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The focus of this study is on the numerical investigation of two-dimensional, isovolume, high
Reynolds and Froude numbers, variable-density mixing layers. Lagrangian simulations, of both the
temporal and the spatial models, are performed. They reveal the breaking-up of the strained vorticity
and density-gradient braids, connecting two neighboring primary structures. The secondary
instability arises where the vorticity has been intensified by the baroclinic torque. A simplified
model of the braid of the variable-density mixing layer, consisting of a strained vorticity and
density-gradient filament, is analyzed. It is concluded that the physical mechanism responsible for
the secondary instability is the forcing of the vorticity field by the baroclinic torque, itself sensitive
to perturbations. This mechanism suggests a rapid route to turbulence for the variable-density
mixing layer. © 2000 American Institute of Physids$s1070-663(00)00810-2

I. INTRODUCTION et al,'® together with Richardson number effects, to explain
the stability properties of the vorticity braid in the stratified
Shear dominated binary mixing or thermal mixing pro- mixing layer.
cesses arise in a large number of industrial and geophysical The theoretical work of Dritschet all® stressed the
flows and their specific features have been extensively studtabilizing effect of a uniform strain field on a uniform vor-
ied. As quoted by Turnérthe density inhomogeneity yields ticity filament. The basic mechanism lies both on the span-
the generation-destruction of vorticity by the baroclinic wise thinning of the vorticity layer, decreasing the magnitude
torque. This source term of the vorticity transport equation isof perturbations, and a streamwise stretching, making the
due to the misalignment between the density gradient and th@avenumber of disturbances collapse to zero. The authors
pressure gradient. Experimental evidence highlights the indemonstrated that by considering the ratio of the strainyate
fluence of the density gradient on the global behavior ofto the vorticity w, a value above 25% yields the result that
incompressible, variable-density simple shear flow; seeany perturbation is damped, i.e., its amplitude can only de-
Brown and Roshkband Konrad® Lele* even suggested that crease with time. For weaker values of the strain rate, the
the baroclinic torque may be invoked to explain the Machlinear theory predicts that, after an initial growth, an infini-
number effect, together with dilatation, on the spreading ratéesimal disturbance reaches a maximum, the amplification
of the compressible mixing layer. being 3 withy/ w=6.5% and 6.55 withy/ w=5%, and then
Within the frame of the Boussinesq approximation, finally decays. Thus, the maximum amplitude is shown to
Staquet performed numerical experiments on a stratifieddepend on the local ratio of the time scales associated with
shear layer. During the development of the primary Kelvin—the strain and the vorticity/w~ 7, /7, . But the amplitude
Helmholtz instability, the vorticity field reorganizes into of a perturbation, which is initially finite, reaches finite val-
large vortical cores linked by thin vorticity layers hereafter ues, invalidating the linear approatfor example, the maxi-
referred to as “braids.” The author confirmed and furthermum amplification may be greater than 810if y/w
analyzed the baroclinic secondary Kelvin—Helmholtz type<10%). Taking into account the nonlinear effects, the au-
instability, that was observed experimentally by Althama  thors concluded that roll-up can actually occur depending on
tilted water channel. This secondary instability, emerging athe initial finite magnitude of the disturbance and tpeo
the stagnation points of the vortical braids between the maimatio. The authors suggest that the ratio between the local
Kelvin—Helmholtz structures was also suggested by Corcostraining and the local vorticity should provide a fair crite-
and Shermahand earlier hinted by ThorgeThe study of rion to analyze the stability properties of stretched vorticity
such secondary instabilities is crucial as, according tdayers even in more complex situations. In the stably strati-
Thorpe? it could be one of the mechanisms that triggersfied mixing layer studied by Stagdethe baroclinic torque
turbulence in geophysical shear layers. The braids, subjectazhhances vorticity in the braids such that the ratia de-
to baroclinic vorticity production, are continuously stretched,creases, indicating the possibility of a secondary instability
experiencing a strain rate roughly proportional to the circu-on the braid. In that case, the author propogbs=1.85%
lation around the cores, see Corcos and Sherfifare strain ~ and a Richardson number of 0.04 as empirical threshold
rate, shown to be Reynolds-number independent by Staquewjalues for the development of the secondary, baroclinic
has been invoked, conformly with the work of Dritschel instability.
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The focus of the present paper is on the effects of barodensity mixing layer. Then, in Sec. 1V, the spatial model of
clinicity on the two-dimensional mixing layer beyond the the shear layer is investigated and confirms the sensitivity of
Boussinesq approximation. This situation is likely to occur inthe vorticity braids to the baroclinic secondary instability. It
the early, quasi-two-dimensional transition of low Machis concluded, in Sec. V, that the baroclinic torque, while
number, high Reynolds, and Froude numbers shear flowgromoting the destabilization of vorticity braids, is central to
Soteriou and Ghoniethhave studied two-dimensional, high the specific route toward turbulence of the variable-density
Reynolds and Froude numbers, incompressible, spatially demnixing flows.
veloping, variable-density mixing layers using a Lagrangian
approach adapted from the vortex_ methpd. Both the l_JnforceH_ FORMULATION AND NUMERICAL SCHEMES
and externally forced cases are investigated in their paper.

The authors showed a good agreement between their numeri- The evolution of a two-dimensional, variable density,
cal results and the semiempirical formulas summarized bysovolume, inviscid flow at the limit of infinite Froude num-
Dimotakis'? on the unforced shear layers. The spreading rateber is investigated. The governing equations are

the eddy convection speed and the entrainment ratio, directly V.u=0 1)
connected to the Kelvin—Helmholtz structure development, '

are notably affected by the density ratio according to experi- d;p=0, 2
mental data. The physical mechanism, distorting and moving

the main vortical structures, is a direct consequence of the du=— EVp, 3
redistribution of vorticity. The baroclinic torque intensifies p

the vorticity on the light-side of the primary Kelvin— \herev=(4./dx,0./dy) is the gradient operator, € d./dt
Helmholtz structures while it destroys vorticity on the heavy-, , v is the material derivativep the pressure, and the
side. While forcing the flow at the inlet, i.e., the trailing edge density.

of the splitter plate, the authors showed the qualitative modi-  The equations can be recast in nonprimitive variables
fication of the response of the layer, especially for the,ging the Helmholtz decomposition,

spreading rate. They suggest that the observed behavior is to

be related to the orientation of the layer, known to depend on U= Uo+Up, (4)
the velocity and density ratio, together with the finite ampli- U=V (5)
tude of the forcing. The present contribution is a step further P ’

toward a better insight on the transition to turbulence of the ~A¢=0, (6)
forced plane mixing layer when submitted to a density strati- —Vx 7
fication. Both models—the temporal shear layer and the spa- Uo 4 ™
tially developing mixing layer—are investigated using an ex-  Ay=—ow, (8)
tension of the Blob Vortex Method called the Lagrangian

Transport Element Method. The method, carrying both the dedUXE 9)
vorticity agd the density gradient, has bl?;en introduced by ' ' p’

Andersort® and developed by Ghonieet al1* The Lagrang- dVp=—[Vu].Vp, (10)

ian approach avoids the spatial discretization of the flow gra-
dients and handles advection through the displacement of thehereu, is the potential velocity fields the velocity poten-
elements, limiting the numerical diffusion, see Puckett. tial, u, the solenoidal velocity fieldy the stream function
This numerical method resolves the scales available from thand w is the vorticity. Thus the solenoidal field can be ob-
spatial discretization without much diffusion while consider-tained by the Biot—Savart integral from the vorticity distri-
ing the smaller scales as a ‘“substructural phenomena,” sekution.

