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Abstract. This paper considers the statistical inference of the class
of asymmetric power-transformed GARCH(1,1) models in presence of
possible explosiveness. We study the explosive behavior of volatility
when the strict stationarity condition is not met. This allows us to
establish the asymptotic normality of the quasi-maximum likelihood
estimator (QMLE) of the parameter, including the power but without
the intercept, when strict stationarity does not hold. Two important
issues can be tested in this framework: asymmetry and stationarity.
The tests exploit the existence of a universal estimator of the asymptotic
covariance matrix of the QMLE. By establishing the local asymptotic
normality (LAN) property in this nonstationary framework, we can also
study optimality issues.
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1. INTRODUCTION

Following more than twenty years of tremendous development of the theory
of unit roots in linear time series models (see the seminal papers by Dickey and
Fuller (1979), and Phillips and Perron (1988)), there has been, in the last decade,
much interest in the statistical analysis of non linear time series models under non
stationarity assumptions (see e.g. Karlsen and Tjøstheim (2001), Karlsen, Myk-
lebust and Tjøstheim (2007), Ling and Li (2008), Aue and Horvàth (2011)). In
the framework of GARCH (Generalized Autoregressive Conditional Heteroscedas-
ticity) models, Jensen and Rahbek (2004a, 2004b) were the first to establish an
asymptotic theory for the quasi-maximum likelihood estimator (QMLE) of non-
stationary GARCH(1,1), assuming that the intercept is fixed to an arbitrary value.
Aknouche, Al-Eid and Hmeid (2011), Aknouche and Al-Eid (2012) studied the
properties of weighted least-squares estimators. Francq and Zakoïan (2012) estab-
lished the asymptotic properties of the standard QMLE of the complete parameter
vector: they showed that, while the intercept cannot be consistently estimated, the
QMLE of the remaining parameters is consistent (in the weak sense at the fron-
tier of the stationarity region, and in the strong sense outside) and asymptotically
normal with or without strict stationarity.

Financial series are well-known to present conditional asymmetry features, in
the sense that large negative returns tend to have more impact on future volatili-
ties than large positive returns of the same magnitude. This stylized fact, known
as the leverage effect, was first documented by Black (1976), and led to various
generalizations of the GARCH models of the first generation (see among others,
Glosten, Jaganathan and Runkle (1993), Rabemananjara and Zakoïan (1993),
Higgins and Bera (1992), Li and Li (1996), Francq and Zakoïan (2010)). Moti-
vated by the Box-Cox transformation, Hwang and Kim (2004) introduced a power
transformed ARCH model, and the GARCH extension was studied by Pan, Wang
and Tong (2008). In this paper we consider an asymmetric power-transformed
GARCH(1,1) model defined, for a given positive constant δ, by

(1.1)

{
ǫt = h

1/δ
t ηt

ht = ω0 + α0+(ǫ+t−1)
δ + α0−(−ǫ−t−1)

δ + β0ht−1

with initial values ǫ0 and h0 ≥ 0, where ω0 > 0, α0+ ≥ 0, α0− ≥ 0, β0 ≥ 0,
and using the notation x+ = max(x, 0), x− = min(x, 0). In this model, (ηt) is a
sequence of independent and identically distributed (iid) variables such that

(1.2) Eη2
1 = 1 and P (η2

1 = 1) < 1.

Most commonly used extensions of the standard GARCH of Engle (1982) and
Bollerslev (1986) can be written in the form (1.1).

The first goal of the present paper is to derive a strict stationarity test in the
framework of Model (1.1). In this model, strict stationarity is characterized by
the negativity of the so-called top Lyapunov exponent (see Bougerol and Picard
(1992)), which depends on the parameters (except ω) and the errors distribution.
By deriving the asymptotic behavior of the QMLE of the top-Lyapunov exponent,
under stationarity and non stationarity, a strict stationarity test can be derived.
The second goal of the paper is to propose a test for the symmetry assumption
in Model (1.1), namely α0+ = α0−. Existing tests, to our knowledge, rely on the
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stationarity assumption. Our aim is to derive a test which can be used without
bothering about stationarity.

The rest of the paper is organized as follows. In Section 2, we study the conver-
gence of the volatility to infinity, in a model encompassing (1.1), when stationarity
does not hold. Section 3 is devoted to the asymptotic properties of the QMLE. In
Section 4, we consider strict stationarity testing and asymmetry testing. In Sec-
tion 5, the LAN property is established and used to derive the local asymptotic
power of the proposed tests. Local alternative allowing for an arbitrary rate of
convergence with respect to ω0 are considered. Optimality issues are discussed.
Necessary and sufficient conditions on the noise density are derived for the tests
to be uniformly locally asymptotically most powerful. Section 6 is devoted to the
case where the power δ is unknown and is jointly estimated with the volatility
coefficients. Proofs and technical lemmas are in Section 7. The possibility of ex-
tensions is discussed in Section 8. Several lemmas and proofs, along with a study
of the finite sample performance of the stationarity and asymmetry tests and an
empirical application, are included in appendix.

2. EXPLOSIVITY IN THE AUGMENTED GARCH(1,1)

In this section, we analyze the convergence of the volatility to infinity, for a
class of augmented GARCH processes encompassing (1.1) and many GARCH(1,1)
models introduced in the literature (see Hörmann, 2008). Given a sequence (ξt)t≥0,
let (ǫt)t≥1 be defined by

(2.1)

{
ǫt = h

1/δ
t ξt, t = 1, 2, . . .

ht = ω(ξt−1) + a(ξt−1)ht−1

where δ is a positive constant, h0 ≥ 0 is a given initial value, and the functions
ω(·) and a(·) satisfy ω : R → [ω,+∞) and a : R → [0,+∞), for some ω > 0. When
(ξt) is assumed to be a white noise, (ǫt) is called an augmented GARCH process.
We purposely use a different notation for ξt in (2.1) and ηt in (1.1) because, for the
moment, we only assume that (ξt) is stationary and ergodic. Define in R∪{+∞}
the top Lyapunov exponent

γ = E log a(ξ1).

The following proposition is an extension of results proven for the standard
GARCH(1,1) by Nelson (1990) and completed by Klüppelberg, Lindner, and
Maller (2004), and Francq and Zakoïan (2012).

Proposition 2.1. For the process (ǫt) satisfying (2.1), the following proper-
ties hold.

i) When γ > 0, ht → ∞ a.s. at an exponential rate: for any ρ > e−γ ,

ρtht → ∞ and, if E| log(ξ21)| <∞, ρtǫ2t → ∞ a.s. as t→ ∞.

ii) When γ = 0 and (ξt) is time reversible (i.e. for all k the distributions of
(ξt, ξt−1, . . . , ξt−k) and (ξt−k, . . . , ξt−1, ξt) are identical), the following con-
vergences in probability hold as t→ ∞,

ht → ∞ and, if E| log(ξ21)| <∞, ǫ2t → ∞.
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Moreover, if ψ is a decreasing bijection from (0,∞) to (0,∞), if Eψ(h1) <∞
(resp. Eψ(ǫ21) <∞ and E| log(ξ21)| <∞), then

(2.2) ψ(ht) → 0 (resp. ψ(ǫ2t ) → 0) in L1.

The main ideas of the proof are as follows. The a.s. convergence of ht to infinity
in the case γ > 0 follows from the minoration log ht ≥ logω +

∑t−1
i=1 log a(ξt−i),

and the fact that the latter sum is strictly increasing, in average, as t goes to
infinity. The argument is in failure when γ = 0, the expectation of the sum
being equal to zero. The key argument in this case is that the sequence (ht)
is increasing in distribution. Indeed, taking h0 = 0 we have h1 = ω(ξ0) and

h2 = ω(ξ1) + a(ξ0)ω(ξ0)
d
= ω(ξ0) + a(ξ1)ω(ξ1) > h1 under the reversibility

assumption, and the same argument applies for any t > 0.

In the rest of the paper, these results will be applied with ξt = ηt to Model
(1.1), for which the top Lyapunov exponent is given by

γ0 = E log a0(η1), a0(x) = α0+(x+)δ + α0−(−x−)δ + β0.

3. ASYMPTOTIC PROPERTIES OF THE QMLE

We wish to estimate ϑ0 = (α0+, α0−, β0)
′ from observations ǫt, t = 1, . . . , n,

in the stationary and the explosive cases under mild assumption. Denote by θ =
(ω,α+, α−, β)′ the parameter and define the QMLE as any measurable solution
of

(3.1) θ̂n = (ω̂n, α̂n+, α̂n−, β̂n)′ = arg min
θ∈Θ

1

n

n∑

t=1

ℓt(θ), ℓt(θ) =
ǫ2t

σ2
t (θ)

+logσ2
t (θ),

where Θ is a compact subset of (0,∞)4 containing the true value θ0 =
(ω0, α0+, α0−, β0)

′, and σδ
t (θ) = ω + α+(ǫ+t−1)

δ + α−(−ǫ−t−1)
δ + βσδ

t−1(θ) for
t = 1, . . . , n (with initial values for ǫ0 and σδ

0(θ)). The rescaled residuals are
defined by η̂t = ηt(θ̂n) where ηt(θ) = ǫt/σt(θ) for t = 1, . . . , n.

Write ϑ = (α+, α−, β)′ and let ϑ̂n =
(
α̂n+, α̂n−, β̂n

)′
.

3.1 Consistency and asymptotic normality of ϑ̂n

The following theorem extends, to the non stationary framework, results ob-
tained for the stationary case (see Hamadeh and Zakoïan (2011) and the references
therein), which we recall for convenience. We introduce the assumptions:

A1: The support of (ηt) contains at least 3 points and is not concentrated on
the positive or the negative line.

A2: When t tends to infinity,

E

{

1 +
t−1∑

i=1

a0(η1) . . . a0(ηi)

}−1

= o

(
1√
t

)
.

Note that A2, which is only required in the case γ0 = 0, is obviously satisfied in
the degenerate case when a(ηt) = 1, a.s., since the expectation is then equal to
1/t.



INFERENCE IN NON STATIONARY ASYMMETRIC GARCH 5

To handle initial values we introduce the following notation. For any asymptot-
ically stationary process (Xt)t≥0 let E∞(Xt) = limt→∞E(Xt) provided this limit

exists. Let also
◦
Θ denote the interior of Θ.

Theorem 3.1. Let (1.1)-(1.2) and A1 hold. Then the QMLE defined in (3.1)
satisfies the following properties.

i) Stationary case. When γ0 < 0, and β < 1 for all θ ∈ Θ,

θ̂n → θ0, a.s. as n→ ∞.

If, in addition, κη = Eη4
1 ∈ (1,∞) and θ0 ∈ ◦

Θ, we have

(3.2)
√
n
(
θ̂n − θ0

)
d→ N

{
0, (κη − 1)J −1

}
, as n→ ∞,

where

(3.3) J =
4

δ2
E∞

(
1

σ2δ
t

∂σδ
t

∂θ

∂σδ
t

∂θ′
(θ0)

)

.

ii) Explosive case. When γ0 > 0, if P (η1 = 0) = 0,

ϑ̂n → ϑ0, a.s. as n→ ∞.

If, in addition, κη ∈ (1,∞), E| log η2
1 | <∞ and θ0 ∈ ◦

Θ,

(3.4)
√
n
(
ϑ̂n − ϑ0

)
d→ N

{
0, (κη − 1)I−1

}
,

as n→ ∞, where I is a positive definite matrix.
iii) At the boundary of the stationarity region. When γ0 = 0, if P (η1 =

0) = 0, and ∀θ ∈ Θ, β < ‖1/a0(η1)‖−1
p for some p > 1,

ϑ̂n → ϑ0, in probability as n→ ∞.

If, in addition, θ0 ∈ ◦
Θ, κη ∈ (1,∞), E| log η2

1 | <∞ and A2 is satisfied, then
(3.4) holds.

The key ideas of the proof can be summarized as follows. First, we note that
θ̂n can be equivalently defined as the minimizer of 1

n

∑n
t=1{ℓt(θ)− ℓt(θ0)}, where

ℓt(θ) − ℓt(θ0) is a function of η2
t and the ratio σδ

t (θ)/ht. While the numerator
and the denominator explode to infinity as t increases, the ratio is close to a
stationary process for t sufficiently large. For instance in the symmetric ARCH(1)
case (α+ = α− = α and β = 0), we have σδ

t (θ)/ht → α/α0, a.s. in the strictly
explosive case (in probability in the case γ = 0). The situation is much more
intricate when β 6= 0 but we can show that, when γ > 0,

∣∣∣∣∣
σδ

t (θ)

ht
− vt(ϑ)

∣∣∣∣∣→ 0 a.s. as t→ ∞.

uniformly on some compact set included in Θ, where (vt(ϑ)) is a strictly stationary
and ergodic process. The a.s. convergence is replaced by a Lp convergence in the
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case γ = 0. The consistency results are established by showing that the criterion
in which σδ

t (θ)/ht is replaced by vt(ϑ) produces an estimator which is consistent
to ϑ0. Similar arguments are used to prove the asymptotic normality results, but
we now show that

∥∥∥∥∥
1

σδ
t (θ)

∂σδ
t

∂ϑ
(θ0) − dt

∥∥∥∥∥→ 0 in Lp as t→ ∞,

for some strictly stationary and ergodic process dt.
An explicit expression of I is given in appendix. To conclude the section, it

can be noted that no asymptotically valid inference on ω0 can be done in the
nonstationary case (see Propositions 2.1 and 3.1 in Francq and Zakoïan (2012),
denoted hereafter FZ, for the standard GARCH(1,1) model).

