

Pressure-Driven
Steady-State
Simulation of
Oilfield
Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹, Xavier Joulia¹, Alain Vacher², Martin Gainville³, Michel Pons⁴

- (1) Laboratoire de Génie Chimique (LGC), Toulouse , France (2) ProSim, Labège, France
- (3) IFP Direction Mécanique Appliquée, Rueil-Malmaison, France (4) Michel Pons Technologie, Lyon, France

ESCAPE 17 - Bucharest - 27-30 May 2007

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

- Part I: Introduction and Problem Statement
- Part II : Pressure-Driven Steady-State Simulation
- Part III : Case Studies
- Part IV : CAPE-OPEN Integration
- Part V: Conclusions and Future Work

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

- Part I: Introduction and Problem Statement
- Part II : Pressure-Driven Steady-State Simulation
- Part III : Case Studies
- Part IV : CAPE-OPEN Integration
- Part V : Conclusions and Future Work

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

- Part I: Introduction and Problem Statement
- Part II: Pressure-Driven Steady-State Simulation
- Part III : Case Studies
- Part IV : CAPE-OPEN Integration
- Part V : Conclusions and Future Work

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

- Part I: Introduction and Problem Statement
- Part II: Pressure-Driven Steady-State Simulation
- Part III : Case Studies
- Part IV : CAPE-OPEN Integration
- Part V: Conclusions and Future Work

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,
Michal Banc⁴

Part I: Introduction and Problem Statement

Part II: Pressure-Driven Steady-State Simulation

• Part III : Case Studies

• Part IV : CAPE-OPEN Integration

Part V : Conclusions and Future Work

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,
Michel Pons⁴

TINIA

Problem Statement Purpose

Part I

Introduction and Problem Statement

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,
Mishal Page⁴

TINA

Problem Statement Purpose

- Transient Integrated Network Analysis
- A TOTAL-IFP research collaborative project
- A platform for integrated multiphase flow simulations

with INDISS as reference simulator

TINA Application Domain

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,

TINA

Problem Statement Purpose

- Transient Integrated Network Analysis
- A TOTAL-IFP research collaborative project
- A platform for integrated multiphase flow simulations

TINA Application Domain

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,
Michel Pons⁴

TINA

Problem Statement Purpose

- Transient Integrated Network Analysis
- A TOTAL-IFP research collaborative project
- A platform for integrated multiphase flow simulations
 - From reservoir to process facilities
 - For flow assurance application
 - Based on an open software architecture
 - with INDISS as reference simulator
- TINA Application Domain

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

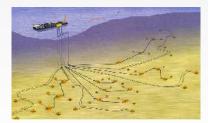
Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,
Michel Pons⁴

TINA

Problem Statement Purpose

- Transient Integrated Network Analysis
- A TOTAL-IFP research collaborative project
- A platform for integrated multiphase flow simulations
 - From reservoir to process facilities
 - For flow assurance application
 - Based on an open software architecture
 - with INDISS as reference simulator

TINA Application Domain


Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,
Michel Pons⁴

TINA

Problem Statement Purpose

- Transient Integrated Network Analysis
- A TOTAL-IFP research collaborative project
- A platform for integrated multiphase flow simulations
 - From reservoir to process facilities
 - For flow assurance application
 - Based on an open software architecture
 - with INDISS as reference simulator
- TINA Application Domain


Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,
Michel Pons⁴

TINA

Problem Statement

- Transient Integrated Network Analysis
- A TOTAL-IFP research collaborative project
- A platform for integrated multiphase flow simulations
 - From reservoir to process facilities
 - For flow assurance application
 - Based on an open software architecture
 - with INDISS as reference simulator
- TINA Application Domain

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,
Michel Pons⁴

TINA

Problem Statement

- Transient Integrated Network Analysis
- A TOTAL-IFP research collaborative project
- A platform for integrated multiphase flow simulations
 - From reservoir to process facilities
 - For flow assurance application
 - Based on an open software architecture
 - with INDISS as reference simulator
- TINA Application Domain

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,
Michel Pons⁴

TINA

Problem
Statement
Purpose

- Transient Integrated Network Analysis
- A TOTAL-IFP research collaborative project
- A platform for integrated multiphase flow simulations
 - From reservoir to process facilities
 - For flow assurance application
 - Based on an open software architecture
 - with INDISS as reference simulator
- TINA Application Domain