Soteriou'® Hence, it yields a fair numerical tool to investi- Following Ghoniemet al,** the so-called “Blob Vortex
gate Kelvin—Helmoholtz type instabilities known to be invis- Method” originated by Chorit? can be generalized to per-
cid as quoted by Michalk¥. form simulations of variable-density flows. The numerical

The focus of the present contribution is on the secondarprocedure aims at tracking a collectionrot.agrangian ele-
instability of the variable-density mixing layer. The paper is ments transporting both the local value of the vorticity and
organized as follows. Section Il is devoted to the derivationthe density gradient on a radially symmetric core, character-
of the numerical procedure. The numerical simulations of thézed by its shape, the “cut-off” functiori 5, and its radius,
temporal mixing layer are presented in Sec. lll. A secondaryhe “cut-off” parameterd. Thus 6 can be seen as the scale
Kelvin—Helmholtz type instability arises where the baro- beyond which fluctuations are locally averaged, see Soteriou
clinic torque has intensified the vorticity field. Validation and Ghonient® Lundgrenet al?° The cutoff functions used
issues are included and rely on comparisons with respect tin this study have been proposed by Beale and M&jda.
semiempirical formulas available from experimental data ofThey rely on Gaussian functions and lead to a second-order
Brown'® and Dimotakis-> Then, the physical mechanism is accuracy for the velocity field, hereafter referred td<@s or
analyzed on a simple model of a uniformly strained, trun-a fourth-order onelK4:
cated density-gradient and vorticity sheet. The model allows 5
for an estimation of the effects of the strain field on the (K2)f (r):iexp( _r_) (11)

. . .. . . . 3 ’
stability properties of the vorticity braids in the variable- w8? 52
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L(x)=

pl Py (X,y). (18

A Lagrangian spatial refinement strategy originated in Gho-
wﬂ< 20 niemet al,** which inserts or removes elements along isopy-

- g Isopy
cnic lines, is adopted and ensures the required overlapping
between neighboring blobs, see Leon&td.

p2 A
= B Ill. THE TEMPORAL MODEL

FIG. 1. Geometry of the temporal modg stands for the density gradient A The geometry and initial conditions
Vp).

The temporal layer can be viewed as a mathematical
idealization of a mixing layer developing downstream of a
1 r2 1 r2 splitter plate. It results from the Galilean transformation
(Ka)fs(r)= —2<2 ex;( - —2) P( )) (12 =u,*t, whereU,,=(U;+U,)/2 is the mean velocity be-
nd 3 tween the two free streams of the targeted spatially evolving
The n elements are initially defined as the grid points of aflow. The model becomes strictly valid if the mean velocity
uniform Cartesian mesh with size The basic equations are is much larger than half the velocity differende)/2= (U,
the Lagrangian vortex element displacement, —U,)/2=U,, Rogers and Moséf. Nevertheless, even for
lower velocity ratios, the temporal model is expected to re-

2(EX

2682

dixi=u(x;, 1) 13 el the main dynamic mechanisms of the spatially develop-
coupled with the regularized Biot—Savart summation ing mixing layer, Metcalfeet al,>® Rogers and Mosét. In
that model, the computational domain follows the time evo-
um(x,t)zf f Ks(x—x")w(x',t)dx’, (14  lution of a single wavelengthx, observed in a reference

frame moving atJ,,. Hence, it suffers from the streamwise
where K s5=K*f s is the convolution product between the periodization of an otherwise quasiperiodic flow, but it re-
kernel of the Biot—Savart integr&l and the “cut-off’—or  duces drastically the computational load. The initial condi-
desingularization—functiorf 5, and the vorticity transport tion is a standard Gaussian negative vorticity layer on which
equation(9). They are evolved in time simultaneously using a density gradient layer of the same thickness is superim-
Runge—Kutta schemes, a fourth-order one referred to gsosed. This choice is in good agreement with the experimen-
RK4, or second order named RK2. The determination of theal mean velocity and density profiles near the trailing edge
potential field depends on the boundary conditions and thisf a plane splitter plate, from Brown and Rostko,
will be introduced in Sec. Il for the temporal model and in )
Sec. IV for the spatially developing flow. Both the accelera- AU exp( Y ) (19

tion and the density gradient fields have to be updated at oly)== vy

each calculation step. The acceleration of the transport ele-
ments is obtained by a second-order backward finite differ-
ence scheme. The transport equation of the density gradient v ,y)=| p;—p, p( yZ) _ (20)

(10) is written in an alternative form available from 1 &Xp

Heidarinejad®® In this equation, the density gradient is de- ™o o

duced from the local stretching of an isopycnic line accord-Periodicity is assumed in the streamwise direction and is set

0_2

0

ing to to the most unstable wavelength of the uniform density case
IVl A=13.27, Michalke?® whereo is the standard deviation of
chst and Vp-di=0. (15)  the initial vorticity profile that measures the thickness of the

layer. This value is used in the variable-density computations
In the discrete description of the flow map, the local stretchfor which Soteriou and Ghoniethhave shown that the most
ing around an element is obtained from the distance with theinstable wavelength depends weakly on the density ratio.
neighboring elements within the same isopycnic line. Then, ~The geometry of the flow is described in Fig. 1. The
by noting that problem is normalized by the velocity scaldJ/2=U,, the

Ap=V.V (16) density p; of the upper flow, and the length scale The

P P periodic boundary condition is treated as an exact summation

the density field can be obtained using the reconstructionf the velocity field induced by any vortex in the computa-

formula, see Andersol, tion domain and its infinite row of images in the other peri-
ods (Ghoniemet al'%). The equations are solved with the
p(x,t)= f f Ls(x=x")-Vp(x',t)dx' +p,, (17 RK4 scheme and the cut-off functionkst. Att=0 the flow

is perturbed. The perturbation consists of a crosswise dis-
wherep, is a “potential” density depending on the bound- placement of the elements according to a sinewave whose
ary conditions and_s=L*f 5 is the desingularized gradient wavelength is\=13.20, i.e., the length of the domain. The
of the two-dimensional Green function with magnitude of the sinewave superimposed on the location of
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TABLE I. Description of the computations for the investigation of the tem- 4
poral mixing layer. The sixth column gives the number of isopycnic lines
simulated. Simulations of mixing layers with a density ratio greater than

unity have not been performed as, in the temporal model, cases with
polpi=s ands’=1/s are symmetric.