3.2 A universal estimator of the asymptotic variance of ϑ̂n

In view of (3.2)-(3.3), when γ0 < 0 the asymptotic distribution of the QMLE
ϑ̂n of ϑ0 (the parameter without ω0) is given by

(3.5)
√
n
(
ϑ̂n − ϑ0

)
d→ N

{
0, (κη − 1)I−1

∗
}
, as n→ ∞,

with

(3.6) I∗ = Jϑ,ϑ − Jϑ,ωJ −1
ω,ωJω,ϑ,

Jω,ω = 4
δ2E∞

(
1
h2

t

∂σδ
t

∂ω
∂σδ

t

∂ω (θ0)

)
, Jϑ,ϑ = 4

δ2E∞

(
1
h2

t

∂σδ
t

∂ϑ
∂σδ

t

∂ϑ′ (θ0)

)
and Jω,ϑ =

J ′
ϑ,ω = 4

δ2E∞

(
1
h2

t

∂σδ
t

∂ω
∂σδ

t

∂ϑ′ (θ0)

)
. Letting

Ĵϑ,ϑ =
4

δ2
1

n

n∑

t=1

1

σ2δ
t (θ̂n)

∂σδ
t

∂ϑ

∂σδ
t

∂ϑ′
(θ̂n),

and defining Ĵϑ,ω, Ĵω,ω and Ĵω,ϑ accordingly, it can be shown that

Î∗ = Ĵϑ,ϑ − Ĵϑ,ωĴ −1
ω,ωĴω,ϑ,

is a strongly consistent estimator of I∗ in the stationary case γ0 < 0. The follow-
ing result shows that this estimator also provides a consistent estimator of the
asymptotic variance of ϑ̂n in the nonstationary case γ0 ≥ 0.

Theorem 3.2. Let the assumptions required for the consistency results in
Theorem 3.1 hold, assume κη ∈ (1,∞) and let κ̂η = n−1∑n

t=1 η̂
4
t , where η̂t =

ǫt/σt(θ̂n).

i) When γ0 < 0, we have κ̂η → κη and Î∗ → I∗ a.s as n→ ∞.
ii) When γ0 > 0, we have κ̂η → κη and Î∗ → I a.s.
iii) When γ0 = 0, we have κ̂η → κη and, if A2 is satisfied, Î∗ → I in probability.

In any case, (κ̂η − 1)Î−1
∗ is a consistent estimator of the asymptotic variance of

the QMLE of ϑ0.

It follows that asymptotically valid confidence intervals for the parameter ϑ0

can be constructed without knowing if the underlying process is stationary or not.
This theorem also has interesting applications for testing problems, which we now
consider.
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4. TESTING

In this section we consider testing stationarity and testing asymmetry.

4.1 Strict stationarity testing

Consider the strict stationarity testing problems

(4.1) H0 : γ0 < 0 against H1 : γ0 ≥ 0,

and

(4.2) H0 : γ0 ≥ 0 against H1 : γ0 < 0.

Let γ̂n = γn(θ̂n) be the empirical estimator of γ0, with for any θ ∈ Θ,

(4.3) γn(θ) =
1

n

n∑

t=1

log

[
α+

{
η+

t (θ)
}δ

+ α−
{
−η−t (θ)

}δ
+ β

]
,

where ηt(θ) = ǫt/σt(θ). The following result shows that the asymptotic distribu-
tion of γ̂n is particularly simple in the nonstationarity case.

Theorem 4.1. Let ut = log a0(ηt) − γ0, and σ2
u = Eu2

t . Then, under the
assumptions of Theorem 3.1,

(4.4)
√
n(γ̂n − γ0)

d→ N
(
0, σ2

γ

)
as n→ ∞

where

σ2
γ =

{
σ2

u + (κη − 1){a′J−1a− (1 − ν1)
2} when γ0 < 0,

σ2
u when γ0 ≥ 0,

with a = (0, ν̃1,+, ν̃1,−, ν1/β0)
′ and

ν̃1+ = E

{
(η+

1 )δ

a0(η1)

}

, ν̃1− = E

{
(−η−1 )δ

a0(η1)

}

, ν1 = E

{
β0

a0(η1)

}
.

Let σ̂2
u be the empirical variance of log

{
α̂n+

(
η̂+

t

)δ
+ α̂n−

(
−η̂−t

)δ
+ β̂n

}
, for

t = 1, . . . , n. Under the assumptions of Theorem 4.1, it can be shown that σ̂2
u is

a weakly consistent estimator of σ2
u. The statistics

Tn =
√
nγ̂n/σ̂u

is thus asymptotically N (0, 1) distributed when γ0 = 0. For the testing problem
(4.1) (resp. (4.2)), at the asymptotic significance level α, this leads to consider
the critical region

(4.5) CST =
{
Tn > Φ−1(1 − α)

}
(resp. CNS =

{
Tn < Φ−1(α)

}
).



8 C. FRANCQ AND J-M. ZAKOÏAN

4.2 Asymmetry testing

It is of particular interest to test the existence of a leverage effect in stock
market returns. In the framework of model (1.1), this testing problem is of the
form

(4.6) H0 : α0+ = α0− against H1 : α0+ 6= α0−.

Consider the test statistic for symmetry

T S
n :=

√
n(α̂n+ − α̂n−)

σ̂TS

, σ̂TS =
√

(κ̂η − 1)e′Î−1
∗ e.

with e′ = (1,−1, 0). The following result is a direct consequence of (3.4), (3.5)
and Theorem 3.1.

Corollary 4.1. Assume that θ0 ∈ ◦
Θ and the assumptions of Theorem 3.1

hold. For the testing problem (4.6), the test defined by the critical region

(4.7) CS =
{
|T S

n | > Φ−1(1 − α/2)
}

has the asymptotic significance level α and is consistent.

We emphasize the fact that this test for symmetry does not require any station-
arity assumption. The somewhat surprising output is that the usual Wald test,
based on the asymptotic theory for the stationary case, also works in the non
stationary situation.1

5. ASYMPTOTIC LOCAL POWERS

The section investigates the asymptotic behavior under local alternatives of the
asymmetry test (4.7) and of the strict stationarity test (4.5). We first establish the
LAN of the power-transformed GARCH model without imposing any stationarity
constraint. This LAN property will be used to derive the asymptotic properties of
our tests, but the result is of independent interest (see van der Vaart (1998) for a
general reference on LAN and its applications, and see Drost and Klaassen (1997),
Drost, Klaassen and Werker (1997) and Ling and McAleer (2003) for applications
to GARCH and other stationary processes).

5.1 LAN without stationarity constraint

Assume that ηt has a density f with third-order derivatives such that

(5.1) lim
|y|→∞

yf(y) = 0 and lim
|y|→∞

y2f ′(y) = 0,

and that, for some positive constants K and δ,

(5.2) |y|
∣∣∣∣
f ′

f
(y)

∣∣∣∣+ y2

∣∣∣∣∣

(
f ′

f

)′
(y)

∣∣∣∣∣ + y2

∣∣∣∣∣

(
f ′

f

)′′
(y)

∣∣∣∣∣ ≤ K
(
1 + |y|δ

)
,

1For instance in ARMA models, Wald tests on the parameters are not the same in the
stationary and non stationary cases.
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(5.3) E |η1|2δ <∞.

These regularity conditions are satisfied for numerous distributions, in particular
for the gaussian distribution with δ = 2, and entail the existence of the Fisher
information for scale

ιf =
∫ {1 + yf ′(y)/f(y)}2 f(y)dy <∞.

Given the initial value ǫ0, the density of the observations (ǫ1, . . . , ǫn) satisfying

(1.1) is given by Ln,f(θ0) =
∏n

t=1 σ
−1
t (θ0)f

{
σ−1

t (θ0)ǫt
}
. Around θ0 ∈

◦
Θ, let a

sequence of local parameters of the form

(5.4) θn = θ0 + τn/
√
n,

where (τn) is a bounded sequence of R
4. Without loss of generality, assume that n

is sufficiently large so that θn ∈ Θ. Under the strict stationarity condition γ0 < 0,
Drost and Klaassen (1997) showed that, for standard GARCH, the log-likelihood
ratio Λn,f (θn, θ0) = logLn,f (θn)/Ln,f (θ0) satisfies the LAN property

(5.5) Λn,f (θn, θ0) = τ
′
nSn,f(θ0) −

1

2
τ
′
nIfτn + oPθ0

(1),

where Sn,f (θ0)
d−→ N {0,If} under Pθ0

as n → ∞. The following proposition
shows that (5.5) holds regardless of γ0.

Proposition 5.1. When θ0 ∈ ◦
Θ, under (5.1)-(5.3) we have the LAN property

(5.5). When γ0 < 0, we have Jf =
ιf
4 J , where J is defined in (3.3). When γ0 ≥ 0,

the Fisher information is the degenerate matrix

(5.6) If =
ιf
4

(
0 0′3
03 I

)

,

where I is the positive definite matrix introduced in (3.4).

5.2 Near-global alternatives with respect to ω0

We now show that, in the non stationary case, LAN continues to hold when
the local alternative allows for an arbitrary rate of convergence with respect to
ω0. To this aim we assume that

(5.7) θn = θ0 + υne1 +
τn√
n

where e1 = (1, 0, 0, 0)′ , (τn) is as in (5.4), and (υn) is a deterministic sequence
converging to zero. The next result shows that, in the non stationary case, (5.5)
which was established under (5.4), continues to hold under the more general al-
ternatives (5.7). For simplicity, take τn = τ = (τ1, τ̃

′)′ and τ̃
′ = (τ2, τ3, τ4).

Proposition 5.2. Let θ0 ∈ ◦
Θ with γ0 ≥ 0. Then, under (5.1)-(5.3) and (5.7),

we have the LAN property

Λn,f(θn, θ0)
d−→ N

(
− ιf

8
τ̃
′I τ̃ ,

ιf
4

τ̃
′I τ̃

)
, under Pθ0

as n→ ∞.
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Note that this Gaussian law is the distribution of the log-likelihood ratio in the
statistical model N {

τ̃ , 4I−1/ιf
}

of parameter τ̃ , or equivalently in the statistical
model N {ιfI τ̃/4, ιfI/4}. To interpret this result in terms of convergence of sta-
tistical experiments (see van der Vaart (1998) for details), assume that υn = υνn

where υ ∈ R and (νn) is a given sequence converging to zero as n→ ∞. Denoting
by T a subset of R

4 containing a neighborhood of 0, the so-called local experiments
{Ln,f (θ0 + υνne1 + (0, τ̃ ′)/

√
n), (υ, τ̃ ′) ∈ T } converge to the gaussian experiment{N (

τ̃ , 4I−1/ιf
)
, (υ, τ̃ ′) ∈ T }.

Interestingly, the parameter υ vanishes in the limiting experiment. Conse-
quently, in the limit experiment there exists no test on the parameter υ (except of
trivial power equal to the level). On the other hand, the limit of any converging
sequence of power functions in the local experiments is a power function in the
Gaussian limit experiment, by the asymptotic representation theorem. We can
conclude that there exists no test with a non trivial asymptotic power, for local
alternatives on the parameter υ at the rate 1/νn. Given that the rate of conver-
gence of νn to zero is arbitrary, the LAN approach shows that no asymptotically
valid inference can be made on the parameter ω0.

2

5.3 Local asymptotic powers of the tests

The LAN property, with the help of Le Cam’s third lemma, allows to easily
compute local asymptotic powers of tests. In view of Theorem 4.1,

lim
n→∞

Pθ0

(
CST

)
= lim

n→∞
Pθ0

(
CNS

)
= α,

when θ0 is such that γ0 = 0. For τ such that θ0 + τ/
√
n ∈ Θ, we denote by Pn,τ

the distribution of the observations (ǫ1, . . . , ǫn) when the parameter is θ0 +τ/
√
n.

We should use the notation (ǫ1,n, . . . , ǫn,n) instead of (ǫ1, . . . , ǫn) because the
parameter varies with n, but we will avoid this heavy notation. Let

aτ(η1) =

(
α0+ +

τ2√
n

)(
η+
1

)δ
+

(
α0− +

τ3√
n

)(
−η−1

)δ
+ β0 +

τ4√
n
.

Local alternatives for the CST-test (resp. the CNS-test) are obtained for τ such
that E log aτ(η1) > 0 (resp. E log aτ(η1) < 0).