Pressure-Driven
Steady-State
Simulation of
Oilfield
Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,
Michel Pons⁴

TINA

Problem
Statement
Purpose

- Transient Integrated Network Analysis
- A TOTAL-IFP research collaborative project
- A platform for integrated multiphase flow simulations
 - From reservoir to process facilities
 - For flow assurance application
 - Based on an open software architecture
 - with INDISS as reference simulator
- TINA Application Domain

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹ Xavier Joulia¹, Alain Vacher², Martin Gainville³,

TINIZ

Problem Statement

Extend simultaneous modular strategy

 for solving steady-state pressure-driven simulation and design problems

in Oil and Gas production networks

- Extend INDISS simulator capabilities by integration of ProSim CO-SPEC module
- Extend INDISS simulator capabilities by integration of IFP TOTAL pipeline multiphase flow module

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹ Xavier Joulia¹ Alain Vacher², Martin Gainville³,

TINA

Problem Statement Purpose

Extend simultaneous modular strategy

- for solving steady-state pressure-driven simulation and design problems
- in Oil and Gas production networks

- Extend INDISS simulator capabilities by integration of ProSim CO-SPEC module
- Extend INDISS simulator capabilities by integration of IFP TOTAL pipeline multiphase flow module

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹ Xavier Joulia¹ Alain Vacher², Martin Gainville³,

TINA

Problem Statement Purpose

Extend simultaneous modular strategy

- for solving steady-state pressure-driven simulation and design problems
- in Oil and Gas production networks

- Extend INDISS simulator capabilities by integration of ProSim CO-SPEC module
- Extend INDISS simulator capabilities by integration of IFP TOTAL pipeline multiphase flow module

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹
Alain Vacher²
Martin
Gainville³,

TINA

Problem Statement Purpose

Extend simultaneous modular strategy

- for solving steady-state pressure-driven simulation and design problems
- in Oil and Gas production networks

- Extend INDISS simulator capabilities by integration of ProSim CO-SPEC module
- Extend INDISS simulator capabilities by integration of IFP TOTAL pipeline multiphase flow module

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet Xavier Joulia¹ Alain Vacher² Martin Gainville³,

TIN

Problem Statemen Purpose

Extend simultaneous modular strategy

- for solving steady-state pressure-driven simulation and design problems
- in Oil and Gas production networks

- Extend INDISS simulator capabilities by integration of ProSim CO-SPEC module
- Extend INDISS simulator capabilities by integration of IFP TOTAL pipeline multiphase flow module

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet Xavier Joulia¹ Alain Vacher² Martin Gainville³,

TINA

Problem Statemen Purpose

Extend simultaneous modular strategy

- for solving steady-state pressure-driven simulation and design problems
- in Oil and Gas production networks

- Extend INDISS simulator capabilities by integration of ProSim CO-SPEC module
- Extend INDISS simulator capabilities by integration of IFP TOTAL pipeline multiphase flow module

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet² Xavier Joulia¹ Alain Vacher² Martin Gainville³, Michel Pons⁴

TINA

Problem Statemen

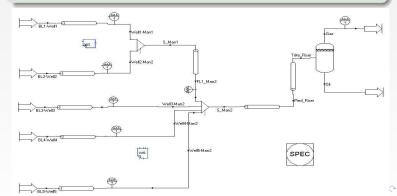
Extend simultaneous modular strategy

- for solving steady-state pressure-driven simulation and design problems
- in Oil and Gas production networks

- Extend INDISS simulator capabilities by integration of ProSim CO-SPEC module
- Extend INDISS simulator capabilities by integration of IFP TOTAL pipeline multiphase flow module

Base Case

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure


Pascal Floquet¹
Xavier Joulia¹
Alain Vacher²
Martin
Gainville³,
Michel Pons⁴

ΤΙΝΙΔ

Problem
Statement
Purpose
Base Case

Base case description

Two subsea production clusters,
Two and three subsea wells
controlled by choking wellhead valves,
Two flowlines connected to a riser and a basic surface process

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹, Xavier Joulia¹, Alain Vacher², Martin Gainville³, Michel Pons⁴

Part II

Pressure-Driven Steady-State Simulation

Pressure-driven vs classical simulation

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹ Xavier Joulia¹, Alain Vacher², Martin Gainville³,

