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The baroclinic secondary instability of the two-dimensional shear layer
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The focus of this study is on the numerical investigation of two-dimensional, isovolume, high
Reynolds and Froude numbers, variable-density mixing layers. Lagrangian simulations, of both the
temporal and the spatial models, are performed. They reveal the breaking-up of the strained vorticity
and density-gradient braids, connecting two neighboring primary structures. The secondary
instability arises where the vorticity has been intensified by the baroclinic torque. A simplified
model of the braid of the variable-density mixing layer, consisting of a strained vorticity and
density-gradient filament, is analyzed. It is concluded that the physical mechanism responsible for
the secondary instability is the forcing of the vorticity field by the baroclinic torque, itself sensitive
to perturbations. This mechanism suggests a rapid route to turbulence for the variable-density
mixing layer. © 2000 American Institute of Physics.@S1070-6631~00!00810-2#
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I. INTRODUCTION

Shear dominated binary mixing or thermal mixing pr
cesses arise in a large number of industrial and geophy
flows and their specific features have been extensively s
ied. As quoted by Turner1 the density inhomogeneity yield
the generation-destruction of vorticity by the baroclin
torque. This source term of the vorticity transport equation
due to the misalignment between the density gradient and
pressure gradient. Experimental evidence highlights the
fluence of the density gradient on the global behavior
incompressible, variable-density simple shear flow;
Brown and Roshko2 and Konrad.3 Lele4 even suggested tha
the baroclinic torque may be invoked to explain the Ma
number effect, together with dilatation, on the spreading r
of the compressible mixing layer.

Within the frame of the Boussinesq approximatio
Staquet5 performed numerical experiments on a stratifi
shear layer. During the development of the primary Kelvi
Helmholtz instability, the vorticity field reorganizes int
large vortical cores linked by thin vorticity layers hereaft
referred to as ‘‘braids.’’ The author confirmed and furth
analyzed the baroclinic secondary Kelvin–Helmholtz ty
instability, that was observed experimentally by Altman6 in a
tilted water channel. This secondary instability, emerging
the stagnation points of the vortical braids between the m
Kelvin–Helmholtz structures was also suggested by Cor
and Sherman7 and earlier hinted by Thorpe.8 The study of
such secondary instabilities is crucial as, according
Thorpe,9 it could be one of the mechanisms that trigge
turbulence in geophysical shear layers. The braids, subje
to baroclinic vorticity production, are continuously stretche
experiencing a strain rate roughly proportional to the cir
lation around the cores, see Corcos and Sherman.7 The strain
rate, shown to be Reynolds-number independent by Staq5

has been invoked, conformly with the work of Dritsch
2481070-6631/2000/12(10)/2489/17/$17.00
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et al.,10 together with Richardson number effects, to expla
the stability properties of the vorticity braid in the stratifie
mixing layer.

The theoretical work of Dritschelet al.10 stressed the
stabilizing effect of a uniform strain field on a uniform vo
ticity filament. The basic mechanism lies both on the sp
wise thinning of the vorticity layer, decreasing the magnitu
of perturbations, and a streamwise stretching, making
wavenumber of disturbances collapse to zero. The auth
demonstrated that by considering the ratio of the strain rag
to the vorticityv, a value above 25% yields the result th
any perturbation is damped, i.e., its amplitude can only
crease with time. For weaker values of the strain rate,
linear theory predicts that, after an initial growth, an infin
tesimal disturbance reaches a maximum, the amplifica
being 3 withg/v56.5% and 6.55 withg/v55%, and then
finally decays. Thus, the maximum amplitude is shown
depend on the local ratio of the time scales associated
the strain and the vorticityg/v;tv /tg . But the amplitude
of a perturbation, which is initially finite, reaches finite va
ues, invalidating the linear approach~for example, the maxi-
mum amplification may be greater than 1081 if g/v
,1023). Taking into account the nonlinear effects, the a
thors concluded that roll-up can actually occur depending
the initial finite magnitude of the disturbance and theg/v
ratio. The authors suggest that the ratio between the lo
straining and the local vorticity should provide a fair crit
rion to analyze the stability properties of stretched vortic
layers even in more complex situations. In the stably str
fied mixing layer studied by Staquet5 the baroclinic torque
enhances vorticity in the braids such that the ratiog/v de-
creases, indicating the possibility of a secondary instabi
on the braid. In that case, the author proposesg/v51.85%
and a Richardson number of 0.04 as empirical thresh
values for the development of the secondary, barocli
instability.
9 © 2000 American Institute of Physics
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The focus of the present paper is on the effects of ba
clinicity on the two-dimensional mixing layer beyond th
Boussinesq approximation. This situation is likely to occur
the early, quasi-two-dimensional transition of low Ma
number, high Reynolds, and Froude numbers shear flo
Soteriou and Ghoniem11 have studied two-dimensional, hig
Reynolds and Froude numbers, incompressible, spatially
veloping, variable-density mixing layers using a Lagrang
approach adapted from the vortex method. Both the unfor
and externally forced cases are investigated in their pa
The authors showed a good agreement between their num
cal results and the semiempirical formulas summarized
Dimotakis12 on the unforced shear layers. The spreading r
the eddy convection speed and the entrainment ratio, dire
connected to the Kelvin–Helmholtz structure developme
are notably affected by the density ratio according to exp
mental data. The physical mechanism, distorting and mov
the main vortical structures, is a direct consequence of
redistribution of vorticity. The baroclinic torque intensifie
the vorticity on the light-side of the primary Kelvin–
Helmholtz structures while it destroys vorticity on the heav
side. While forcing the flow at the inlet, i.e., the trailing ed
of the splitter plate, the authors showed the qualitative mo
fication of the response of the layer, especially for t
spreading rate. They suggest that the observed behavior
be related to the orientation of the layer, known to depend
the velocity and density ratio, together with the finite amp
tude of the forcing. The present contribution is a step furt
toward a better insight on the transition to turbulence of
forced plane mixing layer when submitted to a density str
fication. Both models—the temporal shear layer and the s
tially developing mixing layer—are investigated using an e
tension of the Blob Vortex Method called the Lagrangi
Transport Element Method. The method, carrying both
vorticity and the density gradient, has been introduced
Anderson13 and developed by Ghoniemet al.14 The Lagrang-
ian approach avoids the spatial discretization of the flow g
dients and handles advection through the displacement o
elements, limiting the numerical diffusion, see Pucket15

This numerical method resolves the scales available from
spatial discretization without much diffusion while conside
ing the smaller scales as a ‘‘substructural phenomena,’’
Soteriou.16 Hence, it yields a fair numerical tool to invest
gate Kelvin–Helmoholtz type instabilities known to be invi
cid as quoted by Michalke.17

