

XF
α

α )(.

)(  

where  fk(X) is expert network k response to input X, 

  αk is a coefficient computed as:  

exp

,

2

,
..1,

)(
exp)( Nk

b

cX
X

lJj kj

kjj

k =












 −
= ∑

∈

α  

  where  Jl denotes indexes corresponding to components of input X whose design space is 

divided
§
, 

   cj,k is the centre of subdomain k along j
th
 axe 

   bj,k is the Gaussian width, computed so that coefficient αk is equal to 0.5 at the 

subdomain frontier. 

 

This Gaussian mixture leads to continuous response of the Mixture of Experts, contrary to a discrete mixture 

which would use a sole network according to subdomain where input X lies. Furthermore, it also leads to 

continuous gradients of the response.  

Note that the response surface defined by this mixture of experts is to be used in a local optimization process. 

This optimization problem consists of minimizing area super stiffener under mechanical constraints. Only 

geometrical variables are optimization parameters, whereas loading variables are set constant as inputs of the 

optimization. Thus, for any j in Jg, set of indexes corresponding to geometrical variables, we have:  
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Last, gradient of expert network output is easily obtained from analytic formulation of fk. 

 

C. Design of Experiment 
In both application cases, the dimension of the input space is high (8 or 11). This induces a high-dimensional 

neural architecture, and then requires a large-sized learning base to perform training. Yet, a mesh-based training 

base with more than 4
8
 examples cannot be considered. Therefore we build our training bases using regular 

meshing on loading variables crossed with a latin-hypercube sampling (LHS) on design variables. Finally, the 

training of networks is performed using several thousand examples.   

LHS
8
 was first introduced by McKay in 1979. It is well used because it can cope with high dimensional input 

space, and is easy and cheap to generate. Indeed, LHS will explore n levels for all input variables within only n 

experimental runs, instead of n
d
 with a regular meshing of the input space, d being the dimension of the space. 

Furthermore, LHS has superior space filling property than random sampling as it ensures a uniformly distributed 

sampling for all variables within its design space.  

Note that the size of LHS is set by the designer. It corresponds to the number of stratified levels for each 

variable. Practically, LHS is built as follows. First, each variable design space is divided into n equal intervals, 

and d permutations of set Ω = {1,..,n} are chosen, namely π1,..,πd. Then, the j
th
 realization of variable k Є 

{1,..,d} is located in interval πk(j). The value of this variable can be chosen at the centre of this interval, or 
randomly selected within this interval with a uniform probability. 

One must remark that generating a LHS remains a random process; some criteria exists that measures quality 

of a design, such as minimax, maximum entropy or orthogonal property. But the generation of an optimal design 

with respect to one of these criteria requires solving an optimization problem and consequently a greater 

computational time. In this study, we use simple LHS. 

                                                           
§
 Experts domains can be defined on all or a part of components of input X. In our study, only loading variables 

define expert domains (see III). 
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As seen above, we cross these simple LHS with a mesh-based design on loading variables. This sampling 

strategy provides us with a more accurate estimation of the effect of variables which are specific in our Mixture 

of Experts model (see III.D).    

III. First application case: Composite Stiffened Panel. 

A. Global surrogate model 

As described in the introduction, the aim of the study is to perform approximation of several mechanical 

criteria that are constraints of our local optimization problem. These criteria are formulated as Reserve Factors 

(RFs) so that a structure is feasible if its RFs are greater than 1. In this first application case, we focus on a T-

shaped composite stringer joint to composite panels. RFs of interest give information on  

- Panel local buckling (RFPNL_LOC),  

- Panel global buckling (RFPNL_GLOB), expressing the collapse of the whole super stiffener, 

- Stringer buckling (RFSTR), which is the minimum of local buckling RFs among the two parts of the 

stringer (web and 

flange).  