Proposition 5.3. Under the assumptions of Theorem 3.1 and Proposi-
tion 5.1, the local asymptotic powers of the strict stationarity tests (4.5) are given
by

(5.8) lim
n→∞

Pn,τ

(
CST

)
= Φ

{
cf (θ0) − Φ−1(1 − α)

}

and, using the notations of Theorem 4.1,

lim
n→∞

Pn,τ

(
CNS

)
= Φ

{
Φ−1(α) − cf (θ0)

}
,

where

cf (θ0) =
(τ2ν̃1+ + τ3ν̃1− + τ4ν1/β0)E log a0(η1)

{
1 + η1

f ′(η1)
f(η1)

}

δσu(1 − ν1)
.

2This is in accordance with the observation that, at least in the explosive case, the Fisher
information with respect to ω0 is bounded as n increases. A proof is available from the authors.
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We now compute the local asymptotic power of the asymmetry test defined by
(4.7). We thus consider a sequence of local parameters of the form θn = θ0+τ/

√
n

where θ0 = (ω0, α0, α0, β0)
′ and τ = (τ1, τ2, τ3, τ4)

′ (with τ2 6= τ3 under a local
alternative). We denote by P S

n,τ the distribution of the observations under the
assumption that the parameter is θn.

Proposition 5.4. Let the assumptions of Proposition 5.1 and Theorem 3.1
be satisfied. For testing (4.6), the test defined by the rejection region (4.7) has the
local asymptotic power

lim
n→∞P S

n,τ

(
CS
)

= 1 − Φ

{
Φ−1

(
1 − α

2

)
− τ2 − τ3

σTS

}

+Φ

{
−Φ−1

(
α

2

)
− τ2 − τ3

σTS

}
,

where, recalling the notation e′ = (1,−1, 0),

σ2
TS =

{
(κη − 1)e′I−1

∗ e when γ0 < 0
(κη − 1)e′I−1e when γ0 ≥ 0.

5.4 Optimality issues

We discuss, in this section, the optimality of the symmetry test defined in (4.7).
Let θ0 = (ω0, α0, α0, β0)

′ be a parameter value corresponding to a symmetric
GARCH. Assume that, at this point, γ0 ≥ 0. If γ0 < 0, it suffices to replace I by
I∗ in the sequel. A sequence of local alternatives to this symmetric parameter is
defined by θ0+τ/

√
n where τ ′ = (τ1, τ2, τ3, τ4)

′ is such that τ2 6= τ3. The relations
(5.5)-(5.6) imply that

Λn,f (θ0 + τ/
√
n, θ0)

d−→ N
(
− ιf

8
τ̃
′I τ̃ ,

ιf
4

τ̃
′I τ̃

)
under Pθ0

,

with τ̃ = (τ2, τ3, τ4)
′, which is the distribution of the log-likelihood ratio in the

statistical model N {
τ̃ , 4I−1/ιf

}
of parameter τ̃ . In other words, denoting by T̃

a subset of R
3 containing a neighborhood of 0, for any τ1, the so-called local ex-

periments
{
Ln,f(θ0 + (τ1, τ̃

′)/
√
n), τ̃ ∈ T̃

}
converge to the gaussian experiment

{
N (

τ̃ , 4I−1/ιf
)
, τ̃ ∈ T̃

}
.

The asymmetry test (4.6) corresponds to the test

e
′
τ̃ = 0 against e

′
τ̃ 6= 0

in the limiting experiment. The uniformly most powerful unbiased (UMPU) test
based on X ∼ N (

τ̃ , 4I−1/ιf
)

is the test of rejection region

C =

{
|e′

X |/
√

4e′I−1e/ιf > Φ−1(1 − α/2)

}
.

This UMPU test has the power

(5.9) Pe
′
τ̃(C) = 1 − Φ

{
Φ−1

(
1 − α

2

)
− ce′

τ̃

}
+ Φ

{
−Φ−1

(
α

2

)
− ce′

τ̃

}
,

with c
e
′
τ̃ =

e
′
τ̃
√

ιf

2
√

e
′I−1

e

. A test of (4.6) whose level converges to α, which is asymp-

totically unbiased, and whose power converges to the bound in (5.9) will be called
asymptotically locally UMPU.
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Figure 1. Optimal asymptotic power (5.9) (in full line) and local asymptotic power of the
asymmetry test (4.7) (in dotted line) when ηt follows a standardized Student distribution
with ν degrees of freedom. The horizontal axis correspond to the local parameter e′τ .

Proposition 5.5. Under the assumptions of Proposition 5.3, the test (4.7)
is asymptotically locally UMPU for the testing problem (4.6) if and only if the
density of ηt has the form

(5.10) f(y) =
aa

Γ(a)
e−ay2 |y|2a−1, a > 0, Γ(a) =

∫ ∞

0
ta−1e−tdt.

A figure displaying the density (5.10) for different values of a is in appendix.
Note that the gaussian density is obtained for a = 1/2. The result was expected
because the CS-test is based on the QMLE of θ0, and the QMLE is obviously
efficient in the gaussian case. It can be shown that when the distribution of ηt

is of the form (5.10), the MLE does not depend on a. The QMLE is then equal
to the MLE, which makes obvious the "if part" of Proposition 5.5. The "only if"
part of the proposition shows that there is necessarily an efficiency loss when the
test is not based on the MLE of θ0.

This point is illustrated by Figure 1, in which the local asymptotic power
of the asymmetry test (in dotted lines) is compared to the optimal asymptotic
power given by (5.9). In this figure, the noise ηt is assumed to satisfy a Student
distribution with ν > 2 degrees of freedom, standardized in such a way that
Eη2

t = 1. The parameters of the model under the null are α0+ = α0− = 0.2,
β0 = 0.9 and δ = 1, which corresponds to a nonstationary model with γ0 = 0.045.
In the figure, it can be seen that the local asymptotic power is far from the optimal
power when ν is small, but, as expected, the discrepancy decreases as ν increases.

6. ESTIMATION WHEN THE POWER δ IS UNKNOWN

In this section, we consider the case where the power δ, now denoted δ0, is
unknown and is jointly estimated with θ0. We rewrite the vector of parameters
as ζ := (δ, θ′)′, which is assumed to belong to a compact parameter space Υ ⊂
(0,∞)2 × [0,∞)3. The true parameters value is denoted by ζ0 := (δ0, θ

′
0)

′. A
QMLE of ζ is defined as any measurable solution ζ̂n of

(6.1) ζ̂n = (δ̂n, θ̂
′
n)′ = arg min

ζ∈Υ

1

n

n∑

t=1

ℓt(ζ), ℓt(ζ) =
ǫ2t

σ2
t (ζ)

+ log σ2
t (ζ),

where

(6.2) σt = σt(ζ) =
(
ω + α+(ǫ+t−1)

δ + α−(−ǫ−t−1)
δ + βσδ

t−1(ζ)
)1/δ

,
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for t = 1, . . . , n (with initial values for ǫ0 and σ0(ζ)). The rescaled residuals are
defined by η̂t = ηt(ζ̂n) where ηt(ζ) = ǫt/σt(ζ) for t = 1, . . . , n. For identifiability
reasons, we need to slightly reinforce assumption A1 as follows.

A3: The support of ηt contains at least three points of the same sign, and at
least two points of opposite signs.

We also introduce the following technical assumption to handle the derivatives
of ℓt with respect to the exponent δ.

A4: ∀ζ ∈ Υ, β < ‖1/a2
0(η1)‖−1

p and ‖|η1|δ log |η1|‖p <∞ for some p > 1.
For brevity, we only present results for the non stationary cases.

Theorem 6.1. Let (1.1)-(1.2) and A3 hold. Then, the QMLE defined in (6.1)
satisfies the following properties.

i) Explosive case. When γ0 > 0, if P (η1 = 0) = 0

(δn, ϑ̂
′
n) → (δ0, ϑ

′
0), a.s. as n→ ∞.

If, in addition, κη ∈ (1,∞), E| log η2
1 | <∞, ζ0 ∈ ◦

Υ, and A4 holds, then

(6.3)
√
n
(
(δ̂n, ϑ̂

′
n) − (δ0, ϑ

′
0)
)′ d→ N

{
0, (κη − 1)I−1

δ

}
,

as n→ ∞, where Iδ is a positive definite matrix (see Lemma D.4).
ii) At the boundary of the stationarity region. When γ0 = 0, if P (η1 =

0) = 0, and ∀ζ ∈ Υ, β < ‖1/a0(η1)‖−1
p for some p > 1,

(δn, ϑ̂
′
n) → (δ0, ϑ

′
0), in probability as n→ ∞.

If, in addition, ζ0 ∈ ◦
Υ, κη ∈ (1,∞), E| log η2

1 | < ∞ and A2 and A4 are
satisfied, then (6.3) holds.

The presence of parameter δ induces specific difficulties. It turns out that the
derivative of the criterion with respect to δ involves the process (∂σδ

t /∂δ− log σt).
A strictly stationary approximation to this process can then be obtained, but in
a more complicated way than for the other parameters. To save place, the proofs
of this section are given in appendix.

Obviously, stationarity and symmetry tests could be derived as in Sections 4
and 5. Other tests concerning the exponent δ (for instance testing the TARCH
model (δ = 1) against the GJR model (δ = 2)) could be considered as well, but
we leave this for further investigation.

7. PROOFS AND COMPLEMENTARY RESULTS

7.1 Proof of Proposition 2.1

Writing ωt = ω(ξt) and at = a(ξt), we have, for all t > 1 and 1 ≤ k < t,

(7.1) ht = ωt−1 +
k∑

j=1

ωt−j−1

j∏

i=1

at−i + ht−k−1

k+1∏

i=1

at−i.

We begin by showing i). Since all the random variables involved in (7.1) are
positive, ht ≥ ω

∏t−1
i=1 at−i. For any constant ρ > e−γ , we thus have, a.s.

lim inf
t→∞

1

t
log ρtht ≥ log ρ+ lim

t→∞
1

t

{

log ω +
t−1∑

i=1

log ai

}

= log ρ+ γ > 0,
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by the ergodic theorem. It follows that log ρtht, and hence ρtht, tend to +∞ a.s
as n→ ∞. The second convergence is shown right in the same way, arguing that
E| log ξ21 | <∞ entails log ξ2t /t → 0 a.s. as t→ ∞.

To show ii), first consider the case where h0 = 0. Note that, for all t, the
distribution of ht = ht(ξ0, . . . , ξt−1) is equal to that of

(7.2) h∗t := ht(ξt, . . . , ξ1) = ω1 +
t−1∑

j=1

ωj+1

j∏

i=1

ai.

Note that, contrary to (ht), the sequence (h∗t ) increases with t. The Chung-Fuchs
theorem applied to the random walk

∑t
i=1 log ai entails that lim supt→∞

∏t
i=1 ai =

+∞ a.s. It follows that h∗t → +∞ as t→ ∞. We thus have P (ht ≥ A) = P (h∗t ≥
A) → 1 for all A > 0, from which the first part of ii) easily follows. To prove the
first convergence of (2.2), note that the dominated convergence theorem entails

Eψ(ht) =

∫ ∞

0
P
{
h∗t < ψ−1(u)

}
du→

∫ ∞

0
lim
t→∞

P
{
h∗t < ψ−1(u)

}
du = 0.

The second convergence is shown similarly. Now consider the case where the initial
value is not equal to zero. It is clear from (7.1), with k = t − 1, that ht is an
increasing function of h0. So the convergences to infinity obtained when h0 = 0,
and the convergences in (2.2), hold a fortiori when h0 > 0. 2

7.2 Asymptotic behavior of the QMLE of ϑ0

Define the [0,∞]-valued process

vt(ϑ) =
∞∑

j=1

{α+(η+
t−j)

δ + α−(−η−t−j)
δ}

a0(ηt−j)

j−1∏

k=1

β

a0(ηt−k)

with the convention
∏j−1

k=1 = 1 when j ≤ 1. Let Θ0 = {θ ∈ Θ : β < eγ0} and
Θp = {θ ∈ [0,∞)4 : β < ‖1/a0(η1)‖−1

p }.

Lemma 7.1. i) When γ0 > 0, for any θ ∈ Θ0 the process vt(ϑ) is stationary
and ergodic. Moreover, for any compact Θ∗

0 ⊂ Θ0,

sup
θ∈Θ∗

0

∣∣∣∣∣
σδ

t (θ)

ht
− vt(ϑ)

∣∣∣∣∣→ 0 a.s. as t→ ∞.

Finally, for any θ /∈ Θ0 it holds that σδ
t (θ)/ht → ∞ a.s.

ii) When γ0 = 0, for any θ ∈ Θp with p ≥ 1, the process vt(ϑ) is stationary and
ergodic. Moreover, for any compact Θ∗

p ⊂ Θp,

sup
θ∈Θ∗

p

∣∣∣∣∣
σδ

t (θ)

ht
− vt(ϑ)

∣∣∣∣∣→ 0 in Lp.