The focus of the present contribution is on the second
instability of the variable-density mixing layer. The paper
organized as follows. Section II is devoted to the derivat
of the numerical procedure. The numerical simulations of
temporal mixing layer are presented in Sec. III. A second
Kelvin–Helmholtz type instability arises where the bar
clinic torque has intensified the vorticity field. Validatio
issues are included and rely on comparisons with respe
semiempirical formulas available from experimental data
Brown18 and Dimotakis.12 Then, the physical mechanism
analyzed on a simple model of a uniformly strained, tru
cated density-gradient and vorticity sheet. The model allo
for an estimation of the effects of the strain field on t
stability properties of the vorticity braids in the variabl
-
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density mixing layer. Then, in Sec. IV, the spatial model
the shear layer is investigated and confirms the sensitivity
the vorticity braids to the baroclinic secondary instability.
is concluded, in Sec. V, that the baroclinic torque, wh
promoting the destabilization of vorticity braids, is central
the specific route toward turbulence of the variable-den
mixing flows.

II. FORMULATION AND NUMERICAL SCHEMES

The evolution of a two-dimensional, variable densi
isovolume, inviscid flow at the limit of infinite Froude num
ber is investigated. The governing equations are

“•u50, ~1!

dtr50, ~2!

dtu52
1

r
“p, ~3!

where“5(]./]x,]./]y) is the gradient operator, dt5]./]t
1u.“ is the material derivative,p the pressure, andr the
density.

The equations can be recast in nonprimitive variab
using the Helmholtz decomposition,

u5uv1up , ~4!

up5“f, ~5!

Df50, ~6!

uv5“3c, ~7!

Dc52v, ~8!

dtv5dtu3
“r

r
, ~9!

dt“r52 t@“u#.“r, ~10!

whereup is the potential velocity field,f the velocity poten-
tial, uv the solenoidal velocity field,c the stream function
and v is the vorticity. Thus the solenoidal field can be o
tained by the Biot–Savart integral from the vorticity distr
bution.

Following Ghoniemet al.,14 the so-called ‘‘Blob Vortex
Method’’ originated by Chorin19 can be generalized to per
form simulations of variable-density flows. The numeric
procedure aims at tracking a collection ofn Lagrangian ele-
ments transporting both the local value of the vorticity a
the density gradient on a radially symmetric core, charac
ized by its shape, the ‘‘cut-off’’ functionf d , and its radius,
the ‘‘cut-off’’ parameterd. Thusd can be seen as the sca
beyond which fluctuations are locally averaged, see Sote
and Ghoniem,16 Lundgrenet al.20 The cutoff functions used
in this study have been proposed by Beale and Majd21

They rely on Gaussian functions and lead to a second-o
accuracy for the velocity field, hereafter referred to asK2, or
a fourth-order one,K4:

~K2! f d~r !5
1

pd2
expS 2

r 2

d2D , ~11!
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~K4! f d~r !5
1

pd2 S 2 expS 2
r 2

d2D 2
1

2
expS 2

r 2

2d2D D . ~12!

The n elements are initially defined as the grid points o
uniform Cartesian mesh with sizeh. The basic equations ar
the Lagrangian vortex element displacement,

dtxi5u~xi ,t ! ~13!

coupled with the regularized Biot–Savart summation

uv~x,t !5E E Kd~x2x8!v~x8,t !dx8, ~14!

where Kd5K* f d is the convolution product between th
kernel of the Biot–Savart integralK and the ‘‘cut-off’’—or
desingularization—functionf d , and the vorticity transpor
equation~9!. They are evolved in time simultaneously usin
Runge–Kutta schemes, a fourth-order one referred to
RK4, or second order named RK2. The determination of
potential field depends on the boundary conditions and
will be introduced in Sec. III for the temporal model and
Sec. IV for the spatially developing flow. Both the accele
tion and the density gradient fields have to be updated
each calculation step. The acceleration of the transport
ments is obtained by a second-order backward finite dif
ence scheme. The transport equation of the density grad
~10! is written in an alternative form available from
Heidarinejad.22 In this equation, the density gradient is d
duced from the local stretching of an isopycnic line acco
ing to

u“ru
udlu

5cst and “r•dl50. ~15!

In the discrete description of the flow map, the local stret
ing around an element is obtained from the distance with
neighboring elements within the same isopycnic line. Th
by noting that

Dr5“•“r, ~16!

the density field can be obtained using the reconstruc
formula, see Anderson,13

r~x,t !5E E Ld~x2x8!•“r~x8,t !dx81rp , ~17!

whererp is a ‘‘potential’’ density depending on the bound
ary conditions andLd5L* f d is the desingularized gradien
of the two-dimensional Green function with

FIG. 1. Geometry of the temporal model~g stands for the density gradien
“r).
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L~x!5
1

2pr 2
~x,y!. ~18!

A Lagrangian spatial refinement strategy originated in G
niemet al.,14 which inserts or removes elements along isop
cnic lines, is adopted and ensures the required overlap
between neighboring blobs, see Leonard.23

III. THE TEMPORAL MODEL

A. The geometry and initial conditions

The temporal layer can be viewed as a mathemat
idealization of a mixing layer developing downstream of
splitter plate. It results from the Galilean transformationx
5Um* t, whereUm5(U11U2)/2 is the mean velocity be
tween the two free streams of the targeted spatially evolv
flow. The model becomes strictly valid if the mean veloc
is much larger than half the velocity differenceDU/25(U1

2U2)/25U0 , Rogers and Moser.24 Nevertheless, even fo
lower velocity ratios, the temporal model is expected to
veal the main dynamic mechanisms of the spatially devel
ing mixing layer, Metcalfeet al.,25 Rogers and Moser.24 In
that model, the computational domain follows the time ev
lution of a single wavelengthl, observed in a referenc
frame moving atUm . Hence, it suffers from the streamwis
periodization of an otherwise quasiperiodic flow, but it r
duces drastically the computational load. The initial con
tion is a standard Gaussian negative vorticity layer on wh
a density gradient layer of the same thickness is supe
posed. This choice is in good agreement with the experim
tal mean velocity and density profiles near the trailing ed
of a plane splitter plate, from Brown and Roshko,2

v~y!52
DU

p1/2s
expS 2

y2

s2D , ~19!

“r~y!5S 0

r12r2

p1/2s
expS 2

y2

s2D D . ~20!

