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Decision Making under Risk with Continuous States of Nature 
 

Jiří Mazurek 
 
Abstract: Many real-world decision making situation are associated with uncertainty regarding future state of 
the World. Traditionally, in such situation different (and discrete) scenarios – future states of nature – are 
considered. This domain of decision making is denoted as decision making under risk. However, limitation to 
some set of discrete scenarios is somewhat unnatural as future reality might not choose one of considered 
scenarios, but some other scenario or a scenario in between. The aim of this paper is to propose a more natural 
approach with continuum states of nature, where all scenarios expressed by their probability density function 
from some reasonable interval are taken into consideration. The approach is illustrated by a numerical example 
and is compared with the corresponding decision making under risk with discrete states of nature. 
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1. Introduction 
 

Many real-world decision making situation in economics, politics, environmental 
protection, etc. are associated with uncertainty regarding future state of the World. When the 
probabilities of future states of the World (so called ‘scenarios‘) are known, then the problem 
is referred as decision making under risk. When the probabilities of scenarios are not known, 
then the problem is referred as decision making under uncertainty. To deal with the both 
situations the expected utility function approach was proposed already by von Neumann and 
Morgenstern (1944): the best alternative is the alternative with the highest expected value of a 
utility function over all scenarios. Later, this approach was enriched by a notion of a risk 
aversion, see Arrow (1971) or Kahnemann and Tversky (1979), and today decision making 
under risk or uncertainty has numerous applications in many areas of human action, see for 
example Johnson and Busemayer (2010) or Abdellaoui et. al. (2007).      

Now, let‘s consider economic situation at the beginning of the year 2012 from a point 
of view of a small enterprise. Will the world experience another recession or not? Should they 
hire new employees and expand, or should they rather turn into cost-saving regime?  

Traditionally, in such situation different (and discrete) scenarios – future states of 
nature – are considered. Imagine that one possible scenario would be small economic growth 
(say 1 % of GDP), the second stagnation (0 % of GDP), and the third small decline (–1 % of 
GDP). Each scenario can be assigned its probability (e.g. by some financial expert). The best 
alternative for firm’s behaviour can be evaluated from the utility function for all alternatives 
under all scenarios, with the best alternative achieving the highest value. This approach is 
called the decision making under risk with discrete states of nature.   

However, one needn’t limitate his thoughts to just three scenarios (cases), which are 
often somewhat artificial (why we use exactly 1 %, and not, let’s say, 0.87 %?). More natural 
approach would be to evaluate all scenarios between some reasonable limits, say between –1 
% to +1 % of GDP growth in the next year. This approach can be called the decision making 
under risk with continuous states of nature.  

The aim of this article is to formulate the decision making under risk with continuum 
states of nature, illustrate its use on a numerical example, and to compare it with decision 
under risk with discrete states of nature.  

The paper is organized as follows: Section 2 decision making under risk with discrete 
states of nature is briefly described, in Section 3 a continuum of states of nature is introduced 
and a numerical example is provided in Section 4. Conclusions close the article. 
 



2. Decision making under risk with discrete states of nature  
 

Let S1 to Sn be future states of nature with probabilities p1 to pn, such that 0ip ≥  and 
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=∑ ; let A1 to Ak be alternatives and νij pay-offs for i-th alternative under j-th state of 

nature. All this information can be described in a decision matrix (see Table 1). Furthermore, 
it is supposed that higher pay-offs are considered ‘better’. 
 
 

Table 1. A general form of a decision matrix in a decision making under risk. 
 

 S1 S2 ... Sn 
A1 11ν  ... ... 

1nν  

A2 ... ... ... ... 
... ... ... ... ... 
Ak 1kν  ... ... 

knν  

 p1 p2 ... pn 

 
 

A utility function of an alternative j under all states of nature (all scenarios) is given as 
(Ramík and Perzina, 2008): 
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Hence, each alternative j is assigned the number (expected value) Ej, and the best 
alternative is that with the maximum expected value:  

1

max
n

k i ij
k

i

E p ν
=

= ⋅∑      (2) 

A numerical example of this approach is provided in Section 4. 
 