Proof. Assuming, with no generality loss, that σ0(θ) = 0, we have σδ
t (θ) =∑t

j=1 β
j−1zt−j where zt = ω + α+(ǫ+t )δ + α−(−ǫ−t )δ and

σδ
t (θ)

ht
=

t∑

j=1

βj−1






j∏

k=1

ht−k

ht−k+1





zt−j

ht−j
.(7.3)
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Noting that

(7.4)
ht−k

ht−k+1
=

ht−k

ω0 + a0(ηt−k)ht−k
≤ 1

a0(ηt−k)
,

the rest of the proof follows from arguments similar to those used in the proof of
Lemma A.1 in FZ. Therefore is it omitted. 2

Lemma 7.2. If θ ∈ Θ0, we have vt(ϑ) = 1, a.s. iff ϑ = ϑ0.

Proof. Straightforward algebra shows that

(7.5) vt(ϑ)a0(ηt−1) = βvt−1(ϑ) + α+(η+
t−1)

δ + α−(−η−t−1)
δ.

Hence

{vt(ϑ)− 1}a0(ηt−1) = βvt−1(ϑ)− β0 + (α+ − α0+)(η+
t−1)

δ + (α− − α0−)(−η−t−1)
δ.

It follows that vt(ϑ) = 1 a.s. iff

β − β0 + (α+ − α0+)(η+
t−1)

δ + (α− − α0−)(−η−t−1)
δ = 0.

Thus, if ϑ 6= ϑ0, ηt takes at most two values of different signs, in contradiction
with Assumption A1. The conclusion follows. 2

Let ω = inf{ω | θ ∈ Θ}, α = inf{α+, α− | θ ∈ Θ}, β = inf{β | θ ∈ Θ},
ω = sup{ω | θ ∈ Θ}, α = sup{α+, α− | θ ∈ Θ}, β = sup{β | θ ∈ Θ}. Denote by K
any constant whose value is unimportant and can change throughout the proofs.
Let Θ̌ be the compact set of the ϑ’s such that (ω, ϑ′)′ ∈ Θ.

Lemma 7.3. Suppose that P (ηt = 0) = 0. Then, for any k > 0

E sup
ϑ∈Θ̌

(
1

vt(ϑ)

)k

<∞ and E sup
θ∈Θ

(
ht

σδ
t (θ)

)k

<∞.

Proof. Let ε > 0 such that p(ε) := P (|ηt| ≤ ε) ∈ [0, 1). If |ηt−1| > ε, since the
sum vt(ϑ) is greater than its first term, we have,

1

vt(ϑ)
≤ a0(ηt−1)

α+(η+
t−1)

δ + α−(−η−t−1)
δ
≤ max(α0+, α0−)

α
+

β0

αεδ
:= K(ε).

Iterating this method, we can write

sup
ϑ∈Θ̌

1

vt(ϑ)
≤ K(ε)

∞∑

i=1

1l|ηt−1|≤ε . . . 1l|ηt−i+1|≤ε1l|ηt−i|>ε

(
a0(ε)

β

)i−1

.

where a0(ε) = max(α0+, α0−)ǫδ + β0. It follows that, for any integer k,

E sup
ϑ∈Θ̌

(
1

vt(ϑ)

)k

≤ {K(ε)}k{1 − p(ε)}
∞∑

i=1

p(ε)i−1

(
a0(ε)

β

)k(i−1)

.



16 C. FRANCQ AND J-M. ZAKOÏAN

Noting that limε→0 p(ε) = 0 and limε→0 a0(ε) = β0 we have p(ε)

(
a0(ε)

β

)k

< 1 for

ε sufficiently small. The first result of the lemma is thus proven.
Similarly, we have for |ηt−1| > ε,

ht

σδ
t (θ)

≤ ω0

ω
+
α

α
+

β0

αεδ
:= H(ε),

and for |ηt−1| ≤ ε and |ηt−2| > ε,

ht

σδ
t (θ)

≤ ω0

ω
+
a0(ε)

β
H(ε).

More generally,

sup
θ∈Θ

ht

σδ
t (θ)

≤
∞∑

i=1

1l|ηt−1|≤ε . . . 1l|ηt−i+1|≤ε1l|ηt−i|>ε

×


ω0

ω

i−2∑

j=0

(
a0(ε)

β

)j

+

(
a0(ε)

β

)i−1

H(ε)



 .

The conclusion follows by the same arguments as before. 2

Proof of the consistency results in the cases ii) and iii) of

Theorem 3.1. Note that (ω̂n, ϑ̂
′
n) = arg minθ∈ΘQn(θ), where Qn(θ) =

n−1∑n
t=1 {ℓt(θ) − ℓt(θ0)} . We have

Qn(θ) =
1

n

n∑

t=1

η2
t






(
ht

σδ
t (θ)

)2/δ

− 1




+ log

(
σδ

t (θ)

ht

)2/δ

= On(ϑ) +Rn(θ)

where

On(ϑ) =
1

n

n∑

t=1

η2
t

{
1

v
2/δ
t (ϑ)

− 1

}

+ log v
2/δ
t (ϑ)

and

Rn(θ) =
1

n

n∑

t=1

η2
t






(
ht

σδ
t (θ)

)2/δ

− 1

v
2/δ
t (ϑ)




+ log

(
σδ

t (θ)

htvt(ϑ)

)2/δ

.

It suffices to consider the case θ ∈ Θ∗
0 where Θ∗

0 is an arbitrary compact subset of
Θ0, because by Lemma 7.1 i) Qn(θ) → ∞ a.s. if θ /∈ Θ0. We have by stationarity
and ergodicity of vt(ϑ), a.s.

lim
n→∞

On(ϑ) = E

{
1

v
2/δ
1 (ϑ)

− 1 + log v
2/δ
1 (ϑ)

}

≥ 0

because log x ≤ x − 1 for x > 0. The inequality is strict except when v1(ϑ) = 1
a.s. By Lemma 7.2 we thus have E{On(ϑ)} ≥ 0, with equality only if ϑ = ϑ0.

By Lemma 7.3 we prove, as in FZ, that

(7.6) lim
n→∞

sup
θ∈Θ∗

0

|Rn(θ)| = 0 a.s. (resp. lim
n→∞

sup
θ∈Θ∗

p

|Rn(θ)| = 0 in L1),
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when γ0 > 0 (resp. γ0 = 0) and Θ∗
0,Θ

∗
p are defined in Lemma 7.1, which completes

the proof. 2

We now need to introduce new [0,∞]-valued processes. Let a(ηt) = α+(η+
t )δ +

α−(−η−t )δ + β and

d
α+

t =
∞∑

j=1

(η+
t−j)

δ

a0(ηt−j)

j−1∏

k=1

β0

a0(ηt−k)
, d

α−

t =
∞∑

j=1

(−η−t−j)
δ

a0(ηt−j)

j−1∏

k=1

β0

a0(ηt−k)

dβ
t =

∞∑

j=2

(j − 1){α0+(η+
t−j)

δ + α0−(−η−t−j)
δ}

β0a0(ηt−j)

j−1∏

k=1

β0

a0(ηt−k)
.

Lemma 7.4. Assume γ0 ≥ 0 and Eη4
t <∞. We have

1√
n

n∑

t=1

∂ℓt
∂ϑ

(θ0)
d→ N {0, (κη − 1)I} as n→ ∞,

where I = 4
δ2Ed1d

′
1 and d′t =

(
d

α+

t , d
α−

t , dβ
t

)
. Moreover, I is non singular.

Proof. Since E log β0/a0(η1) < 0, by the Cauchy root test, the processes d
α+

t , d
α−

t

and dβ
t are stationary and ergodic. Still assuming σ2

0 = 0, we have

∂σδ
t

∂(α+, α−)
(θ) =

t∑

j=1

βj−1({ǫ+t−j}δ , {−ǫ−t−j}δ),
∂σ2

t

∂β
(θ) =

t∑

j=2

(j − 1)βj−2zt−j .

Thus, using a direct extension of (7.4)

1

σδ
t (θ0)

∂σδ
t

∂(α+, α−)
(θ0) =

t∑

j=1

βj−1






j∏

k=1

σδ
t−k(θ0)

σδ
t−k+1(θ0)





{(ǫ+t−j)

δ, (−ǫ−t−j)
δ}

σδ
t−j(θ0)

≤ (d
α+

t (ϑ0), d
α−

t (ϑ0)),

1

σδ
t (θ0)

∂σδ
t

∂β
(θ0) =

t∑

j=2

(j − 1)βj−2
0






j∏

k=1

σδ
t−k(θ0)

σδ
t−k+1(θ0)





zt−j

σδ
t−j(θ0)

≤ dβ
t (ϑ0),

where the first inequality stands componentwise. Moreover, we have

0 ≤ d
α+

t (ϑ0) −
1

σδ
t

∂σδ
t

∂α+
(θ0) ≤ st0 + rt0 ,

where

st0 =
t0∑

j=1

(η+
t−j)

δ

a0(ηt−j)

j−1∏

k=1

β0

a0(ηt−k)
−

(ǫ+t−j)
δ

β0σδ
t−j(θ0)

j∏

k=1

β0σ
δ
t−k(θ0)

σδ
t−k+1(θ0)

,

rt0 =
∞∑

j=t0+1

(η+
t−j)

δ

a0(ηt−j)

j−1∏

k=1

β0

a0(ηt−k)
.
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For all p ≥ 1, ‖rt0‖p → 0 as t0 → ∞ because ‖β0/a0(η1)‖p < 1 and
‖(η+

1 )δ/a0(η1)‖p < 1/α0+. Since, in addition, ‖β0σ
δ
t−1(θ0)/σ

δ
t (θ0)‖p < 1, and

∥∥∥∥∥
β0

a0(ηt−1)
− β0σ

δ
t−1(θ0)

σδ
t (θ0)

∥∥∥∥∥
p

=

∥∥∥∥∥
β0ω0

a0(ηt−1)σ
δ
t (θ0)

∥∥∥∥∥
p

→ 0

as t → ∞ by the dominated convergence theorem, st0 = st0(t) converges to 0 in
Lp as t → ∞. The same derivations hold true when d

α+

t is replaced by d
α−

t and

dβ
t . Therefore, d

α+

t , d
α−

t and dβ
t have moments of any order, and

(7.7)

∥∥∥∥∥
1

σδ
t

∂σδ
t

∂ϑ
(θ0) − dt

∥∥∥∥∥→ 0

in Lp for any p ≥ 1.
Using (7.7) and the ergodic theorem, we thus have, as n→ ∞,

Var
1√
n

n∑

t=1

∂

∂ϑ
ℓt(θ0) =

4

δ2
κη − 1

n

n∑

t=1

E(dtd
′
t) + o(1) → (κη − 1)I.

Moreover, it can be shown as in FZ that the Lindeberg condition is satisfied,
allowing to apply the Lindeberg central limit theorem for martingale differences
(see Billingsley, 1995, p. 476).

Now we show that I is nonsingular. Suppose there exists x = (x1, x2, x3)
′ ∈ R

3

such that x′Ix = 0. Then we get x′dt = 0, that is,

∞∑

j=1

(

x1

(η+
t−j)

δ

a(ηt−j)
+ x2

(−η−t−j)
δ

a(ηt−j)
+ x3(j − 1)

α+(η+
t−j)

δ + α−(−η−t−j)
δ

βa(ηt−j)

)

×
j−1∏

k=1

β

a(ηt−k)
= 0, a.s.

It follows that x1(η
+
t−1)

δ + x2(−η−t−1)
δ = zt−2, a.s. where zt−2 is a measurable

function of the ηt−j with j > 1. Because ηt−1 is independent of zt−2, this variable
must be a.s. constant. In view of Assumption A1, this entails x1 = x2 = 0 and
then x3 = 0. Therefore, I is nonsingular. 2

Lemma 7.5. Let ̟ be an arbitrary compact subset of [0,∞). Assume that
E log η2

1 <∞. When γ0 > 0 we have, a.s.

∞∑

t=1

sup
θ∈Θ0

∣∣∣∣
∂

∂ω
ℓt(θ)

∣∣∣∣ < ∞,
∞∑

t=1

sup
θ∈Θ0

∥∥∥∥∥
∂2

∂ω∂θ
ℓt(θ)

∥∥∥∥∥ <∞,

sup
ω∈̟

∣∣∣∣∣
1

n

n∑

t=1

∂2ℓt(ω, ϑ0)

∂θi+1∂θj+1
− Iij

∣∣∣∣∣ = o(1) for all i, j ∈ {1, 2, 3},

1

n

n∑

t=1

sup
θ∈Θ

∣∣∣∣∣
∂3

∂θi∂θj∂θk
ℓt(θ)

∣∣∣∣∣ = O(1) for all i, j, k ∈ {2, 3, 4}.