Periodicity is assumed in the streamwise direction and is
to the most unstable wavelength of the uniform density c
l513.2s, Michalke,26 wheres is the standard deviation o
the initial vorticity profile that measures the thickness of t
layer. This value is used in the variable-density computati
for which Soteriou and Ghoniem11 have shown that the mos
unstable wavelength depends weakly on the density ratio

The geometry of the flow is described in Fig. 1. Th
problem is normalized by the velocity scaleDU/25U0 , the
density r1 of the upper flow, and the length scales. The
periodic boundary condition is treated as an exact summa
of the velocity field induced by any vortex in the comput
tion domain and its infinite row of images in the other pe
ods ~Ghoniemet al.14!. The equations are solved with th
RK4 scheme and the cut-off function isK4. At t50 the flow
is perturbed. The perturbation consists of a crosswise
placement of the elements according to a sinewave wh
wavelength isl513.2s, i.e., the length of the domain. Th
magnitude of the sinewave superimposed on the locatio
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the elements is 1% ofl. It should be noted that, within thi
context, the pairing of two primary structures is prevente

Even for a variable density situation, the circulation ov
a period is demonstrated to remain constant and depend
the length of the period and the velocity of the two fr
streams. Considering the rectangular closed contour ov
period (C5ABCD) defined in Fig. 1, the circulation is

G05E
C
u.dl5E

A

B

u.dl1E
B

C

u.dl1E
C

D

u.dl1E
D

A

u.dl.

Because of the streamwise periodicity condition, veloc
profiles along BC and AD are equal and the sum of the t
related integrals is null. Moreover along the two segme
AB and CD placed in the free streams, the velocity is u
form (6U0). Consequently, the circulation over the peri
is G0522lU052lDU.

Thus, whatever the amount of circulation created som
where in the domain by the baroclinic torque, it is remov
elsewhere within the same period.

Table I gives the description of the runs performed
the investigation of the temporal mixing layer. They diff
by the density ratio or the spatial resolution.

B. The primary Kelvin–Helmholtz instability

As illustrated in Fig. 2 from the vortex element positio
a primary Kelvin–Helmholtz instability is developing. Du
ing the roll-up, the so-created vortical core induces a str
field on the braid. Then the fluid from the braid experienc
an acceleration that advects it toward the vortical core
opposite direction on both sides of the saddle point of
braid. Coupled with the local density gradient, of unifor
sign along the braid, vorticity is consequently both produc
and removed. The sign of the baroclinic torque contribut
to the vorticity field, set by the density gradient, is such t
vorticity is created in the light-side braid of the main stru
ture and destroyed inside the heavy-side braid. As note
the previous section the circulation over a period rema
constant.

TABLE I. Description of the computations for the investigation of the te
poral mixing layer. The sixth column gives the number of isopycnic lin
simulated. Simulations of mixing layers with a density ratio greater th
unity have not been performed as, in the temporal model, cases
r2 /r15s ands851/s are symmetric.

Run r2 /r1 h d dt Isopycnic

T1a 1 0.2 0.25 0.1 19
T1b 1 0.1 0.125 0.1 37
T2 1/2 0.2 0.25 0.1 19
T3a 1/3 0.2 0.25 0.1 19
T3b 1/3 0.1 0.125 0.1 37
T3c 1/3 0.05 0.0625 0.1 73
T3d 1/3 0.1 0.125 0.05 37
T3e 1/3 0.1 0.125 0.2 37
T3f 1/3 0.15 0.1875 0.1 25
T4 1/4 0.2 0.25 0.1 19
T5 1/5 0.2 0.25 0.1 19
T6 1/6 0.2 0.25 0.1 19
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The temporal evolution of the reduced circulation ov
the period is presented in Fig. 3~a! for the run T3c. In the
presented result, the departure of the relative circulation fr
its expected constant value is kept under 1.5% untilt522.0

n
ith

FIG. 2. Location of the elements att50, t517, t520, andt522 for the
variable-density temporal mixing layer withr1 /r253.0 ~run T3c!. g stands
for “r and a for the acceleration, indicating the sign of the baroclin
production of vorticity. The box on the bottom figure indicates the locat
of the close-up to be presented in Fig. 8.
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while the baroclinic torque has created~from t50) an
amount of negative circulationG2 of the same order as th
initial oneG052lDU @see Fig. 3~b!#. Such significant pro-
ductions of negative, and correspondingly positive circu
tion clearly suggest that the density stratification will have
significant influence on the flow.

The evolution of the vorticity field along the centr
isopycnic line~at r52.0 and a density ratior2 /r151/3) at
the early stage of the roll-up (t516.0) is shown in Fig. 4.
The vorticity distribution is seen to be essentially linear, a
to exhibit vorticity oscillations in the high magnitude neg
tive vorticity part. This point will be extensively discussed
the next section. It should also be noted that vorticity ev
reaches positive values.

Soteriou and Ghoniem11 suggested that the positive an
negative vorticity that is created can be described as a di
superimposed on the reference vortex core of the unifo
density Kelvin–Helmholtz instability. This dipole then in
duces a convection velocity on the eddy such that the m
structures are not advected at the mean velocity as it is
case in the uniform density situation. As seen before,
circulation of each vortex of that superimposed dipole m

FIG. 3. ~a! Time evolution of the reduced circulation over a period and~b!
reduced negative created circulation forr1 /r253.0 ~run T3c!. G0 is the
nondimensional initial circulation~226.4 in normalized units!.

FIG. 4. Evolution of the vorticity along the central isopycnic line of th
braid ~run T3c att516.0). The solid line is for the computed profile. Th
dotted–dashed line marks the initial vorticity level.
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be of same order of magnitude as that of the main structu
Brown,18 proposed a semiempirical estimation of the ed
convective speed, consistent with the temporal model,
can be written as

Uc
t 5Uc2Um5122

s1/2

11s1/2
, ~21!

wheres5r2 /r1 is the density ratio andUc
t is the eddy con-

vection speed in the reference frame of the temporal mo
~moving atUm). This convection velocity is measured he
from the displacement of the center of the structure. T
center position is obtained by solving Poisson’s equation
a Cartesian mesh and searching for the local extremum o
stream function.

The results are presented in Table II and summarize
Fig. 5. They show a good agreement with Brown’s formu
~21!.

In agreement with the analysis of Soteriou a
Ghoniem,11 the baroclinic additional vorticity also breaks th
symmetry of the entrainment, favoring the entrainment of
light fluid. Due to incompressibility, the loss of symmet
leads to the displacement of the structure toward the lo
density stream.

The present results are compared to the proposa
Brown18 in order to check the dependence of the spread
rate on the density ratio. In the reference frame moving
Um , the thickness of the structure is seen to be independ
of the density ratio, but the corresponding spatial spread
rate changes since the convective velocity is density-r

TABLE II. Normalized eddy convection speed for the temporal model~nu-
merical values and prediction by Brown’s formula!. The Poisson’s equation
is solved on a Cartesian mesh withh50.1.