 

Values of these criteria 

according to design and loading 

variables are supplied by internal 

Airbus software to be used in a 

new project focused on 

optimization composite stiffened 

panels. This static calculation 

software assesses instability 

phenomena such as buckling, 

local buckling and post buckling 

solving an energy method 

(Rayleigh-Ritz method). It gives 

information on damage tolerance 

margins too.  

 

 

Note that the software we 

used provides us with one RF for 

stringer buckling (RFSTR) and 

another one for panel buckling 

(RFPNL), which is the lower 

among local and global RF. So, 

computed panel buckling RF is a 

continuous function with 

discontinuous gradient. But the 

software gives us the information 

of current panel buckling mode 

too. 

These RFs depend on both the geometry of the structure and the applied loading. Here, super Stiffener’s 

geometry is defined by:  

- left and right panel thickness tlp and trp, 

- stringer flange thickness and width tf and tf, 

- stringer web thickness and height tw and hw, 

- panel width and length. 

In our study, panel width and length and flange width are constant, so that geometry is defined by 5 

continuous variables. 

The super stiffener is subject to two-dimensional loading defined by:  

- compression force Fcomp applied to the super stiffener (applying on both panel and stringer) 

- transverse flux NYY and shear flux NXY, both applied to the panel only. 

Thus, the input space is 8-dimensional in this first application case (5 geometrical variables and 3 loading 

ones). 

First studies showed us that whereas ANN were able to approximate output RFSTR well they have more 

difficulty providing good results on RFPNL: while MSLE is 0.025 on RFSTR (95% of examples on test base result 

 

 
Figure 3: view of 2D loading on stiffened panel and detailed design of 

super stiffener 
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in under 0.05 absolute error), it increase to 0.158 on RFPNL (and 75% of examples of test base give under 0.2 

absolute error).  

To have better insight of these problems, we performed approximation of RFPNL on a reduced input space, for 

example by setting one loading variable out of 3 constant. In all cases, approximation was much more accurate, 

leading to an acceptable quality. So, difficulties in regression seemed to be caused by the cross effects of the 

three loading variables. Indeed, variations of buckling RF with respect to input variables could be totally 

different depending on values of loading 

variables (see Fig. 4). 

 

Actually, it appears that ANN have 

great difficulty capturing the switch 

between local and global buckling 

modes corresponding to a change in 

slope on response surface. This switch 

depends mostly on the value of loading 

variables. Moreover, Gibbs oscillations 

appeared around slope changes. These 

remarks lead to the building of local 

models that are governed by the 

dominant buckling mode and then to 

fuse them, using the MOE methodology 

which was described above. 

 

B. Remarks on mechanical problem. 

Further study of buckling mode 

switching 

Recall that a super stiffener’s design 

is defined by 5 geometrical variables: two panel thicknesses and three stringer dimensions. But, these variables 

do have a crossed influence on panel and stringer buckling due to the stiffening ratio; indeed, compression force 

applied to super stiffener is divided onto the panel and the stringer with respect to this ratio. For instance, 

consider a constant load condition and assume that there is no local buckling mode, then an increase of one 

stringer dimension causes an increase of stringer area and a decrease of compression stress in the skin. So, this 

leads to an increase in RFPNL.  

Moreover, increase in stringer dimensions implies increase in stringer inertia and modifies support condition 

of skin on stringer. Thus a weak inertia stringer does not provide support to the skin, and buckling mode will be 

global, leading to super stiffener collapse. On the other hand, a high inertia stringer provides a support to the 

skin, avoids the super stiffener collapse, and finally makes local buckling modes dominant.  

A contrario, when buckling of the skin is due to transverse compression or shear, the design of the stringer no 

longer influences RFPNL, because the stringer does not bear part of these loads.  

These changes in effects of the dimensions are illustrated in figure 4. Variations of RFPNL with respect to 

stringer web height for three different values of transverse compression NYY are represented. Other variables are 

set constant. 