When γ0 = 0 we have, for all i, j, k ∈ {2, 3, 4},

sup
ω∈̟

∣∣∣∣∣
1

n

n∑

t=1

∂2ℓt(ω,α0, β0)

∂θi+1∂θj+1
− Iij

∣∣∣∣∣ = oP (1),(7.8)

1

n

n∑

t=1

sup
θ∈Θ4

∣∣∣∣∣
∂3

∂θi∂θj∂θk
ℓt(θ)

∣∣∣∣∣ = OP (1).(7.9)
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Proof. This is similar to that of Lemma A.5. in FZ, therefore is it omitted. 2

Proof of the asymptotic normality in the case ii) of Theorem 3.1. An
expansion of the criterion derivative gives

(
1√
n

∑n
t=1

∂
∂ω ℓt(θ̂n)

0

)

=
1√
n

n∑

t=1

∂

∂θ
ℓt(θ0) + Jn

√
n(θ̂n − θ0)(7.10)

where Jn is a 4 × 4 matrix whose elements have the form

Jn(i, j) =
1

n

n∑

t=1

∂2

∂θi∂θj
ℓt(θ

∗
i ),

where θ∗i = (ω∗
i , α

∗
i+, α

∗
i−, β

∗
i )′ is between θ̂n and θ0. Moreover, it can be shown

that, for i, j = 1, 2, 3,

(7.11) Jn(i+ 1, 1) = o(1/
√
n), Jn(i+ 1, j + 1) → I(i, j) a.s.

The conclusion follows from the last rows of (7.10) and Lemma 7.4. 2

Proof of the asymptotic normality in the case iii) of Theorem 3.1. Note
that (7.10) continues to hold. In view of (7.8)-(7.9), we have

Jn(i+ 1, j + 1) → I(i, j) in probability as n→ ∞.

To conclude, by the arguments used in the case ii), it suffices to show that,

(7.12) for i = 2, 3, 4, E|Jn(i, 1)
√
n(ω̂n − ω0)| → 0 as n→ ∞.

Noting that

(7.13)
1

σδ
t (θ)

t∑

j=1

βj−1(ǫ+t−j)
δ ≤ 1

α+
,

and β∗2 < 1 for n large enough, and using the compactness of Θ, we obtain

|Jn(2, 1)
√
n(ω̂n − ω0)|

≤ K√
n

n∑

t=1

(
2h

2/δ
t η2

t

σ2
t (θ

∗
2)

+ 1

) {∑t
j=1 (β∗2)j−1 (ǫ+t−j)

δ
}{∑t

j=1 (β∗2)j−1
}

σ2δ
t (θ∗2)

≤ K√
n

n∑

t=1

(
2h

2/δ
t η2

t

σ2
t (θ

∗
2)

+ 1

)
ht

σδ
t (θ

∗
2)

1

ht
.

Hence, by Lemma 7.3 and Hölder’s inequality

E|Jn(2, 1)
√
n(ω̂n − ω0)| ≤ K√

n

n∑

t=1

E
1

h1+τ
t

,

for any τ > 0. The same bound is obtained when Jn(2, 1) is replaced by Jn(3, 1)
and Jn(4, 1). Moreover,

ht = ω0(1 + Zt−1 + Zt−1Zt−2 + · · · + Zt−1 . . . Z1) + Zt−1 . . . Z0σ
2
0.

Hence
1

h1+τ
t

≤ 1

ω1+τ
0 (1 + Zt−1 + Zt−1Zt−2 + · · · + Zt−1 . . . Z1)

By Assumption A2, the conclusion follows. 2

Proof of Theorem 3.2. It is displayed in appendix.
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7.3 Stationarity test

Proof of Theorem 4.1. In the stationary case γ0 < 0, standard arguments show
that

(7.14) γ̂n = γn(θ0) +
∂γn(θ0)

∂θ′
(θ̂n − θ0) + oP (n−1/2),

with

∂γn(θ0)

∂θ
=

−1

n

n∑

t=1

1

a0(ηt)



{a0(ηt) − β0}
1

ht

∂σδ
t (θ0)

∂θ
−





0
(η+

t )δ

(−η−t )δ

1









= −Ψ + oP (1),(7.15)

where Ψ = (1 − ν1)Ω − a and Ω = E∞
1
ht

∂σδ
t (θ0)
∂θ . Moreover the QMLE satisfies

(7.16)
√
n(θ̂n − θ0) = −J−1 1√

n

n∑

t=1

(1 − η2
t )

2

δht

∂σδ
t (θ0)

∂θ
+ oP (1).

In view of (7.14), (7.15) and (7.16), we have

√
n(γ̂n − γ0) =

1√
n

n∑

t=1

ut + Ψ′J −1 1√
n

n∑

t=1

(1 − η2
t )

2

δht

∂σδ
t (θ0)

∂θ
+ oP (1).

Note that

Cov

(
1√
n

n∑

t=1

ut, Ψ′J −1 1√
n

n∑

t=1

(1 − η2
t )

2

δht

∂σδ
t (θ0)

∂θ

)

=
2c

δ
Ω′J−1Ψ,

where c = Cov(ut, 1 − η2
t ). The Slutsky lemma and the central limit theorem for

martingale differences thus entail

√
n(γ̂n − γ0)

d→ N
(

0, σ2
u + 4

c

δ
Ω′J −1Ψ + (κη − 1)Ψ′J −1Ψ

)
.

Now let θ0 = (ω0, α0+, α0−, 0)′. Noting that θ0
′
∂σδ

t (θ0)/∂θ = ht almost surely, we
have

E

{
1

ht

∂σδ
t (θ0)

∂θ

(

1 − 1

ht

∂σδ
t (θ0)

∂θ′
θ0

)}

= 0,

which entails δ2

4 J θ0 = Ω and Ω′J −1Ω = δ2

4 . It follows that

Ω′J−1Ψ = (1 − ν1)
δ2

4
− δ2

4
θ0

′
a =

δ2

4
(1 − ν1 − α0+ν̃1+ − α0−ν̃1−) = 0.

We also have Ψ′J−1Ψ = a′J −1a − (1 − ν1)
2, which completes the proof of the

asymptotic distribution (4.4) in the case γ0 < 0.
Now consider the case γ0 ≥ 0. Let θ∗n be a sequence such that ‖θ∗n − θ0‖ ≤

‖θ̂n − θ0‖. By Proposition 2.1 (using Assumption A2 when γ0 = 0), we have

1√
n

n∑

t=1

1

σδ
t (θ

∗
n)

∂σδ
t (θ

∗
n)

∂ω
= o(1), a.s. (resp. in probability) as n→ ∞
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when γ0 > 0 (resp. when γ0 = 0). It can be deduced that, under the same

conditions,
√
n∂2γn(θ∗n)

∂ω∂θ = o(1), and
√
n(θ̂ − θ0)

′ ∂2γn(θ∗n)
∂θ∂θ′ (θ̂ − θ0) = o(1), which

entails that (7.14) still holds. The previous arguments show that (7.15) holds
with

Ω = E





0
d

α+

t (θ0)
d

α−

t (θ0)

dβ
t (θ0)



 =
1

1 − ν1





0
ν̃1+

ν̃1−
ν1/β



 and Ψ =




0
0
0



 .

The conclusion follows. 2

7.4 Asymptotic local powers

Proof of Proposition 5.1. The LAN of GARCH models has already been estab-
lished in the stationary case (see Drost and Klaassen (1997), Lee and Taniguchi
(2005)). The non stationary case will be studied under more general assumptions
in the proof of Proposition 5.2. 2

Proof of Proposition 5.2. Let the functions

g1(y) = 1 + y
f ′

f
(y) and g2(y) = 1 + 2y

f ′

f
(y) + y2

(
f ′

f

)′
(y).

Introduce also the notations

∆1,t(θ) =
1

σt(θ)

∂2σt(θ)

∂θ∂θ′
, ∆2,t(θ) =

1

δ2σ2δ
t (θ)

∂σδ
t (θ)

∂θ

∂σδ
t (θ)

∂θ′
.

A Taylor expansion of θn 7→ Λn,f (θn, θ0) around θ0 yields

(7.17) Λn,f (θn, θ0) = τ
′Sn,f(θ0) −

1

2
τ
′
In(θ∗n)τ + Rn,

where θ∗n is between θ0 and θn,

(7.18) Sn,f (θ0) =
−1√
n

n∑

t=1

g1(ηt)
1

δht

∂σδ
t (θ0)

∂θ
,

In(θ) =
1

n

n∑

t=1

g1

(
ǫt

σt(θ)

)
∆1,t(θ) −

1

n

n∑

t=1

g2

(
ǫt

σt(θ)

)
∆2,t(θ),

and Rn is a reminder which is displayed below. As in the proof of Lemma 7.4, it
can be seen that

Sn,f(θ0) =
−1

δ
√
n

n∑

t=1

g1(ηt)dt(ϑ0) + oP (1), dt(ϑ) =





0
d

α+

t

d
α−

t

dβ
t



 .

Using (5.1), it is easy to see that Eg1(η1) = 0, and thus Eg2
1(η1) = ιf . The

Lindeberg central limit theorem for martingale differences then shows that

(7.19) Sn,f (θ0)
d−→ N (0,If ) .
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Turning to the second term of (7.17) we first note that, similarly to (7.7),
∣∣∣∣∣
1

ht

∂σδ
t (θ0)

∂θ
− dt(ϑ0)

∣∣∣∣∣→ 0 in L2 as t→ ∞.

Moreover, integrations by parts show that, under (5.1),
∫
y2f ′′(y)dy =

−2
∫
yf ′(y)dy = 2. It follows that Eg2(η1) = −ιf . We thus have, using Eg1(η1) =

0,

In(θ0) =
1

n

n∑

t=1

−g2(ηt)

δ2
dt(ϑ0)d

′
t(ϑ0) + oPθ0

(1) → If in probability as n→ ∞.

Next, it can be shown that, as n→ ∞,

(7.20) ‖In(θ∗n) − In(θ0)‖ → 0 in probability.

Finally, we show the convergence in probability to zero of

Rn = υn

n∑

t=1

g1(ηt)
1

δht

∂σδ
t (θ0)

∂ω
− υn

√
nτ

′In(θ∗n)e′
1 −

1

2
nυ2

ne1In(θ∗n)e′
1.

Noting that ∂σδ
t (θ0)/∂ω is constant and that 1/ht converges to 0 in L2 by Propo-

sition 2.1, the first term in the right-hand side converges to zero in probability.
The two other terms can be handled similarly. The conclusion then follows from
(7.17)–(7.20). 2

Proof of Proposition 5.3. For simplicity, write P instead of Pn,0. In the proof
of Theorem 4.1 we have seen that

Tn =
1√
n

n∑

t=1

ut

σu
+ oP (1).

By (5.5) and (7.18), it follows that under P
(

Tn

Λn,f (θ0 + τ/
√
n, θ0)

)
d−→ N

{(
0

− ιf
8 τ̃

′I τ̃

)

,

(
1 c
c

ιf
4 τ̃

′I τ̃

)}

,

where τ̃
′ = (τ2, τ3, τ4), c = −τ

′Ed1(ϑ0)
δσu

Eu1g1(η1) = cf (θ0). Le Cam’s third lemma
(see e.g. van der Vaart, 1998, page 90) shows that

Tn
d−→ N (cf (θ0), 1) , under Pn,τ .

The conclusion easily follows. 2

Proof of Proposition 5.4. First consider the case γ0 ≥ 0. In the proof of (3.4)
it has been shown that

√
n(ϑ̂n − ϑ0) = −2

δ
I−1 1√

n

n∑

t=1

(1 − η2
t )dt + oP (1).

Moreover

Λn,f (θ0 + τ/
√
n, θ0) = − 1

δ
√
n

n∑

t=1

{
1 + ηt

f ′(ηt)

f(ηt)

}
τ̃
′dt −

ιf
8

τ̃
′I τ̃ + oP (1)
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with τ̃
′ = (τ2, τ3, τ4). Note also that, since Eη4

1 < ∞ implies y3f(y) → 0 as
|y| → ∞, we have

(7.21) E(1 − η2
t )

{
1 + ηt

f ′(ηt)

f(ηt)

}
= 2.

It follows that under P S
n,0

( √
n(ϑ̂n − ϑ0)

Λn,f

(
θ0 + τ√

n
, θ0
)
)

d−→ N
{(

03
−ιf
8 τ̃

′I τ̃

)

,

(
(κη − 1)I−1 τ̃

τ̃
′ ιf

4 τ̃
′I τ̃

)}

.

Le Cam’s third lemma (see e.g. van der Vaart, 1998, page 90) shows that

√
n(ϑ̂n − ϑ0)

d−→ N
(
τ̃ , (κη − 1)I−1

)
, under P S

n,τ .

We thus have shown that, in the case γ0 > 0, ϑ̂n is a regular estimator of ϑ0, in

the sense that
√
n
(
ϑ̂n − ϑ0 − τ̃/

√
n
)

converges to a distribution which does not

depend on τ̃ . More precisely

(7.22)
√
n
(
ϑ̂n − ϑ0 − τ̃/

√
n
)

d−→ N
(
0, (κη − 1)I−1

)
, under P S

n,τ .

When γ0 ≤ 0, the same arguments show that θ̂n is a regular estimator of θ0

√
n(θ̂n − θ0 − τ/

√
n)

d−→ N
(
0, (κη − 1)J −1

)
, under P S

n,τ .