Run r2 /r1 Uc
t ~Num.! Uc

t ~Brown!

T2 1/2 0.18 0.17
T3a 1/3 0.28 0.27
T4 1/4 0.33 0.33
T5 1/5 0.38 0.38
T6 1/6 0.41 0.42

FIG. 5. Eddy convection speed for the temporal mixing layer; Brown f
mula ~solid line!, and numerical results~circles!.
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sensitive. The total thickness of the structure is measure
the maximum spanwise distance between the two isopy
lines departing from the free stream density by 1.1%. T
slope of the temporal evolution of this thickness is obtain
by a linear regression in the first linear range, i.e., before
saturation of the primary mode.

The slope measurements, presented in Table III are c
firmed to be independent of the density ratio.

The strain field in the saddle point region that resu
from the roll-up of the main structure is illustrated in Fig.
for the passive scalar and thes51/3 mixing layer. The strain
rateg, defined asg5u“u•hu, whereh is the local tangent
to the isopycnic line, exhibits a plateau around the sad
point. In this region, the strain field has been weakly alte
by the density stratification. The normalized magnitude
the mean strain rateg ~see dashed and dotted lines! is found
to be 0.225. This is consistent with the proposal of Cor
and Sherman7 that the strain field between main Kelvin
Helmholtz cores is roughly proportional to the core circu
tions. In the present cases, within each core the baroc
production is neutralized by a corresponding destruction
circulation. The strain around the saddle point is thus

TABLE III. Effect of the density variation on the temporal spreading rate
the layer (d is the maximum thickness of the structure over the period!.

Run r1 /r2 dd/dt

T1a 1/1 0.267
T2 1/2 0.267
T3a 1/3 0.271
T4 1/4 0.274
T5 1/5 0.274
T6 1/6 0.269

FIG. 6. The strain rate profile along the central isopycnic line of the br
~a! run T1b, passive scalar,~b! run T3b, s51/3 at t522.0 ~plotted only
around the saddle point!. Solid line shows the computed values. Dashed a
dotted lines are suggesting the trends.xs is the coordinate of the saddl
point.
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pected to remain unaffected by the density variation. In
uniform-density case, it can be noticed that the strain fi
decreases linearly close to the core with slope60.043. Be-
sides, the strain rate for the variable-density case reveals
magnitude fluctuations, with even changes of sign, near
vortical core. They are relevant to the secondary instabili
that are developing along the braid, a point extensively d
cussed in the next section. The temporal evolution of
strain rate at the saddle point is illustrated in Fig. 7 for t
uniform-density case. It shows that the strain rate is roug
constant aftert;17.0, when most of the circulation is in th
core, corresponding to the saturation of the primary Kelvi
Helmholtz instability.

C. The evidence of a secondary instability

Figure 2 shows the locations of the vortex elements
t517 and t522 for the temporal variable-density mixin
layer with r1 /r253.0 for the most spatially resolved simu
lation ~run T3c!. It is shown that, on the braid side whic
experiences a baroclinic supply of vorticity, the vortici
sheet breaks up into a row of growing secondary structu
These structures are Kelvin–Helmholtz type structures
are growing both in time and space. They are clearly dis
guishable from the curved vorticity layer surrounding t
core but they are initiated backward in the favored braid.

Close to the saddle point, the isopycnic lines exhibi
wavy feature whose amplitude increases as the layer mo
closer to the core, as seen in the close-up in Fig. 8. Th
oscillations are used to measure the wavelengthl2 of the
secondary mode att522. The actual shape of the centr
isopycnic line (x,y) is compared with a smoothed curve o
tained by a sixth order nonlinear regression (x,yr). In Fig. 9,
the difference (Dy5y2yr) between the two curves is plot
ted along the mean line vs the associated curvilinear coo
nate (s). The curve shows that the amplitude of oscillatio
is higher on the side of the isopycnic line where vorticity h
been intensified~on the left-hand side!, stressing the centra

f

;

FIG. 7. Run T1b: time evolution of the strain at the saddle point.
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influence ofv. These undulations can be linked to the p
viously noted fluctuations of the vorticity distribution alon
the isopycnic lines. A spatial Fourier transform is perform
on the curveDy5 f (s) and the resulting spectrum is pre
sented in Fig. 10. The main peak in the spectrum indicate
wavelength of oscillationsl258s l(t522), where s l(t
522) is the local thickness of the strained vorticity bra
~heres l.s/6). This is consistent with the visually estimate
separation between the small scale secondary roll-ups.
value does not correspond to the most unstable mode o
unstretched vorticity layer, i.e.,l513.2s. This point is ex-
amined in the following paragraph.

The temporal evolution of the perturbations along t
braid is also investigated. The crosswise velocity fluctuati
are analyzed along the central isopycnic line in the ra
18,t,22. The spatial spectra, presented in Fig. 11, ill
trate two main features of the secondary roll-up. The first o
is the amplification of the main mode. The second one is
continuous displacement of the main peak toward hig
wavelengths, due to the stretching of the material, isopyc

FIG. 8. Close-up from Fig. 2; location of the elements att522.0 ~dots! for
the variable-density temporal mixing layer~run T3c! and isopycnic line at
r52.0 ~solid line!.

FIG. 9. Oscillations of the central isopycnic line (r52.0) vs the curvilinear
abscissas ~run T3c! at t522.0.
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lines. This point is confirmed since the temporal displa
ment of the main mode compares favorably with the str
rateg, measured around the saddle point region. Conside
a material segmentdl submitted to the strain rateg, the
temporal evolution of its length is exponential as it is go
erned by the kinematic equation,

Ddl

Dt
5@“u#.dl, ~22!

so that as far as the wavelength of the main modelm(t)
along the stretched braid is concerned, its temporal displa
ment can be expressed by

1

Dt
lnS lm~ t1Dt !

lm~ t ! D5g. ~23!

The result betweent518 andt522 for the central isopycnic
line are consistent withg.0.225 for that range of time and
(1/Dt). ln(lm(22)/lm(18))50.223. Due to incompressibility
the thickness of the vorticity braid decreases as it
stretched. Thus, the local thickness of the vorticity profiles l

decreases with time, while the wavelength of the oscillatio
l2 increases. Consequently, the ratio ofl2(t) to s l(t) in-
creases. The strained braid may eventually develop a sec
ary instability before reaching the most unstablel to s ratio,
as is the case here.