Run palpy h 5 dt Isopycnic Y or ]
Tla 1 0.2 0.25 0.1 19

Tib 1 0.1 0.125 0.1 37

T2 1/2 0.2 0.25 0.1 19

T3a 13 0.2 0.25 0.1 19 ! _
T3b 13 0.1 0.125 0.1 37 400 Y B2
T3c 13 005 00625 0.1 73 2

T3d 13 0.1 0.125 0.05 37 g

T3e 13 0.1 0.125 0.2 37 q

T3f 13 015 01875 0.1 25

T4 1/4 0.2 0.25 0.1 19

T5 1/5 0.2 0.25 0.1 19

T6 1/6 0.2 0.25 0.1 19

the elements is 1% of. It should be noted that, within this

context, the pairing of two primary structures is prevented.
Even for a variable density situation, the circulation over

a period is demonstrated to remain constant and depends on

the length of the period and the velocity of the two free

streams. Considering the rectangular closed contour over a

period C=ABCD) defined in Fig. 1, the circulation is

B c D A
Fozfu.dlzf u.dl+f u.dI+J' u.dl+f u.dl.
c A B C D y

Because of the streamwise periodicity condition, velocity
profiles along BC and AD are equal and the sum of the two
related integrals is null. Moreover along the two segments
AB and CD placed in the free streams, the velocity is uni-

-4
0.0 6.6 13.2

. . . 0.0 6.6 13.2
form (£U,). Consequently, the circulation over the period o
iS FOZ _2)\U0: _)\AU
Thus, whatever the amount of circulation created some- 4

where in the domain by the baroclinic torque, it is removed
elsewhere within the same period.

Table | gives the description of the runs performed for
the investigation of the temporal mixing layer. They differ
by the density ratio or the spatial resolution.

B. The primary Kelvin—Helmholtz instability

As illustrated in Fig. 2 from the vortex element position,
a primary Kelvin—Helmholtz instability is developing. Dur-
ing the roll-up, the so-created vortical core induces a strain
field on the braid. Then the fluid from the braid experiences
an acceleration that advects it toward the vortical core, irfIG. 2. Location of the elements &0, t=17, t=20, andt=22 for the
opposite direction on baih sides of the sadle poin of thetxchs Sty s e e aSon e S|
b.rald' Coupled W'Fh the .|O.C8.|. density gradient, of uniform rodu’étion of vorticity. The box on ,the botton£1J figure ﬁ]dicates the location
sign along the braid, vorticity is consequently both producedt the close-up to be presented in Fig. 8.
and removed. The sign of the baroclinic torque contribution
to the vorticity field, set by the density gradient, is such that
vorticity is created in the light-side braid of the main struc- The temporal evolution of the reduced circulation over
ture and destroyed inside the heavy-side braid. As noted ithe period is presented in Fig(e3 for the run T3c. In the
the previous section the circulation over a period remainpresented result, the departure of the relative circulation from
constant. its expected constant value is kept under 1.5% unti22.0

0.0 6.6 13.2
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1.03 T T T T TABLE Il. Normalized eddy convection speed for the temporal mddet
Loz b ] Lo r (b) merical values and prediction by Brown’s formul@he Poisson’s equation
' @ is solved on a Cartesian mesh whh-=0.1.
1.01 1
< 100 /] o . Run palp1 UL (Num) Ul (Brown)
s 105 ]
" oso L 1 - T2 172 0.18 0.17
’ T3a 1/3 0.28 0.27
0.98 + 1 T4 1/4 0.33 0.33
) ) i ) T5 1/5 0.38 0.38
0975 10 20 004 10 20 T6 1/6 0.41 0.42

t t

FIG. 3. (a) Time evolution of the reduced circulation over a period &énd
reduced negafive created circulation foy/p,=3.0 (run T39. I'y is the e of same order of magnitude as that of the main structures.
nondimensional initial circulatiot—26.4 in normalized unils 18 . .. . .
Brown,”® proposed a semiempirical estimation of the eddy
convective speed, consistent with the temporal model, that

while the baroclinic torque has creatdffom t=0) an can be written as

amount of negative circulatioh ~ of the same order as the sl/2
initial oneI'y=—X\AU [see Fig. 8)]. Such significant pro- Ue=Uc—Up=1-2—p,
ductions of negative, and correspondingly positive circula- 1+s
tion clearly suggest that the density stratification will have awheres=p,/p, is the density ratio and’. is the eddy con-
significant influence on the flow. vection speed in the reference frame of the temporal model

The evolution of the vorticity field along the central (moving atU,,). This convection velocity is measured here
isopycnic line(at p=2.0 and a density ratip,/p;=1/3) at  from the displacement of the center of the structure. The
the early stage of the roll-upt€16.0) is shown in Fig. 4. center position is obtained by solving Poisson’s equation on
The vorticity distribution is seen to be essentially linear, anda Cartesian mesh and searching for the local extremum of the
to exhibit vorticity oscillations in the high magnitude nega- stream function.
tive vorticity part. This point will be extensively discussed in The results are presented in Table Il and summarized in
the next section. It should also be noted that vorticity everfig. 5. They show a good agreement with Brown’s formula
reaches positive values. (22).

Soteriou and Ghonieth suggested that the positive and In agreement with the analysis of Soteriou and
negative vorticity that is created can be described as a dipol€@honiem®! the baroclinic additional vorticity also breaks the
superimposed on the reference vortex core of the uniformsymmetry of the entrainment, favoring the entrainment of the
density Kelvin—Helmholtz instability. This dipole then in- light fluid. Due to incompressibility, the loss of symmetry
duces a convection velocity on the eddy such that the maifeads to the displacement of the structure toward the low-
structures are not advected at the mean velocity as it is theensity stream.
case in the uniform density situation. As seen before, the The present results are compared to the proposal of
circulation of each vortex of that superimposed dipole mayBrown'® in order to check the dependence of the spreading
rate on the density ratio. In the reference frame moving at
U,,, the thickness of the structure is seen to be independent
of the density ratio, but the corresponding spatial spreading
rate changes since the convective velocity is density-ratio

(21)