Note that:  

- transverse tension (NYY>0) has a stabilizing effect on the structure; there is no local skin buckling 

mode and therefore the increase in web height hw involves an increase in RFPNL following the above 

remark; 

- the curve corresponding to null transverse effort case shows a switch between local and global 

buckling mode; 

- Under a high transverse compression (NYY<0), skin buckling mode is local, and stringer design has 

almost no effect on RFPNL. 

 

Lastly, we can remark that although loading variables have a cross effect on RFPNL, the high value of one of 

these variables can make RFPNL almost insensitive to the other two. For example, figures 5 a/ and b/ show that:  

- under a high transverse compression, the value of compression force Fcomp does not influence 

RFPNL; 

- under a high compression force, shear flux does not modify RFPNL. 

 

 
Figure 4: effect of web height for three transverse load 

conditions. 
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According to these remarks, it appears that a relevant choice for the input space division in our case is to 

divide the loading space into subdomains in order to bound variables variation and so to reduce differences in the 

effect of the variables.  

Please note that on figures given below, the values of the variables are rescaled between -1 and 1. For all 

design variables, -1 stands for the lowest value and 1 for the highest one. This is different for loading variables: 

Fcomp = -1 stands for the highest compression force and Fcomp = 1 stands for a small compression force. On the 

other hand, value -1 of variable NYY stands for a high compression flux, +1 stands for a high tension flux and 0 

stands for a null flux. Last, value -1 of variable NXY stands for the lowest shear flux, say 0N/mm. Value +1 

stands for the highest shear flux NYY= 

4000 N/mm. 

D. Local surrogate models 
The aim of the study was to perform 

regression of function RFPNL and RFSTR on 

the following domains:  

- tlp and trp ∈ [2 20]; 

- tf and tw ∈ [2 30]; 

- hw ∈ [30 80]; 

- Fcomp ∈ [-1.5E6 -1000]; 

- NYY ∈ [-5000 5000]; 

- NXY ∈ [0 5000].  

Length unity is millimetre, forces are 

expressed in Newton and fluxes in N/mm. 

Due to the large differences between 

variables values, inputs are rescaled on [-1 

1] before training. From now on, we shall 

use reduced variables values. 

First, only compression force Fcomp 

domain is divided into 10 subdomains. 

Each subdomain length is 0.2. On each 

subdomain, two networks are trained: one 

performs regression of RFSTR, the other 

performs regression of RFPNL. The 

learning base is composed of 2000 

examples, with Fcomp uniformly distributed 

within its subdomain and other variables 

are sampled using Latin Hypercube 

Design. These 2000 examples are used to 

select the optimal network architecture 

according to the five fold cross validation 

criterion, so that only 1600 examples are 

used in each training stage. In order to 

check networks generalization capabilities, 

an additional test base is made with 500 

randomly chosen examples.   

Figures 6 a/ and b/ show the evolution 

of root mean squared error (RMSE) 

measured on test base vs. compression 

force Fcomp. It appears that RMSE 

increases as loading decreases. Actually, as explains above, when Fcomp is great, it has a predominant effect on 

RF values. Other loading variables produce little effect to the values, so that within a subdomain the effective 

input space is almost 6-dimensionnal (instead of 8) and regression is greatly eased.  

Moreover, one can see that neural approximation is better on output RFSTR. Regression is accurate enough on 

domain Fcomp ∈ [-1 0]. But error is still unacceptable on the rest of the domain, and on output RFPNL on [-0.4 1].  

To improve the quality of regression we divide the input space according to values of transverse flux NYY 

too, where this is useful. Moreover, to ease regression of output RFPNL, we perform training of three networks to 

model RFPNL: one is dedicated to local buckling mode RFPNL_LOC, another is dedicated to RFPNL_GLOB, and the last 

one is a classifier trained to predict active panel buckling mode. 