During the secondary roll-ups, as during the prima
one, elements of the newly-formed, thin braids are advec
toward the secondary cores. Again, this acceleration, cou
with the density gradient, produces vorticity. Then the lo
topology of the vorticity field of a small scale structu
shows some similarity with the one of the primary structu
as illustrated on the isovorticity lines from Fig. 12. In bo
cases, the vortical core is surrounded by two braids, one w
positive vorticity, on the heavy side of the core, and the ot
one experiencing a supply of negative vorticity. It is th
conjectured that, because of these common features, a

FIG. 10. Measurement of the wavelength of the secondary mode. Spec
of the oscillations of the central isopycnic line in the braid (r52.0) ~run
T3c! at t522.0.
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FIG. 11. Time evolution of the spectrum of the crosswise velocity fluctuations along the central isopycninc line in the range 18,t,22 for the run~T3c!.
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generation of smaller baroclinic structures may appear,
peating the previous scenario. These structures have not
observed because they are beyond the scope of the sp
resolution. This baroclinic mechanism, creating smaller a
smaller scales could provide a specific route to turbulence
the variable-density mixing layer.

As previously noted in Reinaudet al.,27 the computa-
tional parameters,h anddt, influence the observed secon
ary instability as it is the response of a strongly unsta
region of the flow submitted to a low-amplitude numeric
noise. This influence is now briefly illustrated.

The crosswise velocity fluctuations that measure the
cal perturbations feeding the secondary mode are see
depend indeed on the time step as seen from their spect
Fig. 13~a!. However, the enstrophy spectra att515 and t
521 are presented in Fig. 14~a! for the runs T3b, T3d, and
T3e. It is seen that the time step has no significant influe
on the range of solved scales that spread well beyond
baroclinic mode wave numberkl2

. This suggests that, within
this range of time steps, the numerical diffusion due to
temporal schemes does not prevent the development o
scales associated with the secondary instability.

The influence of the spatial discretization is also exa
e-
en
tial
d
or
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-
to
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e
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e
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ined. The enstrophy spectra for the runs T3a, T3b, T3c,
T3f are presented in Fig. 14~b!. The result clearly shows tha
the spatial scales available from the simulation are dire
linked to the ‘‘cut-off’’ parameterd. Again, as seen in Fig
13~b!, the oscillations of the braid that feed the second
instability depend on the spatial discretization, coarser s
tial discretizations favoring higher wavelengths. Neverth
less, all runs show the occurrence of the secondary insta
ties, since the scales beyondkl2

, feeding the instability, are

not damped by the spatial discretization. Thus, the simu
tions are able to catch the strongly unstable nature of
braid responding to a numerics-dependent perturbation.
central point is then to understand the physical mechani
responsible for the unstable nature of the vorticity enhan
braid, since flow-dependant perturbations will end with t
same result.

D. Variable-density vs uniform density mixing layers

In order to stress the specific aspects of the variab
density mixing layer, it is further analyzed vs the unifor
density one~Runs T3b and T1b!.

The development of the previously described small sc
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structures has an influence on the overall growth rate of
turbations defined as

d ln~ I !

dt
5

d

dt
lnS E

Domain
uu~x!2U~x!udxD , ~24!

where U is the unperturbed velocity profile. The tempor
evolution of ln(I/I0) is shown in Fig. 15 for the variable
density mixing layer and the uniform-density case, whereI 0

is the initial perturbation induced by the displacement of
elements. The graph shows a common standard 0.2 slop
0,t,10, see Ghoniemet al.14 for the uniform density case
Then, the growth of the instability is significantly higher
the variable density case. During the development of the
ondary small scale structures in the variable density cast
.18), the growth of the perturbations exhibits a 0.083 slo
This slope is more than twice the slope observed in
uniform-density case, 0.032.

Comparison between the magnitudes of the crossw
oscillations along the central line of the braid is also cons
ered for the two cases. The standard deviationsy of the
crosswise coordinatey relative to the mean curve obtaine
by the sixth order polynomial regressionyr is growing as
illustrated by Fig. 16. Starting at a comparable level fromt

FIG. 12. Isovorticity lines with negative values ofv ~solid lines! within the
rangev529 –21 and positive value within the range 0.1–0.9~dashed–
dotted line!. The box on the top figure shows the close-up frame prese
on the bottom figure.
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516.0, undulations of the braid are shown to be much hig
in the variable-density case; att522, sy(s51/3)/sy(s51)
52.9. Both the growth of the velocity departure from i
initial field, and the steep increase of the crosswise osc
tions demonstrate the specific instability of the variab
density mixing layer when compared to its passive sca
equivalent.

An additional simulation of a double period of the tem
poral mixing layer, including the forcing of the pairing mod
has been performed and previously published, see Rein
et al.27 The results, not reproduced here, demonstrated
small scale break-up of the curved layer where vorticity h
been intensified by the baroclinic torque and the devel
ment of the pairing mode are not exclusive phenomena. N
ertheless, this does not guarantee the existence of the s
scale mode in the case of a spatially developing mix
layer. It is concluded that a similar investigation on the sp
tially developing variable-density mixing layer remains
central interest. The mechanisms that trigger the secon
break-up has also to be clarified.

d
FIG. 13. Spectra of the crosswise velocity fluctuations along the vorti
braids at t522. ~a! Influence of the time step. Runs T3e~dotted!, T3b
~dotted–dashed!, and T3d~solid line!. ~b! Influence of the spatial discreti-
zation. Runs T3a~dotted!, T3f ~dashed!, T3b ~dotted–dashed! and T3c
~solid line!.
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E. A simple model for the baroclinic vorticity braid

A simplified model of the stretched braid is now pr
posed. As seen previously~see Fig. 6!, the strain is roughly
uniform in the neighborhood of the saddle point of the bra
Furthermore, the strain remains rather unchanged after
development of the primary Kelvin–Helmholtz structure
Hence, the behavior of a uniform, infinite, vorticity, an
density-gradient line aty50 submitted to a uniform strain
field (u,v)5(gx,2gy) is relevant to mixing layer braids
Let v0 the vorticity, g0 the density gradient, andr0 the
density define the initial conditions of that simplified mod
Let us consider, without loss of generality, thatv0,0 and
g0.0. The velocityu is split into two components accordin
to the Helmholtz decomposition;ug is the potential compo-
nent resulting from the strain field anduv is the solenoidal
component, deduced from the vorticity distribution, throu
the Biot–Savart integral. The unperturbed stretched den
gradient line is assumed to remain flat. The Biot–Savart L
then gives that the streamwise solenoidal velocity compon
uv , along the vorticity line, is zero. On the other hand, t
strain field produces advection on the line (ug .]ug /]x
5g2x). It also increases the density gradient while expon

FIG. 14. Enstrophy spectra.~a! Influence ofdt, at t515 andt521 for the
runs T3e~dotted!, T3b ~dashed!, and T3d~solid line!. ~b! Influence ofh at
t522 for the runs T3a~dotted–dashed!, T3f ~dashed!, T3b ~dotted!, and T3c
~solid line!. kl2

indicates the wave number associated with the second
mode for the run T3c andkd indicates a wave number associated withd
5l/1.6d5l/2h.
.
he
.

