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Abstract

We analyze the optimal location choice of a monigpiolfirm that operates two platforms on
a two-sided market. We show that the optimal ptatféocations are equivalent to the one-
sided benchmark if both sides are either restritbesingle- or multi-homing. In the mixed

case (one side single-homes, the other one muttiesy the optimal platform locations are
determined by the relative profitability of both rket sides. Our results indicate that

modeling mergers on two-sided markets with fixezhtons is often inappropriate.
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1. Introduction

This paper analyzes the location choice of a molstpofirm that operates on a two-sided
market. The one-sided analogue to this problemhés lbcation choice of a multi-store
monopolist, which was studied by Salop (1979) amtizK1980), and later by Hanjoul et al.
(1990), Hansen, Peeters, and Thisse (1997), and Biad Laporte (2004). Location choice
can be understood literally, and the question iser& to locate the store(s) in a specified
geographical space. An alternative interpretatien the one of horizontal product

differentiation.

So far, monopolistic location choice has not beealyged in the context of two-sided
markets, i.e. markets where platforms facilitateeraction between two distinct groups of
agents. While there is a growing body of literatdealing with two-sided markets, the most
prominent papers are Roche and Tirole (2003, 200@)llaud and Jullien (2003), and
Armstrong (2006), who analyze monopolistic and dlisic pricing decisions in various
two-sided settings. The vast majority of the meamdi papers focus on oligopolistic
frameworks, and the monopoly case is often useal lzanchmark for comparing the results.
However, the monopolistic behaviour is usually explicitly analyzed in detail. Instead, it is
assumed that platform locations as well as the murob platforms remain unchanged. For
instance, Anderson and Coate (2005) analyze a disbpanodel of media markets where
consumers’ taste is modelled in a framework basedHotelling (1929). The platform
locations are supposed to be at both ends of thdinemand this assumption is retained in the
monopoly case, i.e. the case where both platfoqmesabe under joint management.

Recently, monopolistic location choice on two-sidethrkets has become particularly
relevant, because economic literature started phicitky analyze merger cases in two-sided
frameworks. For instance, Chandra and Collard-We{€09) propose a Hotelling-based
model to study merger cases in the Canadian newspagustry empirically. Ambrus and
Reisinger (2006) compare monopolistic and duopolisitcomes on media markets where
agents are allowed to multi-home, i.e. they arevadd to simultaneously patronize both
platforms. Leonello (2010) analyzes the welfare@g of mergers on two-sided markets. A
common feature of these papers is the use of allidgtédramework with two platforms,
where the platform locations remain unchanged wioenparing the case of monopoly to the

case of competing platforms.



In the present paper, we study the optimal locattomice of a monopolist that operates one or
two platforms under various two-sided settings. Té®ilts of our paper indicate that a profit-
maximizing firm will not keep the platform locatisrat the extremes of the Hotelling line.
Instead, we find that in case of two-sided singlealng, i.e. if agents on either side of the
market are restricted to patronizing one platformyothe monopolist will choose a smaller
degree of product differentiation, whereas undeo-$ided multi-homing, the firm will
choose homogeneous platforms. While these resudisimaline with the corresponding
findings from one-sided markets, we show that iic@npetitive bottleneck” scenario, i.e. if
agents on one side of the market are restrictedirtgle-homing, whereas agents on the
opposite side are allowed to multi-home, the redaprofitability of the market sides will

determine the outcome.

The paper is constructed as follows: In Sectiow@ will present the theoretical framework,
whereas Section 3 analyzes the optimal locationicehander two-sided single-homing.
Section 4 deals with the case of two-sided multiimg and in Section 5, we study the
location and pricing decisions in a “competitivet®meck” model. Section 6 summarizes our

findings.
2. Analytical Framework

Consider a two-sided market that is served by aapolistic firm operatingND{l,Z}
platforms. Given a specific platformil N, agents on market side=1,2 obtain an intrinsic
utility vi. from joining this platform. In addition, thereas a network utilitya, (', resulting
from the interaction withn', agents from the opposite market side, whegedenotes the
magnitude of the network externality. Henag, >0 implies an additional benefit from
interaction, whereasy, <0 describes a negative network externality. In thecgl case
a, =0, network effects are absent.