 
Figure 5: effect of compression force according to transverse 

flux (top) and effect of shear flux according to compression 

force (bottom) 
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Thus, we now need examples corresponding to both panel buckling modes. But, as NYY becomes high (and 

positive), there are fewer and fewer examples of local buckling. Finally, we build the learning base and perform 

network training according to the following process:  

- a 3000 examples learning base is computed the same way as described above: Fcomp and NYY are 

uniformly distributed and other variables are set on LHD; 

- two networks are trained on output RFSTR and on panel buckling mode; 

- new examples are added using this buckling mode classifier until 2000 examples of each buckling 

mode are reached. Training of networks on output RFPNL_LOC and RFPNL_GLOB are then performed.  

Tests on several partitions of loading space reveal that: 

- at high compression force (Fcomp < -0.4), there is no need to divide NYY space; 

- for Fcomp in [-0.4 0], it is sufficient to divide NYY space into two subdomains: NYY in [-1 0] 

(compression) and  NYY in [0 1] (tension); 

- for weaker compression force (Fcomp > 0) NYY space has to be divided into six subdomains: NYY in 

[-1 -0.6], NYY in [-0.7 -0.3], NYY in [-0.4 0] and NYY in [0 0.4],  NYY in [0.3 0.7] and NYY in [0.6 1]. 

To understand the reason for this partition, one must consider the above remarks on effects of loading 

variables. As Fcomp is high, it has a predominant effect on RFs. When it decreases, buckling mode is more and 

more due to transverse flux NYY, and we have to get a sharper idea of the effect of NYY on RF values.  

After training, the goal of 90% of test base 

examples under 0.03 absolute error is reached on each 

subdomain. 

Finally, experts outputs are fused following a 

Gaussian Mixture as described above (see II.B). 

 

 

E. Using surrogate model in optimization process 
The aim of the study is to use neural 

approximating model in the following optimization 

problem: 
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where ASSt stands for Super Stiffener Area. 

Loading variables Fcomp, NYY and NXY are 

optimization inputs; geometrical variables tf, tw, hw
,
 tlp 

and trp are optimization variables.  

The last two constraints determine the stringer’s 

aspect ratio; the two first constraints are mechanical 

constraints described above. They are replaced by 

reduced model in our implementation.  

In order to measure savings from the use of a 

reduced model instead of analytic constraints, we 

compare the results of several optimization runs on 

loading space meshing defined by: 

- Fcomp Є {-150.000, -400.000, -600.000, -1.000.000, -1.400.000}, 

- NYY  Є {-4000, -2000, 0, 2000, 4000}, 

- NXY  Є {0, 2000, 5000}, 

leading to 75 optimization runs.  

Optimizations are run on BOSS Quattro© software using Globally Convergent Method (GCM) –a second 

order algorithm using moving asymptotes as proposed by Svanberg).  

First of all, the objective of time reduction is greatly reached: computational time for 75 optimization 

processes falls from more than 10 hours when using analytical software to 2 hours with MoE approximation. The 

reduction is merely due to computation of analytical gradients instead of using finite difference. 

 
Figure 6: evolution of MSE vs. compression force 

a/ MSE on RFSTR –b/ MSE on RFPNL 
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The quality of optimization results depends on the domain where input lies: 

- Optimization examples under high transverse loading (NYY = {-4000; -2000}) give very accurate 

results; maximum error on RF is 0.117 on RFSTR and 0.09 on RFPNL. Only 4 (resp. 1) examples out 

of 30 lead to an absolute error on RFPNL (resp. RFSTR) greater than 0.05. Moreover, optimal super 

stiffeners’ areas given by optimization run on approximated constraints all are between 2 and 9% 

less than those obtained with original model constraints.  

- Under null transverse flux (NYY = 0), approximation of RFSTR is good, with one sole example out of 

15 leading to a high absolute error (0.165), other are below 0.04 absolute error. But values of RFPNL 

are not well estimated under low loading. Only 7 examples out of 15 give error under 0.06. 

Moreover, examples for which applied compression force is -150.000 N all give error higher than 

0.15. Optimal areas are between 11% higher and 8.7% less than those obtained with original model 

constraints. 