.

ity
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tially stretching the line (g5g0 exp(gt)). The advection,
coupled with the density gradient, produces vorticity. F
nally, the vorticity field is

v~x,t !5g
g0

r0
x sinh~gt !1v0 . ~25!

ry

FIG. 15. Growth of the perturbation ln(I/I0) over a period of the tempora
model for run T3b,r1 /r253.0 ~solid line! and run T1b,r1 /r251.0 ~dotted
line!. h50.1 in the two cases.

FIG. 16. Standard deviationsy of the oscillations of the central material lin
for run T3b: circles and solid line and T1b: squares and dashed line
16,t,22.
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It is seen that the vorticity distribution is linear which
consistent with the observed repartition of vorticity along t
central isopycnic line of the temporal mixing layer in Fig.
At any t.0 the solution leads to infinite vorticity levels a
x→6` and to a corresponding diverging solenoidal veloc
field. However it gives a fair estimation of the vorticity pro
duction in the neighborhood of the saddle point (x50) on a
strained finite density gradient layer.

As quoted by Dritschelet al.,10 the influence of the
strain field is stabilizing. But, as seen from~25!, it also pro-
duces intense vorticity which increases the receptivity of
layer to perturbations. Considering the ratio

v~x,t !

g
5

g0

r0
x sinh~gt !1

v0

g
, ~26!

it is seen that forx,0, the magnitude of the ratio increas
with time as negative vorticity is enhanced~destabilizing ef-
fect!. But due to the initial negative vorticityv0 , the tempo-
ral evolution of the ratio is not monotonic forx.0. The
magnitude of the ratiov/g decreases before reaching t
minimum value of 0 att52(1/g)asinh(v0r0 /gxg0)) ~sta-
bilizing effect!, then starts to increase~destabilizing trend!.

Meanwhile, according to the strain-vorticity competitio
stressed by Dritschelet al.,10 at a given time, the layer is to
be qualitively divided into three regions. On the left part
the layer, where vorticity can be arbitrarily high~depending
on thex-section! the filament should break up into negativ
vorticity roll-ups. In the central region, where thev/g-ratio
can be as weak as 0, the layer should be stabilized by

FIG. 17. Vorticity distribution along the strained, truncated vorticity, a
density gradient layer~solid line! and comparison with the analytical pre
diction ~dotted–dashed line! at t54.

TABLE IV. Parameters of the truncated vorticity and density gradient fi
ment simulation.A is the initial amplitude of the forcing.

Parameter Value

Xmax 82.5
H 16.5
h 0.15
d 0.1875
dt 0.1
g 0.15

g0 /r0 4
A 0.04
e

f

he

strain field. This stable region is, in fact, becoming thinn
and thinner with time as baroclinic vorticity is enhanced
both sides of the saddle point of the strain field. Finally,
the right part, where vorticity exhibits high magnitude po
tive vorticity, the layer should also break up into counte
clockwise rolling structures.

This model is subjected to a numerical computation.
forced, truncated negative vorticity and positive density g
dient filament, initially aligned with thex-axis is placed in a
uniform strain field. The filament is discretized as a sing
row of blob elements. This regularized approach of a sin
line of vorticity avoids the unphysical infinite amplificatio
of perturbations of the vortex sheet as the wavelength of
disturbances collapses to zero, see Lundgrenet al.20 Then
the cut-off parameterd defines the width of the layer. Th
computational domain is defined by its length 2Xmax, and the

FIG. 18. Central part of the vorticity and density gradient filament att54
~solid line!. Dotted–dashed lines represents the initial amplitude of the p
turbation.

FIG. 19. The vorticity and density gradient filament att54 ~solid line!.
Dotted–dashed lines represents the initial amplitude of the perturba
Top: negative vorticity roll-ups. Bottom: positive vorticity roll-ups.
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elements advected beyond the boundaries of the dom
(6Xmax) are deleted. Such a truncated line of vorticity ten
naturally to rotate conformly to the circulation budget. He
the crosswise component of the solenoidal field at a gi
crosswise distance is canceled which can be interpretate
a confinement of the layer between two slip-free walls. T
height of the so-defined channelH is kept wider than the
wavelength of the forcing to prevent any damping of t
corresponding instabilities. The slip-free walls are mode
by the method of images as proposed and successfully
plied by Inoue.28 The images of the elements of the layer a
placed symmetrically with respect to the walls and their v
ticity is half of the one of the elements with opposite sig
The problem is normalized by the wavelength of the init
perturbationl0 and the magnitude of initial negative vortic
ity uv0u.

The parameters of the computation are given in Ta
IV. The equations are solved using the RK2 scheme and
K2 cut-off function.

The vorticity distribution att54 along the line in the
range220,x,35 is compared to the analytical predictio
25 in Fig. 17. It is seen that the unforced analytical mo
accurately predicts the mean value of the vorticity distrib
tion of the forced truncated layer.

FIG. 20. Decomposition of the crosswise velocityv according to the sole-
noidal componentvv and the potential componentvg at t52 in the central
region of the layer.

FIG. 21. Decomposition of the crosswise velocityv according to the sole-
noidal componentvv and the potential componentvg at t54 in the central
region of the layer.
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The shape of the vorticity and density gradient filame
at t54 is seen in Figs. 18 and 19. The wavelength of
undulations isl(t54)5l0* exp(gt)51.8. In the central re-
gion, Fig. 18, the amplitude of the perturbation has d
creased. On both the negative and positive vorticity regi
Fig. 19, the layer is unstable. To analyze the stability pro
erties of the layer, the crosswise velocityv is shown in Figs.
20 (t52) and 21 (t54) for the central region. It is shown
that the solenoidal componentvv and the potentiel compo
nent vg have opposite phases. The phase of the crossw
strain field is opposite to the one of the undulations of
layer ~as it is 2gy) and tends to flatten them, while th
vortical component is in phase with the perturbations th
working to amplify the undulations.

At t52 the wavelength of the perturbation isl51.35.
In Sec. A ~see Fig. 20!, corresponding tox57.8 with v
50.42552.8g, the total velocity is in phase with the poten
tial componentvg so that the stabilizing effect of the strai
field is stronger than the destabilizing effect of the solenoi
component; the magnitude of the perturbation is decreas
On the contrary, in the section B, atx528.7 with v54.24
528.3g, v is dominated by the solenoidal componentvv so
that the perturbation is amplified. It is concluded that, at
52, within the range 28,x,20, corresponding to

FIG. 22. Decomposition of the crosswise solenoidal velocityvv according
to the near fieldvv,n and the far fieldvv, f at t54.