Sequential Modular Simulation

 \mathcal{X}^0 : Temperature T, Pressure P, Composition z and total flowrate Q

d : operating and design parameters of the modules are the standard input of a pure simulation case

Pressure-driven Simulation

Characterize Oil and Gas upstream operations

For example, pipes connected to the same manifold must operate at the same pressure

n... Pressure Equality Constraints

Pressure-driven vs classical simulation

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,
Michel Pons⁴

Sequential Modular Simulation

 \mathcal{X}^0 : Temperature T, Pressure P, Composition z and total flowrate Q

d : operating and design parameters of the modules are the standard input of a pure simulation case

Pressure-driven Simulation

Characterize Oil and Gas upstream operations For example, pipes connected to the same manifold must operate at the same pressure n_w Pressure Equality Constraints

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹, Xavier Joulia¹, Alain Vacher², Martin Gainville³,

Pressure-driven problem is a particular case of design problem

Variables associated to pressure constraints are

- the well flowrates
- other variables

- Flowrates/Pressure problems
- Well llowrates and fiser top pressure are known
 Action variables are chokes openings or well press
 - Pressures/Pressure problems
 - Well pressures and riser top pressure are known
- Action variables are well flowrates

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹ Xavier Joulia¹, Alain Vacher², Martin Gainville³,

Pressure-driven problem is a particular case of design problem Variables associated to pressure constraints are

- the well flowrates
- other variables

- Flowrates/Pressure problems
- Weil llowrates and fiser top pressure are known
 Action variables are chokes openings or well pressure.
 - Pressures/Pressure problems
 - Well pressures and riser top pressure are known
 - Action variables are well flowrates

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹ Xavier Joulia¹, Alain Vacher², Martin Gainville³, Pressure-driven problem is a particular case of design problem Variables associated to pressure constraints are

- the well flowrates
- other variables

- Flowrates/Pressure problems
 - Well flowrates and riser top pressure are known
 Action variables are chokes openings or well pressure.
- Pressures/Pressure problems
 - Well pressures and riser top pressure are known
 - Action variables are well flowrates

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹ Xavier Joulia¹, Alain Vacher², Martin Gainville³, Pressure-driven problem is a particular case of design problem Variables associated to pressure constraints are

- the well flowrates
- other variables

- Flowrates/Pressure problems
- Well flowrates and riser top pressure are known
 Action variables are chokes openings or well pressure
- 2 Duranus / Duranus and Llaura
 - Wall proceures and ricer top proceure are known
 - vveil pressures and riser top pressure are known
 - Action variables are well flowrates

Pressure-Driven
Steady-State
Simulation of
Oilfield
Infrastructure

Pascal Floquet¹ Xavier Joulia¹, Alain Vacher², Martin Gainville³, Pressure-driven problem is a particular case of design problem Variables associated to pressure constraints are

- the well flowrates
- other variables

- Flowrates/Pressure problems
 - Well flowrates and riser top pressure are known
- Action variables are chokes openings or well pressures
- Pressures/Pressure problems
 - Well pressures and riser top pressure are known
 - Action variables are well flowrates

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,

Pressure-driven problem is a particular case of design problem Variables associated to pressure constraints are

- the well flowrates
- other variables

- Flowrates/Pressure problems
 - Well flowrates and riser top pressure are known
 - Action variables are chokes openings or well pressures
 - Pressures/Pressure problems
 - Well pressures and riser top pressure are known
 - Action variables are well flowrates

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,

Pressure-driven problem is a particular case of design problem Variables associated to pressure constraints are

- the well flowrates
- other variables

- Flowrates/Pressure problems
 - Well flowrates and riser top pressure are known
 - Action variables are chokes openings or well pressures
 - Pressures/Pressure problems
 - Well pressures and riser top pressure are known
 - Action variables are well flowrates

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,

Pressure-driven problem is a particular case of design problem Variables associated to pressure constraints are

- the well flowrates
- other variables

- Flowrates/Pressure problems
 - Well flowrates and riser top pressure are known
 - Action variables are chokes openings or well pressures
- Pressures/Pressure problems
 - Well pressures and riser top pressure are known
 - Action variables are well flowrates

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,

Pressure-driven problem is a particular case of design problem Variables associated to pressure constraints are