Platforms are heterogeneous and we assume thagéms on either side of the market are
uniformly distributed along the unit line. The mast agents on each market side is
normalized to one. Given a specific platform looatix D[O,]], an agent on market side
who is located at% 0[0,]], has to pay transportation costg(x —%,) if it holds that
0<X<x. In case tha <% <1, transportation costs are given Q% —x ). As per usual,
we suppose that >0. The monopolist charges the prigg for joining platformi. As we

assume perfect platform symmetry throughout theepape can immediately conclude that



all platforms will charge an identical price on iketr sidek, denoted byp,. Given the
specifications above, the utility of an agent onrket sidek, who joins platformi, is
described by

U ={V|<+a'k B, - Pyt (% ~%) for0<% <

Vi +a, ., = p—t (% — X X

The reservation utility is normalized to zero.
In order to keep the framework consistent to ttexdture dealing with monopolistic location
choice on one-sided markets, we impose full macketrage, i.e. in the optimum the entire
market has to be served. We assume that variabte tar production and for the choice of

location are nil. In addition, fixed costs are adspposed to be absent.
3. Two-Sided Single-Homing

In this section we assume that agents on either sidhe market are restricted to single-
homing. The optimal monopolistic location choicethis case is characterized by the results

given in Proposition 1.

Proposition 1: For N =1, the optimal platform location ix =1/2, while in case ofN =2,

the platforms are located & =1/4 and x, =3/ 4.

Proof: First, we consider the case df =1. By the assumption of full market coverage, we
can immediately conclude that = n? =1. The monopolistic platform operator will maximize
her profit by setting a price, where the margingéra is indifferent between joining the
platform and using the outside option, i.e. obtagnihe reservation utility. Lex_denote the
location of the marginal agent. Then, it followstfior 0< x, <1/2, we havex, =1, while in
case of1/2<x <1, we find that X =0. Since the marginal agent's utility equals the

reservation utility, we know that
Uy ()~(k =1) =v, +a, - p, -t [{1-x)
U, (% =0)=v, +a, 0-p ~t, {x -0 = C.
Hence, the optimal monopoly price is described by

0= vo+a -t [l-x) for 0<x<1/2
“ v, +ta, -t X for 1/2<x<1

0

1)

Respecting that variable costs are equal to zedauaimg equation (1), the platform operator’s

maximization problem is characterized by



max(x ) = p, (x,) 0 + p,(x,) @, <

X

max () =

{vl+v2+a1+a2—t1—t2+(t1+t2)D<1 for 0<x,<1/2
*

VY, Fa+a, - (Gt X, for 1/2<x,<1

yielding the first-order condition

on _ {tl +t,>0
ox, |-t -1,<0
from which we can conclude that the optimal platfdocation isx, =1/2.
In case ofN =2, we know that due to full market coverage andgurplatform symmetry,
we have thatnf =n?=n.=n>=1/2. The platform locations are, and x, =1-x,. For
0< x <1/4, the marginal agent’s location ¥& =1/ 2, whereas forl/4< x, < 1/2, we have
that X =0. Since in the optimum the marginal agent's utiliystill the reservation utility
level, the monopoly price is given by

. vera 2=t 12+t X for Osx <1/4

p"_{vk+ak/2—tkD<l for 1/4<x,<1/2

Hence, the maximization problem is

(a+a;) (L)

vV, + (t,+t,)C, for 0<sx<1/4
max (x ) = 2 .
* (a,+a)
vl+v2+T—(tl+t2)D<l for 1/4<x<1/2
yielding the first-order condition
on _(t+t,>0
ox |-t-t,<0

from which we conclude that the optimal platformcdtons are x =1/4 and
x,=1-1/4= 3/4.
(g.ed.)

The results of Proposition 1 are entirely consisteith the findings from one-sided markets.
As can be seen from the first-order conditions,dp#mal location choice is only influenced
by the transportation cost parameters, while tigeer® impact from the network externalities.
This is not surprising, since the network effectsrabt affect the location of the marginal
agent. Therefore, there is no marginal impackobn the optimal monopoly price. However,
there is a quantitative influence on prices andipioecause the two-sidedness of the market

affects the marginal agent’s willingness to pay.