In the case γ0 ≤ 0, we thus have (7.22) with I replaced by I∗. Now, noting

that T S
n = e

′
√

n(ϑ̂n−ϑ0)
σ̂

TS
, and by the same arguments, it follows that T S

n
d−→

N (0, 1) , under P S
n,0 and more generally T S

n
d−→ N (cτ , 1) , under P S

n,τ , where
cτ = (0, 1,−1, 0)τ /σTS . The conclusion easily follows. 2

Proof of Proposition 5.5. Recall that we assume γ0 ≥ 0. The case γ0 < 0 is
obtained similarly, replacing I by I∗. In view of Proposition 5.4 and (5.9), the
CS-test is asymptotically locally UMPU if and only if ce′

τ̃ = e′τ̃/σTS , which is
equivalent to (κη − 1)ιf = 4. By Corollary 1 in Francq and Zakoïan (2006), the
solutions of this equation are given by (5.10). 2

8. CONCLUDING REMARKS

Our framework covers the most widely used GARCH models in financial ap-
plications. Strictly stationary models are a special case but symmetry tests, and
asymptotically valid confidence intervals for the parameters (except the intercept)
can be built without this assumption. Surprisingly, while the asymptotic covari-
ance matrix of the estimators is sensitive to the stationarity of the underlying
process, an estimator which converges to the appropriate covariance matrix in ev-
ery situation can be built. Nevertheless, if the interest is on the whole parameter
vector, including the intercept, it is important to know whether the observations
come from a stationary process or not. To this aim we derived strict stationar-
ity/non stationarity tests which are very easy to implement.

Are our results extendable to higher-order models? It seems likely that for
particular extensions involving univariate stochastic recurrence equations for the
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volatility, the asymptotic theory derived in this paper can also be established. One
key problem, to show consistency, is to find stationary approximations to ǫ2t−j/ht

for j = 1, 2, . . .. For an ARCH-type model of order q it suffices to take j ≤ q.
Consider standard symmetric GARCH models for simplicity. In the GARCH(1,1)
case, the problem can be circumvented because

ǫ2t−j

ht
=
ht−1

ht
. . .

ht−j

ht−j+1
η2

t−j

can be approximated by a stationary process, in view of

ht−i

ht−i+1
≈ 1

αη2
t−i + β

for large t.

To have a glimpse of the considerable difficulties encountered when the orders
increase, consider a standard ARCH(2) model

ǫt =
√
htηt, ht = ω + α1ǫ

2
t−1 + α2ǫ

2
t−2.

We have, neglecting ω and for t large enough ht/ǫ
2
t−1 ≈ Xt and ht/ǫ

2
t−2 ≈ Yt

where

Xt = α1 +
α2

Xt−1

1

η2
t−1

, Yt = α2 + α1η
2
t−1Xt−1.

It is not difficult to show that the first stochastic recurrence equation admits a
strictly stationary solution (Xt) under mild assumptions on the density of ηt,
whatever the values of α1 and α2. From this solution we deduce a strictly sta-
tionary solution (Yt) to the second equation. We thus believe that, at least for
the consistency, the ARCH(2) model is amenable to a treatment similar to that
developed in this paper, but at the price of increasing technical difficulties. To
summarize, the ratio ht/ht−1 is, for large t, close to i) a constant in the ARCH(1)
case, ii) an iid process in the GARCH(1,1) case, iii) the stationary solution of
a nonlinear times series model in the ARCH(2) case. Whether or not this ap-
proach based on the resolution of nonlinear stochastic recurrence equations could
be extended, is left for further investigation.

References

Aknouche, A., Al-Eid, E.M. and A.M. Hmeid (2011) Offline and online weighted least
squares estimation of nonstationary power ARCH processes. Statistics and Probability
Letters 81, 1535–1540.

Aknouche, A. and E.M. Al-Eid (2012) Asymptotic inference of unstable periodic ARCH
processes. Statistical Inference for Stochastic Processes 15, 61–79.

Aue A., and L. Horváth (2011) Quasi-likelihood Estimation in Stationary and Nonstation-
ary Autoregressive Models With Random Coefficients. Statistica Sinica, 21, 973–999.

Berkes, I., Horváth, L. and P.S. Kokoszka (2003) GARCH processes: structure and esti-
mation. Bernoulli 9, 201–227.

Billingsley P. (1995) Probability and Measure. John Wiley, New York.

Bollerslev, T. (1986) Generalized autoregressive conditional heteroskedasticity. J. Economet-
rics 31, 307–327.



INFERENCE IN NON STATIONARY ASYMMETRIC GARCH 25

Bougerol, P. and Picard, N. (1992) Strict stationarity of generalized autoregressive pro-
cesses. Annals of Probability 20, 1714–1729.

Dickey, D. A. and W. A. Fuller (1979) Distribution of the estimators for autoregressive
time series with a unit root. Journal of the American Statistical Association 74, 427–
431.

Drost, F. C. and C. A. J. Klaassen (1997) Efficient estimation in semiparametric GARCH
models. Journal of Econometrics 81, 193–221.

Drost, F.C., Klaassen, C.A.J. and B.J.M. Werker (1997) Adaptive estimation in time-
series models. Annals of Statistics 25, 786–817.

Engle, R.F. (1982) Autoregressive conditional heteroskedasticity with estimates of the vari-
ance of the United Kingdom inflation. Econometrica 50, 987–1007.

Francq, C. and J.M. Zakoïan (2006) On efficient inference in GARCH processes. In: Bertail
P, Doukhan P, Soulier P. (eds) Statistics for dependent data. Springer, New-York: 305–
327.

Francq, C. and J-M. Zakoïan (2010) GARCH models: structure, statistical inference and
financial applications. Chichester: John Wiley.

Francq, C. and J.M. Zakoïan (2012) Strict stationarity testing and estimation of explosive
and stationary GARCH models. Econometrica 80, 821–861.

Glosten, L.R., Jaganathan, R. and D. Runkle (1993) On the relation between the ex-
pected values and the volatility of the nominal excess return on stocks. Journal of Finance
48, 1779–1801.

Hamadeh, T., and J.M. Zakoïan (2011) Asymptotic properties of LS and QML estimators
for a class of nonlinear GARCH Processes. Journal of Statistical Planning and Inference,
141, 488–507.

Higgins, M.L. and A.K. Bera (1992) A class of nonlinear ARCH models. International Eco-
nomic Review, 33, 137-158.

Hörmann, S. (2008) Augmented GARCH sequences: dependence structure and asymptotics.
Bernoulli 14, 543–561.

Hwang, S.Y. and T.Y. Kim (2004) Power transformation and threshold modeling for
ARCH innovations with applications to test for ARCH structure. Stochastic Processes
and Their Applications 110, 295–314.

Karlsen H.A., Myklebust, T. and D. Tjøstheim (2007) Nonparametric estimation in a
nonlinear cointegration type model. Annals of Statistics 35, 252–299.

Karlsen H.A. and D. Tjøstheim (2001) Nonparametric estimation in null recurrent time
series. Annals of Statistics 29, 372–416.

Jensen, S.T. and A. Rahbek (2004a) Asymptotic normality of the QMLE estimator of
ARCH in the nonstationary case. Econometrica 72, 641–646.

Jensen, S.T. and A. Rahbek (2004b) Asymptotic inference for nonstationary GARCH.
Econometric Theory 20, 1203–1226.

Klüppelberg, C., Lindner, A. and R. Maller (2004) A continuous time GARCH Process
driven by a Lévy process: stationarity and second order behaviour. Journal of Applied
Probability 41, 601–622.

Lee, S. and M. Taniguchi (2005) Asymptotic theory for ARCH-SM models: LAN and resid-
ual empirical processes. Statistica Sinica 15, 215–234.

Li, C.W. and W.K. Li (1996) On a double-threshold autoregressive heteroscedastic time se-
ries model. Journal of Applied Econometrics 11, 253–274.

Ling, S. and D. Li (2008) Asymptotic inference for a nonstationary double AR(1) model.
Biometrika 95, 257–263.

Ling, S. and M. McAleer (2003) Adaptative estimation in nonstationary ARMA models
with GARCH errors. The Annals of Statistics 31, 642–674.

Nelson, D.B. (1990) Stationarity and persistence in the GARCH(1,1) model. Econometric
Theory 6, 318–334.



26 C. FRANCQ AND J-M. ZAKOÏAN

Pan, J., Wang, H., and H. Tong (2008) Estimation and tests for power-transformed and
threshold GARCH models. Journal of Econometrics, 142, 352-378.

Phillips, P.C.B. and P. Perron (1988) Testing for a Unit Root in Time Series Regression
Biometrika, 75, 335–346.

Rabemananjara, R. and J-M. Zakoïan (1993) Threshold ARCH Models and Asymmetries
in Volatility. Journal of Applied Econometrics 8, 31–49.

van der Vaart, A.W. (1998) Asymptotic statistics. Cambridge University Press, United
Kingdom.

Appendices

APPENDIX A: DENSITIES ENSURING LOCAL OPTIMALITY OF THE
ASYMMETRY TEST

Figure 2 shows densities (5.10) for different values of a. For such densities, the
test (4.7) is asymptotically locally UMPU for the testing problem (4.6).

APPENDIX B: NUMERICAL ILLUSTRATIONS

We first simulated N = 1, 000 independent trajectories of size n = 500, n =
2, 000 and n = 4, 000 of an asymmetric GARCH(1,1) model, with a parameter
of the form θ0 = (0.1, α0+, α0−, 0.8) and the standardized Student distribution
with 7 degrees of freedom for ηt. With such parameters, we have γ0 = 0 for
α0+ = α0− = 0.2575 or for α0+ = 0.22 and α0− = 0.2971, in particular. Table 1
studies the finite sample properties of the stationarity and asymmetry tests based
respectively on the statistics Tn and T S

n . The first rows of the table concern
tests applied to a symmetric model α0+ = α0−, and the last rows concern the
asymmetric model.

The empirical size of a test of theoretical level α = 5%, over N = 1, 000
independent replications of the null hypothesis, belongs to the interval [3.6%,
6.4%] with probability 95%. In view of this basic result, one can consider that
the error of first kind of the asymmetry test is well controlled. Indeed, except for
three values of α0− when n = 500 (displayed in bold-face in the table), in the first
part of Table 1 the relative frequency of rejection of HS

0 is always between the
significance bounds 3.6% and 6.4%, regardless of the value of γ0. The empirical
frequency of rejection of the stationarity test under the null, displayed in the rows
Hγ

0 of the two gray columns, is also quite satisfactory when n > 500. Looking at
the second part of Table 1, one can note that the asymmetry test behaves as
expected under the alternative. Indeed the frequency of rejection of HS

0 increases
when α0− moves away from α0+ = 0.22 and when the sample size n increases.
As expected from the asymptotic study, as n → ∞, the frequency of rejection of
Hγ

0 tends to zero when γ0 < 0 (on the left of the gray columns) and tends to one
when γ0 > 0 (on the right of the gray columns).

We then considered applications to financial series. The strict stationarity and
asymmetry tests have been applied to daily returns of various daily stock in-
dices. We do not report the detailed results of the tests, since they always lead
to the same conclusions for this kind of series. The strict stationarity can never
be rejected because the value of Tn is always very small when computed on the
returns of stock indices. Moreover, a significant negative value of T S

n , indicating
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Table 1

Finite sample behaviors of the stationarity test based on Tn and of the asymmetry test based
on T S

n : relative frequency of rejection of the hypotheses H
γ
0 : γ0 < 0 and HS

0 : α0+ = α0− at the
nominal level α = 5% for a symmetric GARCH(1,1) (for which α0+ = α0+ = 0.2575

corresponds to γ0 = 0) and for an asymmetric GARCH(1,1) (with α0+ = 0.22, and for which
α0− = 0.2971 corresponds to γ0 = 0). The unexpected frequencies of rejection are displayed in

bold.

Model with α0+ = α0+

α0−

n Null 0.18 0.20 0.22 0.2575 0.28 0.30 0.31
500 H

γ
0 0.0 0.0 0.1 7.3 28.4 62.4 76.2

HS
0 4.5 6.0 6.6 5.6 8.0 7.7 6.1

2, 000 H
γ
0 0.0 0.0 0.0 5.8 67.7 99.1 100.0

HS
0 6.0 5.1 4.5 5.3 4.4 5.2 5.0

4, 000 H
γ
0 0.0 0.0 0.0 4.0 91.8 100.0 100.0

HS
0 6.0 5.3 4.5 5.2 5.7 6.4 4.2

Model with α0+ < α0−

α0−

n Null 0.23 0.26 0.29 0.2971 0.3 0.32 0.34
500 H

γ
0 0.1 0.9 4.8 7.8 7.0 15.0 25.5

HS
0 5.1 7.4 13.9 14.0 16.2 18.4 21.0

2, 000 H
γ
0 0.0 0.0 2.8 6.3 7.0 26.8 59.0

HS
0 7.1 13.8 29.8 39.0 39.1 52.5 66.2

4, 000 H
γ
0 0.0 0.0 1.9 4.1 5.6 42.4 83.7

HS
0 6.6 26.2 55.2 59.5 65.9 82.1 91.7

Table 2

Test statistic Tn with the p−value of the nonstationarity test, and asymmetry test
statistic T S

n with its p−value for stock returns.