- the well flowrates
- other variables

- Flowrates/Pressure problems
 - Well flowrates and riser top pressure are known
 - Action variables are chokes openings or well pressures
- Pressures/Pressure problems
 - Well pressures and riser top pressure are known
 - Action variables are well flowrates

Numerical strategy in Pressure-driven simulation

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,

Pressure-driven problem is a particular case of design problem Variables associated to pressure constraints are

- the well flowrates
- other variables

Two types of problem are treated :

- Flowrates/Pressure problems
 - Well flowrates and riser top pressure are known
 - Action variables are chokes openings or well pressures
- Pressures/Pressure problems
 - Well pressures and riser top pressure are known
 - Action variables are well flowrates

Numerical strategy in Pressure-driven simulation

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,
Michal Bana⁴

Pressure-driven problem is a particular case of design problem Variables associated to pressure constraints are

- the well flowrates
- other variables

Two types of problem are treated :

- Flowrates/Pressure problems
 - Well flowrates and riser top pressure are known
 - Action variables are chokes openings or well pressures
- Pressures/Pressure problems
 - Well pressures and riser top pressure are known
 - Action variables are well flowrates

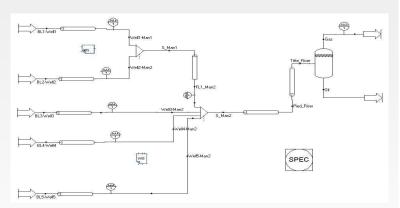
Pascal Floquet¹, Xavier Joulia¹, Alain Vacher², Martin Gainville³, Michel Pons⁴

Without recycle

With recycle

Part III

Case Studies


Flowsheet without recycle

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹ Xavier Joulia¹, Alain Vacher², Martin Gainville³, Michel Pons⁴

Without recycle

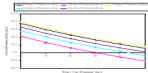
With recycl

We are interested to examine the ability of convergence of Sequential Modular Simulator in Pressure Driven Problem

Flowrates/Pressure problem

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹ Xavier Joulia¹, Alain Vacher², Martin Gainville³, Michel Pons⁴


Without recycle

With recycle

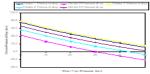
FP Problem:

- Specification on the pressure at riser top
- Well pressures, flowrates and temperature are fixed (base case)
- Action variables : 5 pressure drops of the 5 chokes
- Quasi-Newton Strategy used
- Results obtained in 4 iterations and 11 flowsheet simulations, for 15 bar

5 Pressure Drops versus Riser top pressure specification

Flowrates/Pressure problem

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure


Pascal Floquet¹
Xavier Joulia¹
Alain Vacher²
Martin
Gainville³,
Michel Pons⁴

Without recycle

With recycl

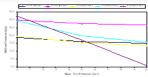
FP Problem:

- Specification on the pressure at riser top
- Well pressures, flowrates and temperature are fixed (base case)
- Action variables : 5 pressure drops of the 5 chokes
- Quasi-Newton Strategy used
- Results obtained in 4 iterations and 11 flowsheet simulations, for 15 bar
- 5 Pressure Drops versus Riser top pressure specification

Pressures/Pressure problem

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹ Xavier Joulia¹, Alain Vacher², Martin Gainville³, Michel Pons⁴


Without recycle

With recycl

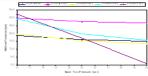
PP Problem:

- Specification on the pressure at riser top
- Pressures drops of the 5 chokes, well pressures and temperature are fixed
- Action variables : 5 well flowrates
- Results obtained in 5 iterations and 12 flowsheet simulations, for 15 bar
- ...but it depends on initialization!

5 Flowrates versus Riser top pressure specification

Pressures/Pressure problem

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure


Pascal Floquet[†] Xavier Joulia¹ Alain Vacher² Martin Gainville³, Michel Pons⁴

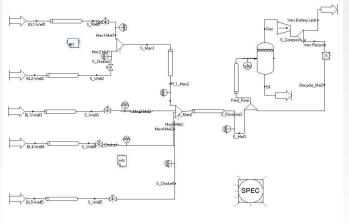
Without recycle

With recycle

PP Problem:

- Specification on the pressure at riser top
- Pressures drops of the 5 chokes, well pressures and temperature are fixed
- Action variables : 5 well flowrates
- Results obtained in 5 iterations and 12 flowsheet simulations, for 15 bar
- ...but it depends on initialization!
- 5 Flowrates versus Riser top pressure specification

FP or PP Problem with recycle


Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹
Alain Vacher²
Martin
Gainville³
Michel Pone⁴

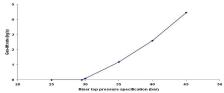
Without recycle

With recycle

Here gas-lift may be mandatory.