For N =1, the operator’s profit in the optimum is given by
. t +t
(2) M (N=1)=v1+v2+al+a2—(l—22),

whereas forN =2, we have that

ey (a,+a,) (t+t,)
(3) N (N=2)=v +v,+ > T

Comparing equations (2) and (3), it is easy tofyehiat for , <0, M" (N =1)<M (N=2),

i.e. the monopolist will operate two platforms. Fluorresponds to economic intuition: Both
market sides affect each other negatively. Offearsggcond platform decreases the exposition
to the other market side, so that the marginal #gemllingness to pay increases, which
yields higher profits. For the case@f >0 anda_, <0, we obtain ambiguous results, i.e. for
specific parameter sets, the monopolist would oplgrate one platform. The same holds for

the presence of positive externalities on eitheée sif the market, i.e. famr, >0.
4. Two-Sided Multi-Homing

In contrast to Section 3, we now assume that agemtboth market sides are allowed to
multi-home. Here, it is supposed that the agentsiltthe intrinsic utility v, from each
platform they join. Since multi-homing requires theesence of at least two platforms, we

focus on the case dfl =2, which is visualized in Figure 1.

single- single-
homing homing
on multi-homing on
Platform 1 Platform 2
I ]
I T T T 1
0 )N(kL X }/ 1-x 7(5 1
1 2 1

Figure 1: Platform-specific demand in case of tuted multi-homing

Figure 1 depicts the unit line for given platforml:zhtions(xl,x2 =1- xl). Let X denote the
location of an arbitrary agent. Then, due to thsuagption of full market coverage and
supposing that multi-homing exists in the optimume know that fork, 0[0,%], an agent

will join platform 1 in any case, while fo, D[xll] an agent will patronize the first

! If there was no multi-homing in the optimum, weukhave local monopolies, but these are out ofsttape
of this analysis.



platform as long as the utility is at least as gesathe reservation utility. If the location oéth

marginal agent is denoted &, we find that

)~(E=Vk+akmik_pk+tk5<1'
b

(4) Uk=Vk+akmik_pk_tk[q)~(5_X1):0 <

The same argument holds for platform 2, where d¢kation of the marginal agent is denoted
by %. . This specific location is determined by

Vi T Ay thk +p -t O .
t,

(5) Uk:Vk+akm3k_pk_tk[q1_xl_)~(ll<_)=o - K=

From Figure 1 it is easy to see thgt+(1- %) agents single-home, while the number of
multi-homing agents is described ¥ - % . Since we know that the demand for each
platform consists of multi-homing agents and theresponding number of single-homing
agents, we use (4) and (5) to find that

(6) n1:~L+~R—~L:)?fzvk+akmfk_pk+tkm(l
K t, '
Vi ~ Ay m—zk + Pt 1, D(l
t,

(7) vy =1-x+% - % =1-% =1-

Simultaneously solving equations (6) and (7) fgr and n?, yields the platform-specific
demand functions that are described by

? = _a, v, - p,) +t, v, - p,) + X, (@ +t)
a,or,—t, 0, ’

(8) n =

(9) nt n2=_a2 [QVl‘ p1)+t1|:QV2_ p2)+xl[ﬂl(a2+t2)
’ ’ a, lar, -t [, '
Given (8) and (9), we are now able to analyze fhtéval location choice of the monopolistic

platform operator. Proposition 2 summarizes thaltes

Proposition 2: If agents are allowed to multi-home, the optimialtfiorm locations are given
by X =x,=1/2.
Proof: Using equations (8) and (9), the monopolist's mazation problem can be

formulated as
max[1 = p, [Qn}+nf)+ pz[(]n12+ ng) -
Py, P2

max = p, EE—Z[jal (v, = ) + 1,0V, = po) + X0 (@ i+t )j
PrP2 a, lr, -1, [,




+p2[2[ﬁ_az v, ~ ) +t,1{v,~ p,) + X8, (a +t?)]

a, @, —t, 1,
yielding the profit maximizing platform prices thate given by
(%t ) () - 2088, + B X ) +a ffla vt )=t v #t g()lj
(a,) +20ar, ar, - 4T, 1%,

(Vo +t, 0) ()" - 208,8,) + @, B ,v X )+ S v #t 5 )=t fv +t )]
(a,) + 208, lor, - 4T, 1%, '

P, =
The operator’s optimization problem with respectht® optimal location choice is therefore
max = p; () fri (P, (%)) + 1%, (P (x)))+ B {B.(x )+ {8 {x]).
which yields the first-order condition

2[@2[111[11 v+ v, + (t+1) B6) +(ara Yt 3t sy 420 15)) |

(10) .
() +( 2) + 2y, [or,— 40,1,

=0.

Equation (10) can easily be solved fgr. It can be shown thadl/dx, >0 for x D[O,1/2]
and v;,v,,t;,t,> 0. This implies that the optimal platform locatioase determined by the

corner solutionx, =X, =1/2.
(g.ed.)