0.6 T T T T

0.1 0.2 0.3 0.4 0.5 0.6
PP,
FIG. 4. Evolution of the vorticity along the central isopycnic line of the
braid (run T3c att=16.0). The solid line is for the computed profile. The FIG. 5. Eddy convection speed for the temporal mixing layer; Brown for-
dotted—dashed line marks the initial vorticity level. mula (solid ling), and numerical result&ircles.
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TABLE Ill. Effect of the density variation on the temporal spreading rate of 0.3 T T y . T
the layer ¢ is the maximum thickness of the structure over the period
Run p1lps désldt
Tla 1/1 0.267
T2 1/2 0.267
T3a 1/3 0.271 7
T4 1/4 0.274
T5 1/5 0.274
T6 1/6 0.269

sensitive. The total thickness of the structure is measured tc
the maximum spanwise distance between the two isopycnic
lines departing from the free stream density by 1.1%. The
slope of the temporal evolution of this thickness is obtained
by a linear regression in the first linear range, i.e., before the ¢ — . :
saturation of the primary mode. 0 4 8 12 16 20
The slope measurements, presented in Table Ill are con- ¢
firmed to be independent of the density ratio. FIG. 7. Run T1b: time evolution of the strain at the saddle point.
The strain field in the saddle point region that results
from the roll-up of the main structure is illustrated in Fig. 6
for the passive scalar and the 1/3 mixing layer. The strain  pected to remain unaffected by the density variation. In the
rate y, defined asy=|Vu- 7|, wherey is the local tangent yniform-density case, it can be noticed that the strain field
to the isopycnic line, exhibits a plateau around the saddlgiecreases linearly close to the core with slap@.043. Be-
point. In this region, the strain field has been weakly alteredides; the strain rate for the variable-density case reveals high
by the density stratification. The normalized magnitude ofmagnitude fluctuations, with even changes of sign, near the
the mean strain rate (see dashed and dotted linésfound  yortical core. They are relevant to the secondary instabilities
to be 0.225. This is consistent with the prOposal of COfCOS{hat are deve|oping a|ong the braid’ a point extensively dis-
and Shermahthat the strain field between main Kelvin— cussed in the next section. The temporal evolution of the
Helmholtz cores is roughly proportional to the core circula-strain rate at the saddle point is illustrated in Fig. 7 for the
tions. In the present cases, within each core the baroclinigniform-density case. It shows that the strain rate is roughly
production is neutralized by a corresponding destruction otonstant aftet~17.0, when most of the circulation is in the
circulation. The strain around the saddle pOint is thus eX'Core, Corresponding to the saturation of the primary Kelvin—
Helmholtz instability.

C. The evidence of a secondary instability

Figure 2 shows the locations of the vortex elements at
t=17 andt=22 for the temporal variable-density mixing
layer with p,/p,= 3.0 for the most spatially resolved simu-
lation (run T39. It is shown that, on the braid side which
experiences a baroclinic supply of vorticity, the vorticity
0.0 ‘ ' . . ' sheet breaks up into a row of growing secondary structures.
These structures are Kelvin—Helmholtz type structures and
are growing both in time and space. They are clearly distin-

0.75 guishable from the curved vorticity layer surrounding the
core but they are initiated backward in the favored braid.
0.25 1 Close to the saddle point, the isopycnic lines exhibit a
Y 025 I 1 wavy feature whose amplitude increases as the layer moves
closer to the core, as seen in the close-up in Fig. 8. These
-0.75 . oscillations are used to measure the wavelengttof the
1 secondary mode dt=22. The actual shape of the central
125 ” ) 0 5 4 p isopycnic line &,y) is compared with a smoothed curve ob-
X-X tained by a sixth order nonlinear regressiany(). In Fig. 9,

the difference Ay=y—y,) between the two curves is plot-
FIG. 6. The strain rate profile along the central isopycnic line of the braid;tad along the mean line vs the associated curvilinear coordi-

(@ run T1b, passive scalatb) run T3b,s=1/3 att=22.0 (plotted only . Hlat:
around the saddle pointSolid line shows the computed values. Dashed andnate @ The curve shows that the amp“tUde of oscillations

dotted lines are suggesting the trends.is the coordinate of the saddle is higher On_t_he side of the isopycr_ﬂc line Where vorticity has
point. been intensifiedon the left-hand side stressing the central
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FIG. 8. Close-up from Fig. 2; location of the elements$-a®2.0 (dotg for FIG. 10. Measurement of the wavelength of the secondary mode. Spectrum
the variable-density temporal mixing layéun T30 and isopycnic line at  of the oscillations of the central isopycnic line in the brapg=2.0) (run
p=2.0(solid line). T30 att=22.0.

influence ofw. These undulations can be linked to the pre-lines. This point is confirmed since the temporal displace-
viously noted fluctuations of the vorticity distribution along Mment of the main mode compares favorably with the strain
the isopycnic lines. A spatial Fourier transform is performedratey, measured around the saddle point region. Considering
on the curveAy=1(s) and the resulting spectrum is pre- @ material segmendl submitted to the strain ratg, the
sented in Fig. 10. The main peak in the spectrum indicates gmporal evolution of its length is exponential as it is gov-
wavelength of oscillationsh,=8c,(t=22), where o;(t  €med by the kinematic equation,

=22) is the local thickness of the strained vorticity braid Ddl

(herea)=a/6). This is consistent with the visually estimated 5 =[Vul.dl, (22
separation between the small scale secondary roll-ups. The

value does not correspond to the most unstable mode of tH&0 that as far as the wavelength of the main maggt)
unstretched vorticity layer, i.eN=13.20. This point is ex- along the stretched braid is concerned, its temporal displace-

amined in the following paragraph. ment can be expressed by
The temporal evolution of the perturbations along the
L . . : : , 1 [Np(t+At)
braid is also investigated. The crosswise velocity fluctuations AL In )\—(t) =. (23
m

are analyzed along the central isopycnic line in the range

18<t<22. The spatial spectra, presented in Fig. 11, illus-The result betweeh= 18 andt= 22 for the central isopycnic

trate two main features of the secondary roll-up. The first ondine are consistent with=0.225 for that range of time and

is the amplification of the main mode. The second one is thé1/At).In(\(22)/\ ;,(18))= 0.223. Due to incompressibility,

continuous displacement of the main peak toward highethe thickness of the vorticity braid decreases as it is

wavelengths, due to the stretching of the material, isopycnistretched. Thus, the local thickness of the vorticity prafije
decreases with time, while the wavelength of the oscillations
N\, increases. Consequently, the ratioNof(t) to oy(t) in-

0.10 , , creases. The strained braid may eventually develop a second-

ary instability before reaching the most unstakl® o ratio,

as is the case here.