α̂n+ α̂n− β̂n Tn p-val T S
n p-val

ICGN 0.010 (0.022) 0.397 (0.190) 0.870 (0.052) -2.412 0.008 -2.083 0.037
MCBF 0.030 (0.031) 0.021 (0.021) 0.977 (0.011) 0.039 0.515 0.189 0.850
KVA 0.007 (0.042) 0.278 (0.133) 0.928 (0.026) 0.547 0.708 -1.946 0.052
BTC 0.188 (0.183) 0.812 (0.425) 0.771 (0.075) -0.653 0.257 -1.392 0.164
CCME 0.492 (0.155) 0.364 (0.138) 0.744 (0.046) 0.283 0.611 0.670 0.503

the presence of a leverage effect, is often observed. Different conclusions can be
obtained for individual stock returns. For comparison purposes, we took the series
considered in Table VII of FZ. We estimated asymmetric GARCH(1,1) models
on the daily series of Icagen (NasdaqGM: ICGN), Monarch Community Bancorp
(NasdaqCM: MCBF), KV Pharmaceutical (NYSE: KV-A), Community Bankers
Trust (AMEX: BTC) and China MediaExpress (NasdaqGS: CCME)3. The sta-
tionarity results, shown in Table 2, are in accordance with those obtained in this
paper: we cannot reject explosiveness for four out of five assets. Interestingly, the
symmetry assumption cannot be rejected at the 5% level for these (possibly) ex-
plosive assets. This is very different from the conclusion generally obtained for
stationary series (the leverage effect). For the (probably) stationary asset, ICGN,
the leverage effect is present.

3The data range from May 31, 2007, August 28, 2007, March 31, 2006, June 29, 2007, and
March 31, 2009, respectively, to February 7, 2011.
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APPENDIX C: AN EXPLICIT EXPRESSION FOR I

To derive the explicit form of I in (3.4), we introduce additional notations. Let
a0+(ηt) = α0+(η+

t )δ + β0, a0−(ηt) = α0−(−η−t )δ + β0, and for i = 1, 2,

νi = E

(
β0

a0(ηt)

)i

, νi+ = E

(
β0

a0+(ηt)

)i

, νi− = E

(
β0

a0−(ηt)

)i

.

Lemma C.1. Under the assumptions of Theorem 3.1, we have I = (Iij) where,

I11 =
4

δ2
(1 − 2ν1+ + ν2+)(1 − ν1) + 2 (ν1+ − ν2+) (1 − ν1+)

α2
0+(1 − ν1)(1 − ν2)

,

I12 =
4

δ2
(ν1+ − ν2+)(1 − ν1−) + (ν1− − ν2−)(1 − ν1+)

α0+α0−(1 − ν1)(1 − ν2)
= I21,

I13 =
4

δ2
ν2(1 − ν1+) + ν1+ − ν2+

β0α0+(1 − ν2)(1 − ν1)
= I31,

I33 =
4

δ2
ν2(1 + ν1)

β2
0(1 − ν2)(1 − ν1)

,

and I22 (resp. I23 = I32) is obtained by replacing α0+ by α0− and the νi+ by νi−
in I11 (resp. I13).

Proof. For ease of notation we will omit the index 0 for the true parameters and
functions in this proof. We have

(C.1) α+d
α+

t + α−d
α−

t =
∞∑

j=1




j−1∏

k=1

β

a(ηt−k)




(

1 − β

a(ηt−j)

)

= 1 a.s.

Letting

ν̃i+ = E

(
(η+

t )δ

a(ηt)

)i

= E

(
(η+

t )δ

a+(ηt)

)i

, ν̃i− = E

(
(−η−t )δ

a(ηt)

)i

= E

(
(−η−t )δ

a−(ηt)

)i

we obtain

E
(
d

α+

t

)
=

ν̃1+

1 − ν1
, E

(
d

α−

t

)
=

ν̃1−
1 − ν1

.(C.2)

Noting that

α+E
(η+

t )δ

a2(ηt)
+
ν+
2

β
=
ν+
1

β
,

we have

E
(η+

t )δ

a2(ηt)
=
ν1+ − ν2+

βα+
.

It follows that

E
(
d

α+

t

)2
= ν̃2+

∞∑

j=1

νj−1
2 + 2

∞∑

j=1

∞∑

h=1

νj−1
2 βE

(η+
1 )δ

a2(η1)
νh−1
1 ν̃1+

=
ν̃2+

1 − ν2
+ 2

1

1 − ν2

1

1 − ν1

ν1+ − ν2+

α+
ν̃1+

=
ν̃2+α+(1 − ν1) + 2 (ν1+ − ν2+) ν̃1+

α+(1 − ν1)(1 − ν2)
.
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Symmetrically

E
(
d

α−

t

)2
=

ν̃2−α−(1 − ν1) + 2 (ν1− − ν2−) ν̃1−
α−(1 − ν1)(1 − ν2)

.

Moreover,

Ed
α+

t d
α−

t =
∞∑

j=1

νj−1
2 βE

(
η+
1

)δ

a2(η1)

∞∑

h=1

νh−1
1 ν̃1− +

∞∑

j=1

νj−1
2 βE

(
−η−1

)δ

a2(η1)

∞∑

h=1

νh−1
1 ν̃1+

=
α−(ν1+ − ν2+)ν̃1− + α+(ν1− − ν2−)ν̃1+

α+α−(1 − ν1)(1 − ν2)
.

Noting that

α+ν̃1+ + ν+
1 = 1,

α+ν̃1+ + α−ν̃1− + ν1 = 1

2 − ν1+ − ν1− = 1 − ν1,

α2
+ν̃2+ + ν2+ + 2(ν1+ − ν2+) = 1

(ν1+ − ν2+) + (ν1− − ν2−) = ν1 − ν2.

we obtain the announced formulas for I11,I12 and I22.
Now

dβ
t =

∞∑

j=2

(j − 1)




j−1∏

k=1

β

a(ηt−k)



 α+(η+
t−j)

δ + α−(−η−t−j)
δ

βa(ηt−j)
.

Noting that

E

(
α+(η+

1 )δ + α−(−η−1 )δ

a(η1)

)

= E

(
1 − β

a(η1)

)
= 1 − ν1,

E

(
α+(η+

1 )δ + α−(−η−1 )δ

a(η1)

)2

= E

(
1 − β

a(η1)

)2

= 1 + ν2 − 2ν1,

and

E
α+(η+

1 )δ + α−(−η−1 )δ

a2(η1)
=
ν1 − ν2

β
,

we have

E
(
dβ

t

)
=

ν1

(1 − ν1)β
,(C.3)

E
(
dβ

t

)2
=

∞∑

j=2

(j − 1)2νj−1
2

1 + ν2 − 2ν1

β2

+2
∞∑

j=2

∞∑

h=1

(j − 1)(j + h− 1)νj−1
2

ν1 − ν2

β
νh−1
1

1 − ν1

β

=
(1 − 2ν1 + ν2)ν2(ν2 + 1)

β2(1 − ν2)3

+2
(1 − ν1)(ν1 − ν2)

β2

∞∑

h=1

ν2(ν2 + 1 + h− ν2h)

(1 − ν2)3
νh−1
1 ,



30 C. FRANCQ AND J-M. ZAKOÏAN

which, in view of I = 4
δ2Ed1d

′
1, gives the formula for I33. Noting that

E
(η+

1 )δ
{
α+(η+

1 )δ + α−(−η−1 )δ
}

a2(η1)
= ν̃1+ − ν1+ − ν2+

α+
=

1 − 2ν1+ + ν2+

α+
,

we also have

E
(
d

α+

t dβ
t

)
=

∞∑

j=2

(j − 1)νj−1
2

1 − 2ν1+ + ν2+

βα+

+
∞∑

j=1

∞∑

h=1

(j + h− 1)νj−1
2

ν1+ − ν2+

α+
νh−1
1

1 − ν1

β

+
∞∑

j=2

∞∑

h=1

(j − 1)νj−1
2

ν1 − ν2

β
νh−1
1 ν̃1+

=
ν2(1 − 2ν1+ + ν2+)

βα+(1 − ν2)2

+
(1 − ν1)(ν1+ − ν2+)

βα+

{ ∞∑

h=1

(
ν2

(1 − ν2)2
+ h

1

1 − ν2

)
νh−1
1

}

+
(ν1 − ν2)ν̃1+

β

{ ∞∑

h=1

ν2

(1 − ν2)2
νh−1
1

}

=
ν2(1 − 2ν1+ + ν2+)

βα+(1 − ν2)2

+
(1 − ν1)(ν1+ − ν2+)

βα+

{
ν2

(1 − ν2)2
1

(1 − ν1)
+

1

1 − ν2

1

(1 − ν1)2

}

+
(ν1 − ν2)(1 − ν1+)

βα+

{
ν2

(1 − ν2)2
1

(1 − ν1)

}
,

which gives the formula for I13. 2

APPENDIX D: PROOFS

D.1 Proof of Theorem 3.2

The convergence results in i) follow from Taylor expansions of the functions

κ̂η = κη(θ̂n) and 1
n

∑n
t=1

1
σ2

t (θ̂n)

∂σ2
t

∂θi

∂σ2
t

∂θj
(θ̂n) around θ0, and the ergodic theorem

together with the consistency of θ̂n. š
Now consider the case ii). For some θ∗ = (ω∗, ϑ∗)′ between θ̂n and θ0 we have

(D.1) κ̂η =
1

n

n∑

t=1

η4
t − 4

δn

n∑

t=1

ǫ4t
σ4

t (θ
∗)

1

σδ
t (θ

∗)

∂σδ
t (θ

∗)
∂θ′

(θ̂n − θ0) :=
1

n

n∑

t=1

η4
t +Rn.

Write dt(ϑ) = (d
α+

t (ϑ), d
α−

t (ϑ), dβ
t (ϑ))′. Let the matrix norm defined by ‖A‖ =∑ |aij | with standard notations. By Proposition 2.1 and already given arguments,

for some ρ ∈ (0, 1),

|Rn| ≤ K

n

n∑

t=1

η4
t

h
4/δ
t

σ4
t (θ

∗)

(
ρt|ω̂n − ω0| + ‖dt(ϑ

∗)‖‖ϑ̂n − ϑ0‖
)

= o(1), a.s.
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Hence the first part of ii) is proven. Now we have, using (7.13),

nĴω,α+
≤ 4

δ2

n∑

t=1

1

α̂n+

ht

σδ
t (θ̂n)

∑t
j=1 β̂

j−1
n

ht
≤ K

n∑

t=1

ht

σδ
t (θ̂n)

ρt,(D.2)

for ρ ∈ (0, 1) when n is large enough, by Proposition 2.1 i). It follows that
nĴω,α+

= O(1) a.s. More generally nĴω,ϑ = O(1) a.s. Moreover, we have

nĴω,ω ≥ 1/σ4
1(θ̂n) > 0. Thus we have shown that

Ĵϑ,ωĴ −1
ω,ωĴω,ϑ = o(1), a.s.

Now we turn to Ĵϑ,ϑ. Considering the top-left term, a Taylor expansion around
θ0 gives

Ĵα+,α+
=

4

δ2
1

n

n∑

t=1



 1

σδ
t (θ̂n)

t∑

j=1

β̂j−1
n (ǫ+t−j)

δ




2

=
4

δ2
1

n

n∑

t=1

{
d

α+

t (ϑ0)
}2

(D.3)

+
4

δ2
1

n

n∑

t=1




{

1

σδ
t (θ)

∂σδ
t

∂α+
(θ0)

}2

− {dα+

t (ϑ0)
}2



+ Sn,

where, for θ∗ such that ‖θ0 − θ∗‖ ≤ ‖θ0 − θ̂n)‖,

|Sn|

≤ K

n

n∑

t=1

(∑t
j=1(β

∗)j−1(ǫ+t−j)
δ

σδ
t (θ

∗)

)2 {
ρt|ω̂n − ω0| + ‖dt(ϑ

∗)‖‖ϑ̂n − ϑ0‖
}

+
K

n

n∑

t=1

(∑t
j=1(β

∗)j−1(ǫ+t−j)
δ

σδ
t (θ

∗)

)(∑t
j=1(j − 1)(β∗)j−2(ǫ+t−j)

δ

σδ
t (θ

∗)

)

|β̂n − β0|

= o(1), a.s.

by already used arguments. Moreover, the second term in the right-hand side of
(D.4) converges to 0 a.s. by (7.7), while the first term converges to I11. We thus
have shown that Ĵα+,α+

a.s. converges to I11. The other two terms in Ĵϑ,ϑ can
be handled similarly, which completes the proof of ii).

Turning to iii), we note that ∂σδ
t (θ

∗)/∂ω ≤ K for n large enough, since β0 < 1.
Moreover, σδ

t (θ
∗) ≥ ω∗ + α|ǫt−1|δ. Therefore (D.1) continues to hold with |Rn|

bounded by

K

n

n∑

t=1

η4
t

(
ht

σ2
t (θ

∗)

)2 1

ω∗ + α|ǫt−1|δ
+
K

n

n∑

t=1

η4
t

(
ht

σ2
t (θ

∗)

)2

‖dt(ϑ
∗)‖

×‖ϑ̂n − ϑ0‖.