 
3. Decision making under risk with continuous states of nature 
 

Let ( )S x  be a continuum of states of nature, [ ],x a b∈ , let ( )i xυ  be a pay-off 

function for the i-th alternative and let p(x) be a probability density function of states ( )S x , 

satisfying the following conditions:  

( ) 0p x ≥  for [ ],x a b∈     (3a) 

( ) 1
b

a

p x dx=∫       (3b)  

 
Then, by analogy with the utilitily function (1), each alternative j is assigned the 

number (expected value of a utility function) over all scenarios:  

( ) ( )
b

j j

a

E p x x dxν= ∫      (4) 

Again, the best alternative attains the maximum expected value (4).  



The venue of this approach is that we don’t have to break our considerations into small 
number of (somewhat artificially and deliberately chosen) cases, as we are considering all 
possibilities (future scenarios) bounded by some limits a and b. Secondary, we can focus on 
arbitrary subinterval of interest between limits a and b (if there is a good reason to narrow the 
limits), which is not possible with discrete scenarios.  

The weakness of this approach rests in the fact that we have to describe ( )p x  and 

1( )v x  as functions, which might be difficult in practice especially for the probability density 

function due to constraints (3a) and (3b). However, complicated functions can be 
approaximated by simpler ones, such as linear, quadratic, exponential or logarithmic 
functions. 
 
4. A numerical example 
 

In this section an illustrative example on both approaches is provided. We turn back to 
the example in Introduction: Let there be scenarios with the different economic growth (from 
0 % to 4 % GDP) and three alternative strategies of some enterprise with the corresponding 
pay-offs. The goal is to find the best strategy under given assumptions.  

At first we consider the discrete states of nature: Let S1 to S5 be (distinct) future states 

of nature with probabilities  p1 to p5, such that 0ip ≥  and 
5
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=∑ ; let A1 to A3 be alternative 

strategies and let νij be pay-offs for i-th alternative under j-th state of nature, see Table 2. 
 
 

Table 2. A decision matrix of an illustrative example. 
 

 S1  (0 %) S2  (1 %) S3 (2 %) S4 (3 %) S5 (4 %) 
A1 4 5 6 7 8 
A2 1 2 4 8 16 
A3 3 5 7 9 11 
pi 0 0.25 0.5 0.25 0 

 
 

Using relation (1) we obtain the expected values of a utility function for all three 
alternative strategies: 
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Hence, the best strategy is A3.  
 
When continuous states of nature are considered, ( )p x  and ( )iv x  for each alternative i 

must be expressed as functions. In this case we might construct these functions from the 
discrete case in Table 2, as row values of Table 2 can be regarded as an output of linear or 
exponential functions. The function ( )p x  for all scenarios is shown in Figure 1.  
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Figure 1. The probability density function of all scenarios. 
 
 
Let ( ) 0.25p x x=  for [ ]0, 2x∈  and ( ) 1 0.25p x x= −  for [ ]2,4x∈ , (it is easy to verify 

that constraints (3a) and (3b) for the probability density function are satisfied), 

1( ) 4v x x= + , 
1

2( ) 2xv x −= , 

3( ) 2 3v x x= + , 

0, 4a b= = . 
 
Using relation (4) we obtain the expected values of a utility function for all three 

alternative strategies: 
 

( ) ( ) ( )
4 2 4

1 1

0 0 2

( ) ( ) 0.25 4 1 0.25 4 6E p x x dx x x dx x x dxν= = ⋅ + + − ⋅ + =∫ ∫ ∫ , 

2E = 4.683, 

3E =  7. 

 
The highest expected value is attained by the strategy A3. This result is the same as for 

the discrete case (because pay-off functions were mostly linear).  
Nevertheless, the continuous approach is more general in nature, as ( )p x  and ( )iv x are 

functions, not only given numbers, which opens more space for modelling scenario 
probabilities as well as pay-offs of alternatives.  Also, this approach can be easily extended to 
group decision making under risk with the use of suitable aggregation operators. A risk 
aversion could be included into a continuous model as well.  
 
5. Conclusions 
 

The aim of this article was to demonstrate the use of a decision making under risk with 
continuum states of nature, which can be considered more natural and also more general 
approach than a decision making under risk with discrete states of nature.  Future research 



might focus for example on a decision making under uncertainty or a decision making with 
fuzzy scenarios. 
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