During the secondary roll-ups, as during the primary
one, elements of the newly-formed, thin braids are advected
toward the secondary cores. Again, this acceleration, coupled
with the density gradient, produces vorticity. Then the local
-0.05 | : . topology of the vorticity field of a small scale structure
shows some similarity with the one of the primary structure
0.10 . , . as illustrated on the isovorticity lines from Fig. 12. In both

0 3 10 15 cases, the vortical core is surrounded by two braids, one with
positive vorticity, on the heavy side of the core, and the other

FIG. 9. Oscillations of the central isopycnic ling% 2.0) vs the curvilinear ~ ON€ experiencing a supply of negative vorticity. It is then_
abscissas (run T30 att=22.0. conjectured that, because of these common features, a third

0.05 + E

Ay=y-Y, 000 -
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FIG. 11. Time evolution of the spectrum of the crosswise velocity fluctuations along the central isopycninc line in the rahg@28or the run(T3c).

generation of smaller baroclinic structures may appear, reined. The enstrophy spectra for the runs T3a, T3b, T3c, and
peating the previous scenario. These structures have not be@8f are presented in Fig. 14). The result clearly shows that
observed because they are beyond the scope of the spatiak spatial scales available from the simulation are directly
resolution. This baroclinic mechanism, creating smaller andinked to the “cut-off” parameters. Again, as seen in Fig.
smaller scales could provide a specific route to turbulence fo13(b), the oscillations of the braid that feed the secondary
the variable-density mixing layer. instability depend on the spatial discretization, coarser spa-
As previously noted in Reinaust al.,”" the computa- tja| discretizations favoring higher wavelengths. Neverthe-
tional parametersh anddt, influence the observed second- |ess, all runs show the occurrence of the secondary instabili-
ary instability as it is the response of a strongly unstablgjes since the scales beyoh;glz, feeding the instability, are

region of the flow submitted to a low-amplitude numerical damped by the spatial discretization. Thus, the simula-
noise. This influence is now briefly illustrated. )
. ; . tions are able to catch the strongly unstable nature of the
The crosswise velocity fluctuations that measure the lo; . . ) .
. . raid responding to a humerics-dependent perturbation. The
cal perturbations feeding the secondary mode are seen 10

depend indeed on the time step as seen from their spectra (I:r?ntral point is then to understand the physical mechanisms

Fig. 13a). However, the enstrophy spectratat 15 andt Les_p:jons_lble ffc|>r thg unstgble naturebof.the vo.rl':|C|tydenhﬁntr:]ed
=21 are presented in Fig. @ for the runs T3b, T3d, and raid, since flow-dependant perturbations will end with the

T3e. It is seen that the time step has no significant influencd®Me result.
on the range of solved scales that spread well beyond the i ) ) ) .
baroclinic mode wave numbég . This suggests that, within D. Variable-density vs uniform density mixing layers
this range of time steps, the numerical diffusion due to the In order to stress the specific aspects of the variable-
temporal schemes does not prevent the development of thaensity mixing layer, it is further analyzed vs the uniform
scales associated with the secondary instability. density one(Runs T3b and T1p

The influence of the spatial discretization is also exam-  The development of the previously described small scale

|.'27
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FIG. 12. Isovorticity lines with negative values of(solid lineg within the
rangew=—9-—1 and positive value within the range 0.1-Qdhshed—

dotted ling. The box on the top figure shows the close-up frame presented ) . . .
on the bottom figure. FIG. 13. Spectra of the crosswise velocity fluctuations along the vorticity

braids att=22. (a) Influence of the time step. Runs T3dotted, T3b
(dotted—dashed and T3d(solid line). (b) Influence of the spatial discreti-
. zation. Runs T3adotted, T3f (dashe@l T3b (dotted—dashedand T3c
structures has an influence on the overall growth rate of pefsolid ling).

turbations defined as

dIn(l d
% =G In( fDomam|U(X) —U(x)[dx |, (24 =16.0, undulations of the braid are shown to be much higher
in the variable-density case; &t 22, o (s=1/3)/oy(s=1)
where U is the unperturbed velocity profile. The temporal =2.9. Both the growth of the velocity departure from its
evolution of In(/lg) is shown in Fig. 15 for the variable- initial field, and the steep increase of the crosswise oscilla-
density mixing layer and the uniform-density case, wHegre tions demonstrate the specific instability of the variable-
is the initial perturbation induced by the displacement of thedensity mixing layer when compared to its passive scalar
elements. The graph shows a common standard 0.2 slope feqguivalent.
0<t<10, see Ghonierst al*for the uniform density case. An additional simulation of a double period of the tem-
Then, the growth of the instability is significantly higher in poral mixing layer, including the forcing of the pairing mode
the variable density case. During the development of the sedias been performed and previously published, see Reinaud
ondary small scale structures in the variable density case (et al?’ The results, not reproduced here, demonstrated that
>18), the growth of the perturbations exhibits a 0.083 slopesmall scale break-up of the curved layer where vorticity has
This slope is more than twice the slope observed in thdeen intensified by the baroclinic torque and the develop-
uniform-density case, 0.032. ment of the pairing mode are not exclusive phenomena. Nev-
Comparison between the magnitudes of the crosswisertheless, this does not guarantee the existence of the small
oscillations along the central line of the braid is also considscale mode in the case of a spatially developing mixing
ered for the two cases. The standard deviatignof the layer. It is concluded that a similar investigation on the spa-
crosswise coordinatg relative to the mean curve obtained tially developing variable-density mixing layer remains of
by the sixth order polynomial regressign is growing as central interest. The mechanisms that trigger the secondary
illustrated by Fig. 16. Starting at a comparable level from break-up has also to be clarified.



2498 Phys. Fluids, Vol. 12, No. 10, October 2000

Reinaud, Joly, and Chassaing

| 30 -
2
[0}) 4
| 20
)
=
-4
100
1.0+
2
[0))
| 0.0
0.0

10.0

20.0
t

FIG. 15. Growth of the perturbation Iril;) over a period of the temporal
model for run T3bp, /p,=3.0(solid line) and run T1bp, /p,=1.0(dotted
line). h=0.1 in the two cases.

tially stretching the line g=gy,exp(t)). The advection,

FIG. 14. Enstrophy spectré) Influence ofdt, att=15 andt=21 for the
runs T3e(dotted, T3b (dashed, and T3d(solid line). (b) Influence ofh at

t=22 for the runs T34dotted—dashedT3f (dashed T3b(dotted, and T3¢ Nally, the vorticity field is

(solid line). kAZ indicates the wave number associated with the secondary

coupled with the density gradient, produces vorticity. Fi-

mode for the run T3c and; indicates a wave number associated with w(X,t)= y%xsinf(yt)-l- @n. (25)
=\/1.65=\/2h. ’ Po 0
E. A simple model for the baroclinic vorticity braid 0.04 , ;

A simplified model of the stretched braid is now pro-
posed. As seen previous(gee Fig. 6, the strain is roughly
uniform in the neighborhood of the saddle point of the braid.
Furthermore, the strain remains rather unchanged after the 0.03
development of the primary Kelvin—Helmholtz structures.

Hence, the behavior of a uniform, infinite, vorticity, and
density-gradient line ay=0 submitted to a uniform strain

field (u,v)=(yx,—vy) is relevant to mixing layer braids. o, g0
Let wg the vorticity, go the density gradient, and, the

density define the initial conditions of that simplified model.