Considering a one-sided benchmark where multi-hgnsnallowed, i.e. the special case of

our model wherex, =0, we find by using equation (10) that far0[0,1/ 7 it holds that
M __2[@2[11l @, v, +v,+(t,+1,) D(})]

ox -41L, I,
which implies that there is no qualitative diffecerto the results of Proposition 2. Hence, the

=y, +Vv, +(t, +1,) X, >0,

two-sidedness of the market does not affect thenabtiocation choice, so that the result is
consistent with the one-sided benchmark case.

Given the optimal platform locationg =x,=1/2, we find that for N =2, the optimal
monopoly profit is described by
1

_2[Q(a1)2+(a2)2—4[ﬂ1[ﬂ2)
[g[ﬁ “+40v,) )+t2[é(tl)2+4EQvl)2)+4EﬂlEﬂ2Eﬂv1+v2)+(al+a Yt # 200 )(t #200 )]

(11) n'(N=2)= C



Since for N =1, the operator’s profit is still determined by etjoa (2)* we can conclude by
comparing (2) and (11) thdl (N =1) < (N =2), i.e. in case of two-sided multi-homing,
the monopolist will in any case operate two platfer This result is not surprising, since we
had assumed that agents obtain the intrinsic ytiice if they join both platforms, which
ceteris paribus implies a strong incentive for muttming and a higher willingness to pay if
two platforms are available. It is easy to congtaicobustness check that grants the intrinsic
utility only once. This weakens the incentive foultithoming. One could also assume that
repeated interaction is meaningless, i.e. if twadtirmoming agents interact on one platform,
there is no additional network effect from intenagton the second platform. The only
remaining incentive to multi-home is the interaotigith single-homing agents. The results of
our robustness checks indicate that the optimafgola locations are consistent with our
findings from Proposition 2. However, comparing th@fits for N =1 and N =2 yields

ambiguous results.
5. Competitive Bottlenecks

In this section, we will analyze a “competitive themeck” model, i.e. a framework where
agents on one side of the market are allowed tglesimome, while agents on the opposite
side of the market are allowed to multi-home. Withtoss of generality, we assume that
market side 1 is the single-homing side, whereaklidmoming agents on market side 2 are
still supposed to obtain intrinsic utility from daplatform they join. Supposing that multi-
homing is present in the optimum, we focus on thsecof N =2 again. The platform

locations are still denoted by andx, =1-x, .

Considering market side 1, we know that the maigagent is indifferent between joining
platform 1 and platform 2, i.e. it holds tHaf =U?. Let the location of the marginal agent be
denoted byx"° . Then, we know that
v, +a, O, - pl—tl[ﬂi'lND —xl) =U =U?%=v +a ’-p it g(]l—x 1—>~<'N1D) :
which implies thatx"" is given by
oo _ 0y G —ay Tho +t,
215,
Hence, we know that the platform-specific demandhansingle-homing side is characterized

by

2 If there is just one platform, agents cannot rruttine.

9



1 2
1 )~(1IND - a, [, —a; [+t

(12) n = 21,

a, m;_a1m§+t1_
20,

Analogue to Section 4, the platform-specific demandhe multi-homing side is determined

13) ¥ =1-% =1-

by those agents that are locatedxdtand %; . Following our analysis from Section 4, these

locations are now given by

_ Y, a, - py L
t, ’

(14) U, =V, +a, - p,~ 1,83 -x)=0 - &

(15) Uz:V2+a2mi_pz_t2[q1_xl_)~(l-2)zo < )~(L2: Y~ 0, 0, tpz L tza(l'
2

Using equations (14) and (15), we find that

_V,+a, - py+t, K

(16) =% +% ~% =%; :
2

(17) R=l-5C+5 =5t =1-xt = 1- 29> [0S + p,+t,-t,0X,
2 2 2 2 2 L ,

which allows us to compute the platform-specificond@d functions by simultaneously
solving equations (12), (13), (16), and (17) fgrand n’. Hence, we have that
(18) n=n’=1/2,

_—a,+2[p, -2V, - 21, [X .

19 n=n=
(19) , =N, oM,

Given (18) and (19), we are now able to analyze phiee-setting behaviour of the
monopolistic platform operator, which is more coapkhan in the previous sections. On
market side 1, the optimal monopoly price is deteed by the marginal agent. Recalling our
findings from Section 3, we know that the margiagént’'s locationX , is given by
- _{1/2 for Osx <1/4
0 for 1/4<x <1/2
Respecting that in the optimum the marginal ageuilgy equals her reservation utility and
using equation (19), we find that the optimal mavigprice on market side 1 is given by
a, (a,-20p,+20v,) -t,0,+ 20, + 20 X [a +t)
2[1,
a, a,-20p,+20v,) + 20, v, + 20, X, [a,-t,)
2[1,

