
PSP Performance Analysis Report

Valentina Ivanova, PhD
New Bulgarian University

Contents:
Personal Software Process Overview ... 2

Planning Performance ... 2

Size Estimating Performance .. 2

Time Estimating Performance ... 3

Quality performance ... 5

Process performance .. 7

Process improvements .. 9

Performance improvement goals ... 9

Process Improvement Proposals .. 9

Expected performance changes .. 9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by New Bulgarian University Scholar Electronic Repository

https://core.ac.uk/display/12037635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Personal Software Process Overview
The Personal Software Process (PSP) is a structured software development process that is

intended to help software engineers understand and improve their performance, by using a disciplined,

data-driven procedure. The PSP was created by Watts Humphrey to apply the underlying principles of

the Software Engineering Institute’s (SEI) Capability Maturity Model (CMM) to the software

development practices of a single developer. It gives software engineers the process skills necessary to

work on a Team Software Process (TSP) team. [1]

PSP training includes eight assignments in two courses – PSP Fundamentals and PSP Advanced.

The report includes final analysis of all the data that was gathered during the training.

Planning Performance

Size Estimating Performance
The size of the implementation of the Assignments 2 to 7 (Table 1) is relatively small – between

74 and 182 added and modified LOC. Average size of the implementation of the Assignments is 109

LOC. Assignment 2, 3 and 5 are implemented by writing new code fragments. Assignments 4, 6 and 7 are

implemented reusing existing code fragments.

Plan

Estimated Size

Size Actual

A&M LPI UPI A&M

Assignment 2 177.82 182

Assignment 3 110.95 108.4 96

Assignment 4 34.8 36.15 74

Assignment 5 87.19 67.75 22 151 93

Assignment 6 66.47 37.33 32 100 91

Assignment 7 104.9 81.01 68 141.7 118
Table 1

Size estimations for all Assignments from 5 to 7 were made using PROBE method A and are

within the 70% statistical prediction intervals. Still the size estimates are under the actual size of the

Added and Modified code. (Figure 1)

Figure 1

0
50

100
150
200

Size UPI

Actual A&M

Plan A&M

Estimated Size

Size LPI

Size estimating error (Figure 2) tends to be +/-10% for Assignments that are implemented by

writing new code fragments, while the size estimating error for Assignments that are implemented by

reusing existing code fragments is times higher for some programs. The pick of +110% size estimating

error is reached for Assignment 4 – when the concept of reusing code fragments was introduced.

Assignment 6 reused code size estimation error is reduced but still high +40%. The final Assignment 7 is

also implemented by reusing large segments of code. Size estimation error for this final assignment is

close to the size estimation error of assignments implemented by writing new code (+ 10%).

My size estimating accuracy had evolved from totally inreliable for programs that reuse code

fragments to a predictable accuracy of +/- 10% for both - programs based on new and on reused code.

Still size estimation for programs that are reusing code fragments should be handled with special

attention in order to keep the trend of reducing size estination error.

Figure 2

Time Estimating Performance
Time spend implementing Assignments 2 to 7 (Table 2) is between 101 and 279 minutes with

average assignment implementation duration of 209 minutes.

Plan Estimated
Time

Time Actual

Time LPI UPI Time

Assignment 2 330 279.37

Assignment 3 170.3 170.3 139.53

Assignment 4 52.44 52 101.82

Assignment 5 124.01 103 29 227 259

Assignment 6 125.53 120 4 246 210.45

Assignment 7 166.48 93 72.5 260 266.48
Table 2

Time estimation (Figure 3) for Assignment 3 and 4 are made using PROBE method C, time

estimation for Assignment 5 is made using PROBE method A, and the last 2 Assignments (6 and 7) use

PROBE method B for time estimation. Actual time of Assignment 5 exceeded the upper prediction

interval because at that moment the process was changed. Design phase (including preparing the design

templates) took 110 mutes, while the UPI was exceeded with about 30 minutes.

Figure 3

Time estimation error (Figure 4) varies from -18% (Assignment 3) up to + 108% (Assignment 5)

due to constant changes of the process. After the final process change in Assignment 5, time estimation

error decreases from + 108% for Assignment 5 to +60% for the final Assignment 7.

Figure 4

Following a constant process and size estimation with predictable accuracy will produce reliable

data for accurate time estimation using PROBE methods.