Let us consider, without loss of generality, thag<0 and

0o>0. The velocityu is split into two components according 0.01
to the Helmholtz decompositions,, is the potential compo-
nent resulting from the strain field ang, is the solenoidal
component, deduced from the vorticity distribution, through
the Biot—Savart integral. The unperturbed stretched density
gradient line is assumed to remain flat. The Biot—Savart Law
then gives that the streamwise solenoidal velocity component
u,, along the vorticity line, is zero. On the other hand, the

00
16

20 22

FIG. 16. Standard deviatian, of the oscillations of the central material line

strain field produces advection on the line,(du,/dx for run T3b: circles and solid line and T1b: squares and dashed line for

= v?x). It also increases the density gradient while exponenis<t<22.
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TABLE V. Parameters of the truncated vorticity and density gradient fila- 0.06 T T T T T T T T T
ment simulationA is the initial amplitude of the forcing.
0.04 I t
Parameter Value
X 82.5 0.02 1
H 16.5
¥y H
h 015 0 0.00
5 0.1875
at 01 -0.02
¥ 0.15 T U |
9o/po 4 ’ '
A 0.04 006 . L s s

20 -15 -10 -5 0 5 10 15 20 25 30 35
X

It is seen that the vorticity distribution is linear which is FIG. 18. Central part of the vorticity and density gradient filamerit=a4
consistent with the observed repartition of vorticity along the(solid _Iine). Dotted—dashed lines represents the initial amplitude of the per-
central isopycnic line of the temporal mixing layer in Fig. 4. turbation.

At any t>0 the solution leads to infinite vorticity levels at
x— * o and to a corresponding diverging solenoidal velocity
field. However it gives a fair estimation of the vorticity pro-
duction in the neighborhood of the saddle poixt(Q) on a
strained finite density gradient layer.

strain field. This stable region is, in fact, becoming thinner
and thinner with time as baroclinic vorticity is enhanced on
both sides of the saddle point of the strain field. Finally, on
the right part, where vorticity exhibits high magnitude posi-

. lo .
¢ Asf_ qltéo_tedt bg{llprltscgetlet al, th? 'ggue.?c? of the tive vorticity, the layer should also break up into counter-
strain field is stabilizing. But, as seen froi@b), it also pro- clockwise rolling structures.

duces intense vorticity which increases the receptivity of the This model is subjected to a numerical computation. A

layer to perturbations. Considering the ratio forced, truncated negative vorticity and positive density gra-
o(X,t) gy . g dient filament, initially aligned with the-axis is placed in a

y EXS'”“VUJ’ e (26)  uniform strain field. The filament is discretized as a single
. . o row of blob elements. This regularized approach of a single
it is seen that fox<<0, the magnitude of the ratio increases jine of vorticity avoids the unphysical infinite amplification
with time as negative vorticity is enhancédestabilizing ef- ot perturbations of the vortex sheet as the wavelength of the
fect). But due to the initial negative vorticity,, the tempo-  jisturbances collapses to zero, see Lundggeal?® Then
ral evolution of the ratio is not monotonic for>0. The  he cut-off parametes defines the width of the layer. The

magnitude of the ratian/y decreases before reaching the computational domain is defined by its lengtk, 2, and the
minimum value of 0 at= —(1/y)asinh(wepo/¥Xxgo)) (sta-

bilizing effecy, then starts to increageestabilizing trengd
Meanwhile, according to the strain-vorticity competition
stressed by Dritschedt al.X° at a given time, the layer is to
be qualitively divided into three regions. On the left part of
the layer, where vorticity can be arbitrarily higlepending

on thex-section the filament should break up into negative ¥-Yo
vorticity roll-ups. In the central region, where th¢ y-ratio 04 - ]
can be as weak as 0, the layer should be stabilized by the 08 [ ]
_1.2 I . 1 i
14 T T T T M T T T T T T T T M ‘80 -?5 ‘?0
X
10 |
6 L _
w 2 - .
I Y-¥o
2 b 4
-6 h B -0.8 _ -
.10 | | I L 1 i ! 1 L 1 -1.2 g x
20 <15 10 5 0 5 10 15 20 25 30 35 70 75 80
X X

FIG. 17. Vorticity distribution along the strained, truncated vorticity, and FIG. 19. The vorticity and density gradient filamenttat4 (solid line).
density gradient laye(solid line) and comparison with the analytical pre- Dotted—dashed lines represents the initial amplitude of the perturbation.
diction (dotted—dashed lineatt=4. Top: negative vorticity roll-ups. Bottom: positive vorticity roll-ups.
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FIG. 20. Decomposition of the crosswise veloaityaccording to the sole-  FIG. 22. Decomposition of the crosswise solenoidal velogifyaccording
noidal componend,, and the potential component, att=2 in the central  to the near field,, , and the far field, s att=4.
region of the layer.

The shape of the vorticity and density gradient filament
elements advected beyond the boundaries of the domait=4 is seen in Figs. 18 and 19. The wavelength of the
(=Xmax are deleted. Such a truncated line of vorticity tendsyndulations is\ (t=4)=\,* exp(t)=1.8. In the central re-
naturally to rotate conformly to the circulation budget. Here,gion, Fig. 18, the amplitude of the perturbation has de-
the crosswise component of the solenoidal field at a givegreased. On both the negative and positive vorticity region,
crosswise distance is canceled which can be interpretated #%. 19, the layer is unstable. To analyze the stability prop-
a confinement of the layer between two slip-free walls. Thegrties of the layer, the crosswise velogitys shown in Figs.
height of the so-defined channkl is kept wider than the 20 (t=2) and 21 {=4) for the central region. It is shown
wavelength of the forcing to prevent any damping of thethat the solenoidal component, and the potentiel compo-
corresponding instabilities. The slip-free walls are modelechemvy have opposite phases. The phase of the crosswise
by the method of images as proposed and successfully agtrain field is opposite to the one of the undulations of the
plied by Inoue”® The images of the elements of the layer ar€layer (as it is —yy) and tends to flatten them, while the
placed symmetrically with respect to the walls and their vor-yortical component is in phase with the perturbations thus
ticity is half of the one of the elements with opposite sign.working to amplify the undulations.

The problem is normalized by the wavelength of the initial At t=2 the wavelength of the perturbation s=1.35.

perturbation\ o and the magnitude of initial negative vortic- |n Sec. A (see Fig. 20 corresponding tox=7.8 with o

ity [wol. =0.425=2.8y, the total velocity is in phase with the poten-
The parameters of the computation are given in Tablgjal component , so that the stabilizing effect of the strain

IV. The equations are solved using the RK2 scheme and thgeld is stronger than the destabilizing effect of the solenoidal

K2 cut-off function. component; the magnitude of the perturbation is decreasing.
The vorticity distribution att=4 along the line in the  On the contrary, in the section B, &t=28.7 with w=4.24

range —20<x<35 is compared to the analytical prediction =28 3y, v is dominated by the solenoidal componentso

25 in Fig. 17. It is seen that the unforced analytical modekhat the perturbation is amplified. It is concluded thatf at
accurately predicts the mean value of the vorticity distribu-=2 within the range —8<x<20, corresponding to
tion of the forced truncated layer.