Therefore |Rn| = oP (1) by Proposition 2.1 iii), the weak consistency of ϑ̂n and
the existence of moments for dt(ϑ

∗) and ht/σ
δ
t (θ

∗). Hence κ̂η → κ in probability.
By arguments already used we have nĴω,ϑ = OP (1), Ĵϑ,ωĴ −1

ω,ωĴω,ϑβ = oP (1), and
the right-hand side of (D.4) converges to I(1, 1) in probability. 2
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D.2 Proof of Theorem 6.1

Note that ζ̂n = arg minζ∈ΥQn(ζ), where

Qn(ζ) =
1

n

n∑

t=1

η2
t






(
h

δ/δ0
t

σδ
t (ζ)

)2/δ

− 1




+ log

(
σδ

t (ζ)

h
δ/δ0
t

)2/δ

= On(δ, ϑ) +Rn(ζ)

where

On(δ, ϑ) =
1

n

n∑

t=1

η2
t

{
1

v
2/δ
t (δ, ϑ)

− 1

}

+ log v
2/δ
t (δ, ϑ),

vt(δ, ϑ) =
∞∑

j=1

α+(η+
t−j)

δ + α−(−η−t−j)
δ

{a0(ηt−j)}δ/δ0

j−1∏

k=1

β

{a0(ηt−k)}δ/δ0
,

and

Rn(ζ) =
1

n

n∑

t=1

η2
t






(
h

δ/δ0
t

σδ
t (ζ)

)2/δ

− 1

v
2/δ
t (δ, ϑ)




+ log

(
σδ

t (ζ)

h
δ/δ0
t vt(δ, ϑ)

)2/δ

.

To prove the consistency, in the cases γ0 > 0 and γ0 = 0, it will be sufficient to
establish Lemmas D.1, D.2 and D.3 below.

Let Υ0 = {ζ ∈ Υ : β < e
δ
δ0

γ0} and Υp = {ζ ∈ [0,∞)5 : β < ‖1/aδ/δ0
0 (η1)‖−1

p }.

Lemma D.1. i) When γ0 > 0, for any ζ ∈ Υ0 the process vt(δ, ϑ) is stationary
and ergodic. Moreover, for any compact Υ∗

0 ⊂ Υ0,

sup
ζ∈Υ∗

0

∣∣∣∣∣
σδ

t (ζ)

h
δ/δ0
t

− vt(δ, ϑ)

∣∣∣∣∣ → 0 a.s. as t→ ∞.

Finally, for any ζ /∈ Υ0 it holds that σδ
t (ζ)/h

δ/δ0
t → ∞ a.s.

ii) When γ0 = 0, for any ζ ∈ Υp with p ≥ 1, the process vt(δ, ϑ) is stationary
and ergodic. Moreover, for any compact Υ∗

p ⊂ Υp,

sup
ζ∈Υ∗

p

∣∣∣∣∣
σδ

t (ζ)

h
δ/δ0
t

− vt(δ, ϑ)

∣∣∣∣∣ → 0 in Lp.

Proof. When γ0 > 0, for ζ ∈ Υ0, by the Cauchy root test, the series vt(δ, ϑ) in
a.s. finite. As a measurable function of {ηu, u < t}, the process vt(δ, ϑ) is thus
stationary and ergodic. When γ0 = 0, since ‖vt(δ, ϑ)‖p < ∞ for ζ ∈ Υp, vt(δ, ϑ)
is a.s. finite and the stationarity and ergodicity follow.

We have, keeping the notation of the proof of Lemma 7.1,

σδ
t (ζ)

h
δ/δ0
t

=
t∑

j=1

βj−1






j∏

k=1

ht−k

ht−k+1






δ/δ0
zt−j

h
δ/δ0
t−j

.

In view of (7.4) we have

(D.4)

{
ht−k

ht−k+1

}δ/δ0

≤ 1

a0(ηt−k)δ/δ0
,

and the conclusion follows from arguments already used. 2
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Lemma D.2. If ζ ∈ Υ0, we have

vt(δ, ϑ) = 1, a.s. iff (δ, ϑ) = (δ0, ϑ0).

Proof. We have

(D.5) vt(δ, ϑ)a0(ηt−1)
δ/δ0 = βvt−1(δ, ϑ) + α+(η+

t−1)
δ + α−(−η−t−1)

δ.

Thus, vt(δ, ϑ) = 1 a.s. iff

β + α+(η+
t−1)

δ + α−(−η−t−1)
δ − {β0 + α0+(η+

t−1)
δ0 + α0−(−η−t−1)

δ0}δ/δ0 = 0.

Straightforward algebra shows that the function x 7→ β + α+x − {β0 +
α0+x

δ0/δ}δ/δ0 , has at most two zeroes on (0,∞), except when δ = δ0, β = β0

and α+ = α0+. Similarly, the function x 7→ β + α−x − {β0 + α0−xδ0/δ}δ/δ0 , has
at most two zeroes on (0,∞), except when δ = δ0, β = β0 and α− = α0−. By
Assumption A3 we can conclude that (δ, ϑ) = (δ0, ϑ0). 2

To handle Rn(ζ) we prove the following lemma. Let Υ̌ be the compact set of
the (δ, ϑ)’s such that ζ ∈ Υ.

Lemma D.3. Suppose that P (ηt = 0) = 0. Then, for any k > 0

E sup
(δ,ϑ)∈Υ̌

(
1

vt(δ, ϑ)

)k

<∞ and E sup
ζ∈Υ

(
h

δ/δ0
t

σδ
t (ζ)

)k

<∞.

Proof. Let ε > 0 such that p(ε) := P (|ηt| ≤ ε) ∈ [0, 1). If |ηt−1| > ε, since the
sum vt(δ, ϑ) is greater than its first term, we have,

1

vt(δ, ϑ)
≤ a

δ/δ0
0 (ηt−1)

α+(η+
t−1)

δ + α−(−η−t−1)
δ

≤
(

max(α0+, α0−)

αδ0/δ
+

β0

αδ0/δεδ0

)δ/δ0

:= K(ε).

Iterating this method, we can write

sup
(δ,ϑ)∈Υ̌

1

vt(δ, ϑ)
≤ K(ε)

∞∑

i=1

1l|ηt−1|≤ε . . . 1l|ηt−i+1|≤ε1l|ηt−i|>ε

(
a0(ε)

β

)i−1

.

where a0(ε) = max(α0+, α0−)ǫδ0 + β0. The first result of the lemma follows by
the arguments given in the proof of Lemma 7.3.

Similarly, we have for |ηt−1| > ε,

h
δ/δ0
t

σδ
t (ζ)

≤ {ω0 + a0(ηt−1)ht−1}δ/δ0

ω + h
δ/δ0
t−1 {α+(η+

t−1)
δ + α−(−η−t−1)

δ} + βσδ
t−1(ζ)

≤
(

ω0

ωδ0/δ
+

α

αδ0/δ
+

β0

αδ0/δεδ0

)δ/δ0

:= H(ε),
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and for |ηt−1| ≤ ε and |ηt−2| > ε,

h
δ/δ0
t

σδ
t (ζ)

≤
(

ω0

ωδ0/δ
+
a0(ε)

βδ0/δ
H(ε)

)δ/δ0

.

The conclusion follows by the arguments used for Lemma 7.3. 2

Now we turn to the asymptotic normality. Let, for η ∈ R,

G(η) = log |η|
{

1 − β0

a0(η)

}
− 1

δ
log{a0(η)},

with by convention G(0) = − log(β0)/δ, and let

dδ
t =

∞∑

j=1

G(ηt−j)
j−1∏

k=1

β0

a0(ηt−k)
.

Since E log{β0/a0(η1)} < 0, by the Cauchy root test, the process dδ
t is stationary

and ergodic.

Lemma D.4. Assume γ0 ≥ 0 and Eη4
t <∞. We have

1√
n

n∑

t=1

∂ℓt
∂ζ ′

(ζ0)
d→ N {0, (κη − 1)Iδ} as n→ ∞,

where, letting D′
t =

(
dδ

t , d
α+

t , d
α−

t , dβ
t

)
, Iδ = 4

δ2ED1D
′
1 is nonsingular.

Proof. We have

∂ℓt(ζ)

∂δ
=

2

δ

{

1 − ǫ2t
σ2

t

}{
1

σδ
t

∂σδ
t

∂δ
− log σt

}

.

Moreover,

(D.6)
∂σδ

t

∂δ
= α+(ǫ+t−1)

δ log(ǫ+t−1) + α−(−ǫ−t−1)
δ log(−ǫ−t−1) + β

∂σδ
t−1

∂δ
,

with by convention log(0) × 0 = 0. Thus, computation shows that, at ζ0,

Zt :=
1

σδ0
t

∂σδ
t

∂δ
− log σt = G(ηt−1) +

β0

a0(ηt−1)
Zt−1 +Wt,

with

Wt =

(

1 − σδ0
t

a0(ηt−1)σ
δ0
t−1

)
1

σδ0
t

∂σδ
t

∂δ
− 1

δ0
log

(
σδ0

t

a0(ηt−1)σ
δ0
t−1

)

= − ω0

a0(ηt−1)σ
δ0
t−1

1

σδ0
t

∂σδ
t

∂δ
− 1

δ0
log

(

1 +
ω0

a0(ηt−1)σ
δ0
t−1

)

.(D.7)

We will show that

(D.8) Wt → 0 in Lp as t→ ∞.
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First note that the second term in the right-hand side of (D.7) converges to 0 in
Lp, by Proposition 2.1. Now in view of (D.6) we have

1

σδ
t

1

σδ
t−1

∂σδ
t

∂δ
(ζ0) =

t∑

j=1

βj−1
0

ht−1

ht






j∏

k=2

ht−k

ht−k+1






2

u(ηt−j) log(|ǫt−j |)
ht−j

,

where u(x) = α0+(x+)δ0 + α0−(−x−)δ0 . The first term in the right-hand side of
(D.7) is thus bounded, in absolute values, by

Mt =
ω0

a2
0(ηt−1)

∞∑

j=1






j∏

k=2

β0

a2
0(ηt−k)





u(ηt−j){| log(ht−j)| + | log |ηt−j ||}

ht−j
.

Write Mt =
∑t0

j=1Mjt +
∑∞

j=t0+1Mjt. Note that Mjt → 0 because {| log(ht−j)|+
| log |ηt−j ||}/ht−j → 0 in Lp as t → ∞, by Proposition 2.1. Hence

∑t0
j=1Mjt → 0

in Lp as t→ ∞. Moreover, it can be noted that {| log(ht−j)|+ | log |ηt−j ||}/ht−j ≤
K(1 + | log |ηt−j ||). Thus

∞∑

j=1

Mjt ≤ K
∞∑

j=1






j∏

k=2

β0

a2
0(ηt−k)




u(ηt−j)(1 + | log |ηt−j ||).

Moreover, under A4,
∥∥∥∥∥∥

∞∑

j=1

Mjt

∥∥∥∥∥∥
p

≤ K
∞∑

j=1

∥∥∥∥
β0

a2
0(η1)

∥∥∥∥
j−1

p

‖u(η1)(1 + | log |η1||)‖p <∞.

It follows that
∑∞

j=t0+1Mjt → 0 in Lp as t0 → ∞. The convergence in (D.8) is
thus established.

On the other hand, (dδ
t ) is the strictly stationary and non anticipative solution

of the stochastic recurrence equation

dδ
t = G(ηt−1) +

β0

a0(ηt−1)
dδ

t−1.

It follows that

Zt − dδ
t =

β0

a0(ηt−1)
(Zt−1 − dδ

t−1) +Wt.

and thus

Zt − dδ
t =

t∑

j=1






j∏

k=2

β0

a0(ηt−k)




Wt−j.

In view of (D.8) and arguments already used it follows that

(D.9) Zt − dδ
t → 0 in Lp as t→ ∞.

The conclusion straightforwardly follows.
Finally, we show that Iδ is nonsingular. Suppose there exists x =

(x1, x2, x3, x4)
′ ∈ R

4 such that x′Iδx = 0. By arguments given in the proof of
Lemma 7.4, it follows that

x1G(ηt−1)a0(ηt−1) + x2(η
+
t−1)

δ + x3(−η−t−1)
δ = K, a.s.



36 C. FRANCQ AND J-M. ZAKOÏAN

where K is a constant. Letting L(η) = x1G(η)a0(η) + x2(η
+)δ + x3(−η−)δ −K,

we find that for η > 0, the derivative

L′(η) = (η)δ−1

{

x2δ + x1α+ log

(
(η)δ

β0 + α0+(η)δ

)}

cancels at most once on (0,∞), except if x1 = x2 = 0. It follows that the equation
L(η) = 0 has at most two solutions on (0,∞) if (x1, x2) 6= (0, 0). The same
arguments apply on (−∞, 0). In view of Assumption A3, we conclude that Iδ is
nonsingular. 2
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Figure 2. Densities (5.10) of ηt for which the asymmetry test (4.7) is asymptotically
optimal.