- Under transverse tension (NYY > 0) errors on RFs are even higher. Expert networks on RFPNL lead 

to an absolute error on optimal RF over 0.1 on 10 out of 30 examples. Experts on RFSTR give a 

better approximation: with NYY=2000N/mm only 2 examples (out of 15) lead to an error greater 

than 0.05. But with NYY=4000N/mm, 6 examples (out of 15) lead to an error greater than 0.1, 

others are under 0.05 error. Moreover, optimal areas obtained by optimization processes using 

approximated RFs are greater than those obtained with analytical constraints.   

We see that, although expert networks all give good approximation results in their own subdomain, we still 

get unacceptable errors on low loading domain. Note that most of these great error values are due to a mistake in 

predicted buckling mode. Model improvement should therefore be focused on networks which predict panel 

buckling mode.  

 

IV. Second application case: Metallic Super Stiffener. 

In this second application case, we still aim to perform approximation of the mechanical criteria used in local 

optimization process. This time, the study focuses on metallic stiffeners with Z-shaped stringer. Input and output 

spaces in this study have changed; indeed, super stiffener is now defined by:  

- 2 external geometrical variables: panel width (also referred as stringer pitch) and curvature radius 

- 7 local geometrical variables, defining super stiffener detailed design: panel thickness and thickness 

and width for each stringer element (skin side flange, web and foot) 

- 2 loading variables: compression force and shear flux.  

Furthermore, outputs to be approximated are now: 

- panel buckling reserve factor RFBCK (corresponding to panel local buckling mode) 

- super stiffener collapse reserve factor RFCOLL, which is the minimum RF among general buckling 

(or collapse), and stringer elements buckling reserve factors. 

Note that in this study, the cross effects of loading variables will be less important because there is no orbital 

compression or tension. On the other hand, there are more geometrical variables.  

Function approximation is to be performed on the following domain:  

- panel width and curvature radius are discrete variables; the couple of variables (Pitch, Rcurve) takes 

13 values. Note that these physical variables do have a continuous effect on mechanical criteria. 

-  Detailed geometry variables vary continuously in their domains, which are [1.6 4] for thicknesses 

variables, [10 60] for flange width and [25 65] for web height.  

- Loading variables vary from 10,000 to 300,000 N for compression force Fcomp and from 5 to 130 

MPa for shear stress τXY. 
Previous studies showed that high errors in function approximation are mainly located at domain boundaries. 

To cope with this problem, variables variation domains were increased to obtain a more accurate approximation 

on the domain of interest. For instance, thicknesses vary from 1 to 6 mm, flange varies from 8 to 65 and web 

height varies from 20 to 60.  

Variables are now rescaled in [0 1] before the training stage. 

The training base is made of 1600 examples computed on the following design:  

- loading variables form a regular meshing with 17 values for Fcomp and 11 values for τXY; 
- detailed geometry variables are set on a ten levels LHS; 

- external geometry variables couple (Pitch, Rcurve) is randomly chosen in its allowable values. 

Note that this initial design leads to 2470 calculation but only 900 effective RF values. Other cases are out of 

software validity domain. Thus, examples have to be added in the training base in order to obtain enough I/O 

pairs for training. 

The test base is made of 200 randomly chosen examples. 
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Training performed on this learning base shows that output RFBCK is well estimated with a sole three-layered 

network with 15 neurons on both hidden layers: network response on test base leads to 80% examples below 

0.02 absolute error, and 90% under 0.035. 

Approximation of RFCOLL seems to be more difficult: a sole network produces an unacceptable error with 

only 14% examples in test base under 0.02 absolute error and 90% examples under 0.17. 

One can explain these differences by considering that: 

- RFBCK is now easier to approximate because it only represents skin local buckling, there is no 

switch in buckling mode. Also, there is no transverse loading. 

- On the other hand, RFCOLL now gather two different buckling modes that are super stiffener 

collapse and stringer element local bucking.  