0.08 T T T T T M T T
0.08
0.06 | .
0.04 0.04
0.00 0.02
> 004 >* 000
> < )
", 008 -3 002 o .
-0.12 -0.04 r N
0.06 1
-0.16 +
_0'08 1 1 1 L 1 1
_0‘20 | L ! L 1 ! L 1 ) 1 '2 '1 O 1 2 3 4 5
20 <15 <10 5 0 5 10 15 20 25 30 35 X

X
FIG. 23. Crosswise solenoidal velocity, , due to the near vorticity field
FIG. 21. Decomposition of the crosswise veloaityaccording to the sole- (—2<x<5) (solid line) and comparison with the velocity induced by an
noidal component , and the potential component, att=4 in the central ~ analytical (unperturbeg vorticity distribution (—2<x<5) (dashed—dotted
region of the layer. line) att=4.
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X_max TABLE V. Description of the computations for the investigation of the
spatially developing mixing layer. The fifth column gives the number of
isopycnic lines simulated. In all runs, the time step usedtis0.1. In all

— Ul f pl H

r E cases the velocity ratio=U, /U, is 0.5. The asterisk indicates a simulation
i / ] where a small scale perturbation is introduced. Its wavelength i$ifB6
> U2 / 02 ; and its amplitude 1.5% dfl.
: ! /S : Run pa2lps h 6 iso. Xmax
Insert Slip-fi 11 Delet
};se N ip-ree walls Elomons S.3a 13 0.0234 0.0273 7 5
ements S.3b 13 0.0234 0.0273 7 4
FIG. 24. Geometry of the spatial model. S.3c 13 0.0078 0.0091 21 4
S.3d 1/3 0.0078 0.0091 21 3
Sla 1 0.0234 0.0273 7 5
S3a 3 0.0234 0.0273 7 5

—16.4y<w<17.7y, the layer is being stabilized, and that
perturbations are developing outside of this range.

Later, att=4, the stabilized region is expected to be
thinner, because of the baroclinic production of vorticity. ) 30 ) o
Section B clearly exhibits a vorticity driven crosswise veloc- CTinsteinet al™™ The evidence of the secondary baroclinic
ity. The central part of the layer exhibits a neutral behavior"Stability is now examined in the more realistic spatially
to the perturbatiorisee section A There,v exhibits a qua- developing two-dimensional mixing layer. The vorticity pro-
siconstant value of 0.086 within the range- 2<x<5 cor- file in the inlet section is Gaussian and the layer is confined
responding to- 11.6y< < 61y so that perturbations are nei- betvygen two slip-free walls. Thg computational domgin is a
ther developing nor collapsing. The rati@ to y,  VOrticity layer truncated at a d!stgnOémax of the spllt'ter
characterizing the stability limit is surprisingly much lower Plate. The walls are modeled within a Schwartz—Christoffel

than att=2. The solenoidal component, of same order ofconformal mapping of the physical space into the upper half

magnitude as the potential component, actually prevents thelane. As proposed first by Ghoniem and RNain appropri-

strain field to stabilize the layer. The solenoidal componen@t€ Systém of images ensures a zero normal velocity at the
of the crosswise velocity is split into the near fielg,, due walls. The elements are introduced in the computational do-

to the vorticity distribution for— 2<x<5, and the far field Main respecting the Kutta condition. The downstream condi-
v, 1, induced by the vorticity outside of the region. The tion consists in deleting the elements as they cross the exit
results are presented in Fig. 22 fer2<x<5. It is con- Section of the computational domain. This assumption,

cluded that the solenoidal crosswise velocity fluctations ardh0ugh generating errors near the exit section, is commonly
due to the near field. They result from a feedback effect ot/S€d in vortex methods. o
the perturbation(oscillations of the material laygthrough The geometry of the configuration is given in Fig. 24.
the baroclinic torque. This is further demonstrated by com-TN€ layer is forced with the most unstable mode of the uni-
paringv,, , with the solenoidal field that would be induced form density case and its first subharmonic. The signals are
by the unperturbed, analytical vorticity distribution along the!n Phase, promoting the pairing of two main structures, see
oscillating material layev* . (see Fig. 23 It is concluded ~€0rcos and Shermafl. The forcing signal_corresponds,
that the baroclinic torque not only increases the ratim y, ~ Physically, to an oscillating splitter plate. The problem is
destabilizing the layer but also promotes the fluctuations oftormalized by the velocity scalé,, the densityp, of the
the crosswise velocity through a perturbed vorticity source. [OP Stréam and the length scade height of the channel. The
The present model illustrates the effects of a strain fielstandard deviationr of both the vorticity and the density

on a vorticity and density gradient filament. The numericaldradient profiles at the inlet section is scaled so that
simulation of the truncated layer clearly shows the competi-=H/(2)\) where) is the most unstable wavelength of the

tion between the stalibizing strain field and the destabilizing'Mform density case. This choice allows the pairing mode to
solenoidal field. It is concluded, in agreement with Dritschel@PPear without being constrained by the presence of the
et al,1% that the stability properties of such a filament are toWalls (Ghoniem and Ng). The amplitude of the two forcing

be linked to the local to w ratio and to the amplitude of the Signals is 1.5% of. _
perturbation. Even in region where the ratioto vy is low, The equations are solved with the RK2 scheme and the

the baroclinic torque is a vorticity source sensitive to pertur-CUt-Off function isk2. This reduction in the order of accu-
bations. These physical mechanisms are those triggering tH8CY Of the numerical schemes enhance the robustness of
baroclinic secondary instability.

IV. THE SPATIAL MODEL TABLE VI Spreading_rates of the spgtially developing, variable-density
forced mixing layers with a velocity ratio=0.5. Runs S.3a, Sla, S3a.

