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Decision Making under Risk with Continuous States of Nature

Jiti Mazurek

Abstract: Many real-world decision making situation arecasated with uncertainty regarding future state of
the World. Traditionally, in such situation diffete(and discreteycenarios— future states of nature — are
considered. This domain of decision making is dethi@s decision making under risk. However, limitatio
some set of discrete scenarios is somewhat unheasréuture reality might not choose one of congde
scenarios, but some other scenario or a scenabetimeen. The aim of this paper is to propose sematural
approach with continuum states of nature, wheres@harios expressed by their probability densitycfion
from some reasonable interval are taken into cenatibn. The approach is illustrated by a numerocample
and is compared with the corresponding decisionimgalnder risk with discrete states of nature.
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1. Introduction

Many real-world decision making situation in econgsn politics, environmental
protection, etc. are associated with uncertaingarging future state of the World. When the
probabilities of future states of the World (soledl‘'scenarios‘) are known, then the problem
is referred aslecision making under riskVhen the probabilities of scenarios are not known
then the problem is referred decision making under uncertaintyo deal with the both
situations theexpectedutility function approachwas proposed already by von Neumann and
Morgenstern (1944): the best alternative is theraditive with the highest expected value of a
utility function over all scenarios. Later, thispapach was enriched by a notion ofisk
aversion see Arrow (1971) or Kahnemann and Tversky (19Z8Y today decision making
under risk or uncertainty has numerous applicationgany areas of human action, see for
example Johnson and Busemayer (2010) or Abdelktoal. (2007).

Now, let's consider economic situation at the bemig of the year 2012 from a point
of view of a small enterprise. Will the world exjggrce another recession or not? Should they
hire new employees and expand, or should theyraihe into cost-saving regime?

Traditionally, in such situation different (and cliste) scenarios— future states of
nature — are considered. Imagine that one possdaeario would be small economic growth
(say 1 % of GDP), the second stagnation (0 % of zBRd the third small decline (-1 % of
GDP). Each scenario can be assigned its probaldity by some financial expert). The best
alternative for firm’s behaviour can be evaluateshf the utility function for all alternatives
under all scenarios, with the best alternative edhg the highest value. This approach is
called thedecision making under risk with discrete statesaitire

However, one needn’t limitate his thoughts to jilste scenarios (cases), which are
often somewhat artificial (why we use exactly 1&nd not, let's say, 0.87 %?). More natural
approach would be to evaluate all scenarios betweere reasonable limits, say between -1
% to +1 % of GDP growth in the next year. This aggh can be called tlieecision making
under risk with continuous states of nature

The aim of this article is to formulate the deamsimaking under risk with continuum
states of nature, illustrate its use on a numeesaimple, and to compare it with decision
under risk with discrete states of nature.

The paper is organized as follows: Section 2 degisnaking under risk with discrete
states of nature is briefly described, in Sectian®ntinuum of states of nature is introduced
and a numerical example is provided in Sectionghdlsions close the article.



2. Decision making under risk with discrete states of nature

Let S to S, be future states of nature with probabilitego p,, such thatp =20 and

z p, =1; let A; to A¢ be alternatives and; pay-offs fori-th alternative undey-th state of
i=1

nature. All this information can be described idezision matrixsee Table 1). Furthermore,
it is supposed that higher pay-offs are considédretier’.

Table 1. A general form of a decision matrix in a decisiaking under risk.
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A utility function of an alternative under all states of nature (all scenarios) ismyiae
(Ramik and Perzina, 2008):

E, zipm/ij (1)

Hence, each alternatijeis assigned the number (expected valbg)and the best
alternative is that with the maximum expected value

maxE, = ; p (2)
A numerical example of this approach is provide&attion 4.

3. Decision making under risk with continuous states of nature

Let S(X be a continuum of states of natureJ[a b], let ¢, (x) be a pay-off

function for thei-th alternative and lgi(x) be a probability density function of stat8£ x)
satisfying the following conditions:

p(x) =0 for xO[a, b] (3a)
T p(x)dx=1 (3b)

Then, by analogy with the utilitily function (1), @a alternativej is assigned the
number (expected value of a utility function) oadrscenarios:

E; = p(3v, (% d> )

Again, the best alternative attains the maximuneetgd value (4).



The venue of this approach is that we don’t havaéak our considerations into small
number of (somewhat artificially and deliberatelyosen) cases, as we are considering all
possibilities (future scenarios) bounded by sommetsia andb. Secondary, we can focus on
arbitrary subinterval of interest between limatandb (if there is a good reason to narrow the
limits), which is not possible with discrete sceosar

The weakness of this approach rests in the factwieahave to describg(x) and

v;(X) as functions, which might be difficult in practiespecially for the probability density
function due to constraints (3a) and (3b). Howeveomplicated functions can be
approaximated by simpler ones, such as linear, rqtiad exponential or logarithmic
functions.

4. A numerical example

In this section an illustrative example on bothrapphes is provided. We turn back to
the example in Introduction: Let there be scenaniik the different economic growth (from
0 % to 4 % GDP) and three alternative strategiesoaie enterprise with the corresponding
pay-offs. The goal is to find the best strategy umgien assumptions.

At first we consider the discrete states of natust:S; to S be (distinct) future states
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of nature with probabilitieg, to ps, such thatp = 0 and Z p =1, let A, to Az be alternative
i=1

strategies and lef; be pay-offs foi-th alternative undgrth state of nature, see Table 2.

Table 2. A decision matrix of an illustrative example.

S (0%) | S (1%) | S3(2%) | Sa(3%) | Ss(4%)
A 4 5 6 7 8
A 1 2 4 8 16
As 3 5 7 9 11
p 0 0.25 0.5 0.25 0

Using relation (1) we obtain the expected values aftility function for all three

alternative strategies:
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E =Y p =00#+0.255+ 0.516 025 % DB ,

i=1

E, =4.5,

B, =7

Hence, the best strategyAs

When continuous states of nature are considgpér), and v, (x) for each alternative
must be expressed as functions. In this case wétnsignstruct these functions from the
discrete case in Table 2, as row values of Tablen2bearegarded as an output of linear or
exponential functions. The functiop(x) for all scenarios is shown in Figure 1.
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Figure 1. The probability density function of all scenarios

Let p(x) =0.25x for xO[0, 2] and p(x) =1-0.25x for x0[2,4], (it is easy to verify
that constraints (3a) and (3b) for the probabdigpnsity function are satisfied),

vi(X) = x+4,
V(¥ =27,
Vo(X) = 2x+ 3,
a=0,b=4.

Using relation (4) we obtain the expected valuesaftility function for all three
alternative strategies:

E1=f p(x)ul(x)dxzfo.zs)(q % 4 d»f(l— 0.25K( % # dx |,

E, =4.683,
E,=7.

The highest expected value is attained by theegfyas. This result is the same as for
the discrete case (because pay-off functions welynlinear).

Nevertheless, the continuous approach is more geinenature, ag(x) andv,(x) are

functions, not only given numbers, which opens mepace for modelling scenario
probabilities as well as pay-offs of alternativedso, this approach can be easily extended to
group decision making under risk with the use atafille aggregation operators. A risk
aversion could be included into a continuous madebell.

5. Conclusions

The aim of this article was to demonstrate theaisedecision making under risk with
continuum states of nature, which can be considemete natural and also more general
approach than a decision making under risk witlcrdie states of nature. Future research



might focus for example on a decision making undeeertainty or a decision making with
fuzzy scenarios.
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