FIG. 23. Crosswise solenoidal velocityvv,n due to the near vorticity field
(22,x,5) ~solid line! and comparison with the velocity induced by a
analytical~unperturbed! vorticity distribution (22,x,5) ~dashed–dotted
line! at t54.
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2501Phys. Fluids, Vol. 12, No. 10, October 2000 The baroclinic secondary instability of the 2D shear layer
216.4g,v,17.7g, the layer is being stabilized, and th
perturbations are developing outside of this range.

Later, at t54, the stabilized region is expected to b
thinner, because of the baroclinic production of vortici
Section B clearly exhibits a vorticity driven crosswise velo
ity. The central part of the layer exhibits a neutral behav
to the perturbation~see section A!. There,v exhibits a qua-
siconstant value of20.086 within the range22,x,5 cor-
responding to211.6g,v,6g so that perturbations are ne
ther developing nor collapsing. The ratiov to g,
characterizing the stability limit is surprisingly much low
than at t52. The solenoidal component, of same order
magnitude as the potential component, actually prevents
strain field to stabilize the layer. The solenoidal compon
of the crosswise velocity is split into the near fieldvv,n , due
to the vorticity distribution for22,x,5, and the far field
vv, f , induced by the vorticity outside of the region. Th
results are presented in Fig. 22 for22,x,5. It is con-
cluded that the solenoidal crosswise velocity fluctations
due to the near field. They result from a feedback effec
the perturbation~oscillations of the material layer! through
the baroclinic torque. This is further demonstrated by co
paring vv,n with the solenoidal field that would be induce
by the unperturbed, analytical vorticity distribution along t
oscillating material layervv,n* ~see Fig. 23!. It is concluded
that the baroclinic torque not only increases the ratiov to g,
destabilizing the layer but also promotes the fluctuations
the crosswise velocity through a perturbed vorticity sourc

The present model illustrates the effects of a strain fi
on a vorticity and density gradient filament. The numeri
simulation of the truncated layer clearly shows the comp
tion between the stalibizing strain field and the destabiliz
solenoidal field. It is concluded, in agreement with Dritsch
et al.,10 that the stability properties of such a filament are
be linked to the localg to v ratio and to the amplitude of th
perturbation. Even in region where the ratiov to g is low,
the baroclinic torque is a vorticity source sensitive to pert
bations. These physical mechanisms are those triggering
baroclinic secondary instability.

IV. THE SPATIAL MODEL

A. Geometry and initial conditions

It has been shown that the temporal model is not able
capture the natural asymmetry of the flow due to iner
effects~even in the uniform-density case! because of the pe
riodicity conditions imposed, see Corcos and Sherman29 and

FIG. 24. Geometry of the spatial model.
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Grinsteinet al.30 The evidence of the secondary baroclin
instability is now examined in the more realistic spatia
developing two-dimensional mixing layer. The vorticity pro
file in the inlet section is Gaussian and the layer is confin
between two slip-free walls. The computational domain i
vorticity layer truncated at a distanceXmax of the splitter
plate. The walls are modeled within a Schwartz–Christof
conformal mapping of the physical space into the upper h
plane. As proposed first by Ghoniem and Ng,31 an appropri-
ate system of images ensures a zero normal velocity at
walls. The elements are introduced in the computational
main respecting the Kutta condition. The downstream con
tion consists in deleting the elements as they cross the
section of the computational domain. This assumpti
though generating errors near the exit section, is commo
used in vortex methods.

The geometry of the configuration is given in Fig. 2
The layer is forced with the most unstable mode of the u
form density case and its first subharmonic. The signals
in phase, promoting the pairing of two main structures,
Corcos and Sherman.29 The forcing signal corresponds
physically, to an oscillating splitter plate. The problem
normalized by the velocity scaleU1 , the densityr1 of the
top stream and the length scaleH, height of the channel. The
standard deviations of both the vorticity and the density
gradient profiles at the inlet section is scaled so thats
5H/(2l) wherel is the most unstable wavelength of th
uniform density case. This choice allows the pairing mode
appear without being constrained by the presence of
walls ~Ghoniem and Ng31!. The amplitude of the two forcing
signals is 1.5% ofH.

The equations are solved with the RK2 scheme and
cut-off function isK2. This reduction in the order of accu
racy of the numerical schemes enhance the robustnes

TABLE V. Description of the computations for the investigation of th
spatially developing mixing layer. The fifth column gives the number
isopycnic lines simulated. In all runs, the time step used isdt50.1. In all
cases the velocity ratior 5U2 /U1 is 0.5. The asterisk indicates a simulatio
where a small scale perturbation is introduced. Its wavelength is theH/20
and its amplitude 1.5% ofH.

Run r2 /r1 h d iso. Xmax

S.3a 1/3 0.0234 0.0273 7 5
S.3b 1/3 0.0234 0.0273 7 4
S.3c 1/3 0.0078 0.0091 21 4
S.3d* 1/3 0.0078 0.0091 21 3

S1a 1 0.0234 0.0273 7 5
S3a 3 0.0234 0.0273 7 5

TABLE VI. Spreading rates of the spatially developing, variable-dens
forced mixing layers with a velocity ratior 50.5. Runs S.3a, S1a, S3a.

r2 /r1 D8

1/3 0.119
1 0.116
3 0.070
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FIG. 25. Location of the elements att58.0 for a variable-density spatially developing shear layer withU2 /U150.5 and r2 /r150.33, Xmax55, h
50.0234~initial spatial step!.
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calculation in the region of intense gradients. The differ
runs are presented in Table V.

B. Numerical results

The dependence of the spreading rateD8 on the density
ratio is first investigated on the forced spatially develop
mixing layer. Measurements are based on the analysi
time-averaged density profiles at different sections dow
stream of the splitter plate. For that reason, the low res
tion simulations~runs S.3a, S1a, S3a! are used so that th
computational cost per iteration remains low and a suffici
number of instantaneous density profiles can be avera
The density thickness of the layer is defined as the cross
distance where the averaged density departs from the
stream density by 1% of the density difference~a passive
scalar is used for the uniform-density case!. The density is
reconstructed along four lines that are discretized with
spatial stepdy50.01 and placed atx51.5,2,3,4. The spread
ing rate is then obtained by linear regression.

The results, presented in Table VI, are consistent w
the previously published numerical investigation of Soter
and Ghoniem,11 where a detailed analysis of such a trend
developed. Again, the baroclinic torque is responsible for
distortions in the entrainment rate on both side of the lay
consequently changing its spreading rate.