A. Geometry and initial conditions
p2lp1 A’
It has been shown that the temporal model is not able te
1/3 0.119

capture the natural asymmetry of the flow due to inertial 0116
effects(even in the uniform-density casbecause of the pe- 3 0.070
riodicity conditions imposed, see Corcos and Shefthand




2502 Phys. Fluids, Vol. 12, No. 10, October 2000 Reinaud, Joly, and Chassaing

1.0 : . . : : 1 :

L ] L | 1

|
2.0 3.0 4.0 5.0

0.0 : :
0.0 1.0

FIG. 25. Location of the elements &&8.0 for a variable-density spatially developing shear layer WityyU,=0.5 andp,/p;=0.33, Xpa=5, h
=0.0234(initial spatial step

calculation in the region of intense gradients. The differenthe maximum difference between the density distributions

runs are presented in Table V. p(X,y) is less than 2% of the density difference far
<Xmax—1. It is concluded, in agreement with Soteriou and
B. Numerical results Ghoniem** that the influence of the exit condition is signifi-

The dependence of the spreading rateon the density cant only forx>Xa—1. Thi§ statement. allows us to rgduce
ratio is first investigated on the forced spatially developingtn® !€ngth of the computational domain when focusing on
mixing layer. Measurements are based on the analysis dthenomena expected to develop only a few distance down-
time-averaged density profiles at different sections downStréam the trailing edge of the splitter plate. .
stream of the splitter plate. For that reason, the low resolu-  1he small scale break up of the braid is then investigated
tion simulations(runs S.3a, Sla, SBare used so that the ON rather highly spatially resolved simulations while the
computational cost per iteration remains low and a sufficientength of the computational domain is reducedXq.,=4.
number of instantaneous density profiles can be averagedhe case considered is the casel/3 (run S.3¢. The loca-
The density thickness of the layer is defined as the crosswiséons of the elements are showntat8 in Fig. 27. Conform-
distance where the averaged density departs from the frdBg to what occurs in the temporal mixing layer, and to the
stream density by 1% of the density differen@e passive conclusions of the simplified model, small scale structures
scalar is used for the uniform-density caséhe density is ~are observed. It is then seen that the structure<ak22.5
reconstructed along four lines that are discretized with the@xhibits a small scale roll-up where the vorticity has been
spatial stepdy=0.01 and placed at=1.5,2,3,4. The spread- intensified by the baroclinic torque. Moreover, along the
ing rate is then obtained by linear regression. right side braid of two next following primary structures,

The results, presented in Table VI, are consistent withow pairing, a row of Kelvin—Helmholtz type structures is
the previously published numerical investigation of Soterioudeveloping. The analysis of the undulations of the central
and Ghonient! where a detailed analysis of such a trend isisopycnic line is considered. The spectrum exhibits a main
developed. Again, the baroclinic torque is responsible for thgpeak atA=0.2 as seen from Fig. 28. The vorticity field
distortions in the entrainment rate on both side of the layerwithin the square box 27x<3.5 and 0.Xy<0.9 is recon-
consequently changing its spreading rate. structed on a 256Cartesian mesh. The isovorticity contours,

The influence of the downstream boundary conditionpresented in Fig. 29, show the small-scale structures of the
i.e., the removal of the elements crossing the exit section oflestabilized braid. Besides, the core itself has broken up so
the computational domain, is investigated comparing instanthat both the positive and negative vorticity are concentrated
taneous density profiles between two similar simulationon small spots. The corresponding spatial instantaneous
with different length of the computational domain. This com-spectrum of enstrophy is given in Fig. 30. The result shows
parison, illustrated in Figs. 25 and 26, between the runs S.3#hat the spectrum is continuous and exhibits enstrophy be-
where X =5 and S.3b, where,,,=4, att=8 gives that tween the wave numbdc=1 andk~90 corresponding to

1-0 T T T T T T

0.0 ' ' .
0.0 1.0 2.0 3.0 4.0 5.0

FIG. 26. Location of the elements &t8.0 for a variable-density spatially developing shear layer WitjyU,=0.5 andp,/p;=0.33, Xpa=4, h
=0.0234(initial spatial step
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FIG. 27. Location of the elements &t 8.0 withU,/U,;=0.5 andp,/p,=0.33, X,,,=4, h=0.0078(initial spatial step.
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FIG. 28. Spectrum of oscillation of the braid 3:8<3.9 of the spatially

developing mixing, variable-density layer &t 8 (run S.3¢.

0.9 T T T T

0.8

0.7-

01 L . . . L ) .
2.7 28 29 3 3.1 3.2 3.3 34

FIG. 29. Vorticity contours in the box 01y<0.9, 2.Kx<3.5 att=8.0
with U,/U;=0.5 and p,/p;=0.33, X a=4, h=0.0078 (initial spatial

step.

3.5

the range of wavelength-0.009<\<0.8. The high wave
number limit corresponds to the “cut-off” parametes.
Three regions are identified. For the large scalek* 13,

the enstrophy is roughly uniformly repartitioned. Then for
13<k< 30, the slope of the enstrophy spectrum is found to
bek ™27 Finally, the amount of enstrophy per wave number
rapidly decreases witk and almost vanishes fée>90. It is
then demonstrated that as soon as the first pairing, the baro-
clinic torque has drastically modified the topology of the
vorticity map, creating a continuous spectral repartition of
enstrophy.

Considering the vorticity field, even the first developed
roll-up exhibits a right-side braid where small-scale instabili-
ties are growing, see Fig. 31. An additional simulation,
where a small-scale perturbation is introduced, is performed.
The wavelength of the forcing i81/20 and its amplitude
0.15% ofH, i.e., a tenth of the amplitude of the main mode
and its first subharmonigun S.3d). The length of the com-
putational domain has been reducedxg,,=3 as the focus
is on the first developed structure. The result presented in
Fig. 32 suggests that the small-scale can be promoted and
organized through an external low-amplitude high frequency
forcing. It is suggested that the increased receptivity of the
vorticity and density gradient braids can be used to favor the
transition to turbulence, and to promote mixing.
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FIG. 30. Spectrum of enstrophy in the box €.4<0.9, 2.<x<3.5 att
=8.0 withU,/U;=0.5 andp,/p;=0.33, Xpha=4, h=0.0078(initial spa-
tial step.
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07 ' - - ' ' - - light-side vorticity braid. The difference lies on the nature of
the pressure gradient which is fixed in direction and intensity
0851 1 in the buoyancy-driven case while it results from accelera-

tion field in the high Reynolds and Froude numbers mixing
layer, studied here. Then, the analysis of a simplified model
of a stretched density-gradient and vorticity filament, model-
ing the braid of the mixing layer, stressed that the baroclinic
torque amplifies the magnitude of the vorticity. Conse-
quently, the solenoidal field, that tends to amplify perturba-
tions within the vorticity filament, can compete with the sta-
bilizing strain field. Moreover, the perturbations induce
fluctuations on the baroclinic torque, yielding a perturbed
vorticity source. This feedback effect of the perturbation
through the baroclinic torque also leads toward the destabi-
lization. It is concluded that the density stratification not only
changes the global evolution of the flow, such as its spread-
ing rate but also should speed up the transition to turbulence
of high Reynolds number spatially developing mixing layers.
FIG. 31. Vorticity contours in the box 03y<0.7, 1.lxx<1.5 att=8.0  Such observations suggest that high frequency external forc-
‘;‘gg xa’ggo-g’ andp;/p,=0.33, Xax=4, 1=0.0078 (initial spatial  jng of the variable-density shear layer could be an efficient
o active control strategy to enhance the mixing rate.
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