Flowrates/Pressure Problem

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure


Pascal Floquet¹ Xavier Joulia¹, Alain Vacher², Martin Gainville³, Michel Pons⁴

Without recycle

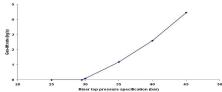
With recycle

- Specification on the pressure at riser top
- Action variables : pressure drops of 4 chokes and flowrate of gas-lift
- Tear stream : compressor output (15 + 2 (T, P) iterative variables)
- Less eruptive choke completly open
- Results obtained in 5 iterations and 12 flowsheet simulations, for 30 bar

Recycle rate versus Riser top pressure specification

Flowrates/Pressure Problem

Pressure-Driven
Steady-State
Simulation of
Oilfield
Infrastructure


Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,
Michel Pons⁴

Without recycle

With recycle

- Specification on the pressure at riser top
- Action variables: pressure drops of 4 chokes and flowrate of gas-lift
- Tear stream : compressor output (15 + 2 (T, P) iterative variables)
- Less eruptive choke completly open
- Results obtained in 5 iterations and 12 flowsheet simulations, for 30 bar

Recycle rate versus Riser top pressure specification

Pascal Floquet¹, Xavier Joulia¹, Alain Vacher², Martin Gainville³, Michel Pons⁴

CO Result

Part IV

CAPE-OPEN Integration

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹ Xavier Joulia¹, Alain Vacher², Martin Gainville³,

CO Results

- ProSimPlus is reference simulator chosen to adjust the approach
- IFP TOTAL pipeline multiphase flow modules are specialized upstream Oil an Gas modules
- ProSim CO-SPEC (CAPE-OPEN Unit Operation 1.0)
- and IFP TOTAL pipeline multiphase flow modules

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,
Michel Pons⁴

CO Results

- ProSimPlus is reference simulator chosen to adjust the approach
- IFP TOTAL pipeline multiphase flow modules are specialized upstream Oil an Gas modules
- ProSim CO-SPEC (CAPE-OPEN Unit Operation 1.0)
- and IFP TOTAL pipeline multiphase flow modules

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,

CO Results

- ProSimPlus is reference simulator chosen to adjust the approach
- IFP TOTAL pipeline multiphase flow modules are specialized upstream Oil an Gas modules
- ProSim CO-SPEC (CAPE-OPEN Unit Operation 1.0)
- and IFP TOTAL pipeline multiphase flow modules

Pressure-Driven
Steady-State
Simulation of
Oilfield
Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,
Michel Pope⁴

CO Results

- ProSimPlus is reference simulator chosen to adjust the approach
- IFP TOTAL pipeline multiphase flow modules are specialized upstream Oil an Gas modules
- ProSim CO-SPEC (CAPE-OPEN Unit Operation 1.0)
- and IFP TOTAL pipeline multiphase flow modules

Pascal Floquet¹, Xavier Joulia¹, Alain Vacher², Martin Gainville³, Michel Pons⁴

Part V

Conclusion and future work

To conclude...

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹ Xavier Joulia¹, Alain Vacher², Martin Gainville³,

CAPE tools such as ProSimPlus are able to solve pressure-driven simulation CAPE-OPEN standards are the best way to plug-and-play CAPE software components

Future Works

Multi period optimization in an Oil and Gas context

To conclude...

Pressure-Driven Steady-State Simulation of Oilfield Infrastructure

Pascal Floquet¹
Xavier Joulia¹,
Alain Vacher²,
Martin
Gainville³,

CAPE tools such as ProSimPlus are able to solve pressure-driven simulation CAPE-OPEN standards are the best way to plug-and-play CAPE software components

Future Works

Multi period optimization in an Oil and Gas context

Pascal Floquet¹ Xavier Joulia¹, Alain Vacher², Martin Gainville³, Michel Pons⁴

THANK YOU FOR YOUR ATTENTION!