The influence of the downstream boundary conditio
i.e., the removal of the elements crossing the exit section
the computational domain, is investigated comparing inst
taneous density profiles between two similar simulatio
with different length of the computational domain. This com
parison, illustrated in Figs. 25 and 26, between the runs S
whereXmax55 and S.3b, whereXmax54, at t58 gives that
t
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the maximum difference between the density distributio
r(x,y) is less than 2% of the density difference forx
,Xmax21. It is concluded, in agreement with Soteriou a
Ghoniem,11 that the influence of the exit condition is signifi
cant only forx.Xmax21. This statement allows us to reduc
the length of the computational domain when focusing
phenomena expected to develop only a few distance do
stream the trailing edge of the splitter plate.

The small scale break up of the braid is then investiga
on rather highly spatially resolved simulations while t
length of the computational domain is reduced toXmax54.
The case considered is the cases51/3 ~run S.3c!. The loca-
tions of the elements are shown att58 in Fig. 27. Conform-
ing to what occurs in the temporal mixing layer, and to t
conclusions of the simplified model, small scale structu
are observed. It is then seen that the structure at 2,x,2.5
exhibits a small scale roll-up where the vorticity has be
intensified by the baroclinic torque. Moreover, along t
right side braid of two next following primary structure
now pairing, a row of Kelvin–Helmholtz type structures
developing. The analysis of the undulations of the cen
isopycnic line is considered. The spectrum exhibits a m
peak atl50.2 as seen from Fig. 28. The vorticity fiel
within the square box 2.7,x,3.5 and 0.1,y,0.9 is recon-
structed on a 2562 Cartesian mesh. The isovorticity contour
presented in Fig. 29, show the small-scale structures of
destabilized braid. Besides, the core itself has broken up
that both the positive and negative vorticity are concentra
on small spots. The corresponding spatial instantane
spectrum of enstrophy is given in Fig. 30. The result sho
that the spectrum is continuous and exhibits enstrophy
tween the wave numberk51 and k;90 corresponding to
FIG. 26. Location of the elements att58.0 for a variable-density spatially developing shear layer withU2 /U150.5 and r2 /r150.33, Xmax54, h
50.0234~initial spatial step!.



2503Phys. Fluids, Vol. 12, No. 10, October 2000 The baroclinic secondary instability of the 2D shear layer
FIG. 27. Location of the elements att58.0 with U2 /U150.5 andr2 /r150.33, Xmax54, h50.0078~initial spatial step!.
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to
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ed
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ed.

e

in
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cy

the
the
FIG. 28. Spectrum of oscillation of the braid 3.3,x,3.9 of the spatially
developing mixing, variable-density layer att58 ~run S.3c!.

FIG. 29. Vorticity contours in the box 0.1,y,0.9, 2.7,x,3.5 at t58.0
with U2 /U150.5 and r2 /r150.33, Xmax54, h50.0078 ~initial spatial
step!.
the range of wavelength;0.009,l,0.8. The high wave
number limit corresponds to the ‘‘cut-off’’ parameterd.
Three regions are identified. For the large scales 1,k,13,
the enstrophy is roughly uniformly repartitioned. Then f
13,k,30, the slope of the enstrophy spectrum is found
bek22.75. Finally, the amount of enstrophy per wave numb
rapidly decreases withk and almost vanishes fork.90. It is
then demonstrated that as soon as the first pairing, the b
clinic torque has drastically modified the topology of th
vorticity map, creating a continuous spectral repartition
enstrophy.

Considering the vorticity field, even the first develop
roll-up exhibits a right-side braid where small-scale instab
ties are growing, see Fig. 31. An additional simulatio
where a small-scale perturbation is introduced, is perform
The wavelength of the forcing isH/20 and its amplitude
0.15% ofH, i.e., a tenth of the amplitude of the main mod
and its first subharmonic~run S.3d* !. The length of the com-
putational domain has been reduced toXmax53 as the focus
is on the first developed structure. The result presented
Fig. 32 suggests that the small-scale can be promoted
organized through an external low-amplitude high frequen
forcing. It is suggested that the increased receptivity of
vorticity and density gradient braids can be used to favor
transition to turbulence, and to promote mixing.

FIG. 30. Spectrum of enstrophy in the box 0.1,y,0.9, 2.7,x,3.5 at t
58.0 with U2 /U150.5 andr2 /r150.33, Xmax54, h50.0078~initial spa-
tial step!.
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V. CONCLUSION

The present paper has shed some light on the small s
breaking-up of the two-dimensional, high Reynolds a
Froude numbers, isovolume variable-density mixing lay
The secondary instability observed, both on the temporal
spatial model, appears in a vorticity enhanced braid. T
basic mechanisms rely on the baroclinic production of v
ticity that takes place on the braids linking the prima
Kelvin–Helmholtz structures. This vorticity production i
itself, the result of the coupling of the density gradient a
the advection of the fluid from the braids toward the vortic
cores. Contrary to the secondary instability previously
scribed at the saddle point of the gravity-dominated, str
fied, shear layers, secondary roll-ups emerge on the cu

FIG. 31. Vorticity contours in the box 0.3,y,0.7, 1.1,x,1.5 at t58.0
with U2 /U150.5 and r2 /r150.33, Xmax.54, h50.0078 ~initial spatial
step! run S.3c.

FIG. 32. Vorticity contours in the box 0.3,y,0.7, 1.1,x,1.5 at t58.0
with U2 /U150.5 andr2 /r150.33,Xmax54, h50.0078~initial spatial step!
run S.3d* .
ale
d
r.
d
e
-

d
l
-
i-
ed

light-side vorticity braid. The difference lies on the nature
the pressure gradient which is fixed in direction and intens
in the buoyancy-driven case while it results from accele
tion field in the high Reynolds and Froude numbers mixi
layer, studied here. Then, the analysis of a simplified mo
of a stretched density-gradient and vorticity filament, mod
ing the braid of the mixing layer, stressed that the barocli
torque amplifies the magnitude of the vorticity. Cons
quently, the solenoidal field, that tends to amplify perturb
tions within the vorticity filament, can compete with the st
bilizing strain field. Moreover, the perturbations indu
fluctuations on the baroclinic torque, yielding a perturb
vorticity source. This feedback effect of the perturbati
through the baroclinic torque also leads toward the dest
lization. It is concluded that the density stratification not on
changes the global evolution of the flow, such as its spre
ing rate but also should speed up the transition to turbule
of high Reynolds number spatially developing mixing laye
Such observations suggest that high frequency external f
ing of the variable-density shear layer could be an effici
active control strategy to enhance the mixing rate.
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