0

50

100

150

200

250

300

350

Time UPI

Actual Time

Plan Time

Estimated Time

Time LPI

Quality performance
Data about types of defects injected in each of the phases is stored in PSP Assignments_be.mdb

file. The figures (Figure 5) show that the most common errors injected in DLD are function and interface

errors.

Figure 5

Most of the defects injected in code are functional (Figure 6). Significant number of defects

injected is of type “assignments”, “checking” and “syntax”, followed by “interface” defects. In the early

assignments “syntax” type was used to mark “user interaction input/output problem”, but later the

same kind of defects were marked as “interface”, so cumulatively the “interface” defect type gets the

highest number of injections during code phase.

Figure 6

0

1

2

3

4

5

6

7

8

9

DLD

Function

Interface

Checking

Data

Documentation

Syntax

Build/Package

Assignment

System

0

1

2

3

4

5

6

7

8

9

10

CODE

Function

Checking

Assignment

Syntax

Interface

Build/Package

Documentation

Data

System

Defects per size unit (KLOC) or defect density distribution changed with the process changes

(Table 3). Defect density in test decreased from pick levels of 66 defects per KLOC (Assignment 3) to 11

defects per KLOC (Assignment 6). The last assignments with constant process PSP 2.1 show that:

 Defects removed per KLOC during DLDR – 10-25

 Defects removed per KLOC during CR – 30-50 (twice the defects removed during DLDR)

 Defects removed per KLOC during test I – 10 -15

 Assignment 2 Assignment 3 Assignment 4 Assignment 5 Assignment 6 Assignment 7

DLDR 0 27 11 11 25.4

CR 62.5 0 43 33 51

TEST 26.8 65.9 20.8 13.5 10.75 16.9
Table 3

Figure 7

 Defect density of the product (total defects per size unit) is relatively stable – about 75 defects

per KLOC and vary from 40 (Assignment 4) to 102 (Assignment 7) defects per KLOC. Design reviews and

code reviews are used for early removal of injected defects and reduce defect density in test.

0

10

20

30

40

50

60

70

DLDR

CR

TEST

Process performance
 Defect removal rates per assignment (Table 4):

 DLDR defects/hr CR defects/hr UT defects/hr

Assignment 3 0 15 3.4

Assignment 4 7.5 0 4.1

Assignment 5 2.9 8.4 3.1

Assignment 6 2.8 10.2 2.4

Assignment 7 6.5 12.9 4.1
Table 4

To date defect-removal leverage for design reviews versus unit test is 1.2 and code review

defect-removal leverage versus unit test is 2.4. In other words - during design reviews I’m 20% more

effective in removing defects then in unit test. My data shows that in code reviews I’m two times and a

half more effective in removing defects then in unit tests.

Figure 8

 Code review and design review defect removal rates (Figure 8) tend to increase with my

experience after a slight initial decrease in Assignment 5 - when the design templates were introduced.

0

2

4

6

8

10

12

14

16

Assignment
3

Assignment
4

Assignment
5

Assignment
6

Assignment
7

DLDR defects/hr

CR defects/hr

UT defects/hr

Review rates for Assignment 5 to 7 are stable – around 250 LOC/ hour for design review and

code review and about 125 LOC/hour for both (Figure 9).

Figure 9

If the review rate is greater than 200 LOC/hour process yield is under 75%. If the rate is between

100 and 150 LOC/hour the yield is higher than 80% (Figure 10).

Figure 10

Appraisal to failure ratio (Table 5) shows the relation between time spend in design review and

code review against the time spend in test (compile time is 0).

 A/F Ratio Yield

Assignment 5 2.27 85.7

Assignment 6 1.53 85.7

Assignment 7 1.82 83.3
Table 5

In the last three Assignment that use PSP 2.1 process – time spend in appraisal was one time

and a half to more than two times the time spend in test. The yield is relatively stable around 84%.

Process improvements

Performance improvement goals
1. Size estimation error under 5%

2. A/F Ratio above 2.5.

3. Process performance yield - 100%.

Process Improvement Proposals
1. Do a quick code review of the base code before planning the sizes of added and modified

code fragments.

2. Add Design tests (DT) phase between DLD and DLDR.

3. Perform design checklists review and adjust the design checklist to PSP 2.1 detailed design

process (incl. design templates).

4. Code review by module.

5. Perform cause-effect analysis for each defect found in test and add checklist items (in design

review or code review checklists) for the causes.

Expected performance changes
Be able to do size and time estimations with 5% accuracy in order to support team planning

process. Reach process yield of 97% and keep it.