Again, a mixture of experts methodology is used to improve approximation quality. Fcomp variation domain is 

greatly reduced compared to the former study. We therefore require fewer expert networks to cover the whole 

domain. Finally, loading space is divided into four subdomains defined by: (Fcomp, τXY) in [0 0.35]x[0 0.5], 
(Fcomp, τXY) in [0 0.35]x[0.5 1], (Fcomp, τXY) in [0.325 0.675]x[0 1], (Fcomp, τXY) in [0.65 1]x[0 1].  

With this partition, regression error is efficiently decreased. A mixture of experts methodology leads to an 

approximation of good quality with 78% examples in test base under 0.03 absolute error. Again, difficulties in 

regression are located in low loading domain (Fcomp < 0.35 in reduced value).  

This mixture of expert networks is now tested on 20 local optimization cases run on the regular meshing of 

loading space defined by   

(Fcomp, τXY) in{50,000; 100,000; 200,000; 250,000}x{0; 20; 50; 100; 130}. 
Each optimization process is run three times, with three different initial designs to avoid local minima 

phenomena. Thus, comparison is made of 60 optimization results.  

First of all, one must note that optimization processes under high loading (Fcomp = 250,000N) have stopped 

before convergence because the path followed during optimization went out of software validity domain. This 

problem of course did not occur when using neural regression of constraint functions and this does feature an 

advantage in use of a response surface model instead of dedicated software. Consequently a comparison can only 

be made on 45 optimization results.  

Optimization processes run with approximated constraints lead to the following results: 

- only 3 cases out of 45 lead to an error of order 0.1 on RFBCK. All other cases lead to an error under 

0.04. 

- error on RFCOLL is more important. 12 cases lead to unacceptable error, greater than 0.1. These 

cases are all located in the low-loading domains (Fcomp = 50,000N or Fcomp = 100,000N and τXY = 
0MPa).Three more cases give error between 0.06 and 0.09. All other cases are below 0.05 absolute 

error. 

- On cases leading to low error (<0.05), optimal super stiffener’s areas, i.e. the lowest area among 

three tries with different initial designs, is lower when obtained using approximated constraints, 

with mean 4.3%. 

- Last but not least, computation time is divided by two, with 45 minutes per optimization with 

approximated constraints vs. 1h30 when using dedicated software. 

Thus, one can see two advantages in using response surface model in optimization processes: first, 

computation time is greatly decreased, without damages in optimization results. And moreover, use of 

approximated constraints allows avoiding problems in convergence during optimization process due to software 

limitations in validity domain. 

 

V. Conclusions 

The use of surrogate models to perform regression of constraints in an optimization problem requires a high 

quality approximation: whereas approximation of the objective function just has to give an accurate estimate of 

the function near its optimum, the use of approximated constraints in an optimization process does require a 

great precision of approximation on the whole critical region of the input space.  

We showed how division of input space into subdomains based on a prior knowledge of the design space and 

use of Gaussian mixture of local experts has allowed us ease of regression and provided us with an 

approximation of constraints functions that were sufficient. The use of such a mixture of experts in optimization 

has given good results here. In most optimization benchmarks, computational times were greatly reduced 

without damaging results. Another great advantage of the use of the surrogate model is that there is no crash 

during optimization processes due to a restricted validity domain of the replaced software. But metamodels still 

has to be improved on low loading domains. One may consider two ways of improvement: before or after 

training of the experts.  

After training stages, the mixture of expert could be improved by optimizing the centres of width of Gaussian 

function used in mixture. This may move the boundaries of defined subdomains according to each expert quality. 
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Additional training examples could also be chosen using optimal search strategy based on the statistical frame 

introduced by Cohn
9
. 

On the other hand, the training of expert networks could be performed along with the partitioning of the design 

space. This is what is done in EM algorithm for example. Lastly, one may consider a simple idea that is to  

divide the design space more sharply. However this last idea requires a longer training time and a greater 

computational cost that may outweigh the time saving of the use of surrogate models. 
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