for 0sx <1/4
(20) p, =

for 1/4<x <1/2

10



Therefore, the monopolist’s optimization problenthmespect to market side 2 is formally
described by

maxT = B O +n) + pz[@nlz( p2)+n22(p2)),
2 —
=1

which by using equations (18), (19), and (20) \setaat

1/40(-a,+a,+ 2y, + 20,k,) for 0<sx <1/4

(21) P = .
1/4(-a,+a,+2v,+ 2,k ) for 1/4<x <1/2

Given equations (18), (19), (20), and (21), theatmn choice problem can be formulated as
mx?xl'lzpl X, )+ P, (X [@ril (%) +rf'( {x J)))

leading to the first-order condition

on _(1/20a, +a,+ 20, +v,+t,[X )= 0 for 0sx <1/4

ox  |1/20a, +a,+ 20t +v,+t,X)) =0 for 1/4<x<1/2’

Hence, we find that

-a,—a,- 20 - 20V,
2,

-a,—a,+2 -2y,
2[,

for 0Osx <1/4
(22) X" = :
for 1/4<x <1/2

Equation (22) is a unique minimum solution, becau$e can be shown that
021/ 0x? ( m'“) >0. Therefore, the optimal location must be a cosmdution. We summarize
the findings in Proposition 3.

I a A
7
;
6j>0 /’
0x, .
/
n (1/4 / -
(174) TR 7
\. \'\\\ ‘/ aj(()
N —_— ");i\\‘N( aXl
~. ~~ao
~. s ==
é \.\. /‘/
"Emin y ~:nin X
0 Moox™M 3% X" H

Figure 2: Optimal location choice in a “competitivettleneck”-framework
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Proposition 3: On a “competitive bottleneck™market, the optinmabnopolistic location
choice is eitherx, =1/4 and x, =3/4, or x =x,=1/2 (or there is indifference between
both solutions).

Proof: For 0< x, <1/4, it can be shown tha1/dx, >0, i.e. we would have¢"" <0, which
implies that the optimal location is given by thereer solutionx, =1/4. For1/4<x <1/2,
we have to separately analyze four different célsasare visualized in Figure 2: i) In case
that X" <1/4, we find thatdr/ax, >0, which implies that the profit-maximizing location
of platform 1 isx, =1/2. This case is depicted by the black solid curv&igure 2. i) For
x"" 0(1/4,3/9, we know that due to the symmetry Bf(x,),* we have thatx, =1/2,
becausel(1/2) >M(1/4). In Figure 2, this case corresponds to the examfpbe™" . iii) If
we have thatx™ D(3/8,1/2), we can conclude from the profit function’s symmethat
X, =1/4, becausd1(1/4) > (1/2). This situation is visualized by™ in Figure 2. iv) For
x"" >1/2, it is easy to show tha1/dx, <0, which implies that< =1/4. In Figure 2, this
case is reflected by the dashed curve.

In case thatx™ =3/8, we obviously find that the monopolist is indiéet between
x, =1/4 and x, =1/ 2, since both locations yield the same profit.

(gq.ed)

We find that the optimal platform locations areetatined by the location of™ , which is
described by equation (22) and depends on theiaelaif the exogenous parameters

a,,a,,Vv,,t, andt,. Using (22), comparative statics for the casé/of< x, < 1/2 reveal that

9% ,axl ,axl ,axl <Oaswe||asaxl—>0,
oa, 0da, ot, o0v, ot

which reflects the economics behind our findingsmarginal increase i, has a negative
impact on p,, while demand on market side 1 is fixed. This meduthe marginal revenue
from an increase ox, , since we have that

0°r1

ox,0t,

=-1<0,

which implies that the monopolist has an incentivehift x, to the left. In terms of equation
(22), an increase df leads to an increase a&f"", making x, =1/4 more likely to occur. On
the other hand, any increase in the profitabilitynarket side 2, i.e. any increase af,t, or

v,, shifts the location ofx™ to the left. Therefore, in this casé =1/2 becomes more

likely. Obviously, the optimal platform location gends on the relative profitability of the

% It can be shown that for the relevant set of patans, the profit function is symmetric with respez the
unique minimum solution. The corresponding Mathécaatode is available from the authors upon request

12



two market sides: If the single-homing market sgleelatively more profitable with respect
to the optimal platform location, we havg™ 0(3/8,1/2) and thereforex; =1/4, which
corresponds to the solution of the two-sided shinglming case. In case that market side 2 is
more profitable, we find the opposite, i.e. thecomte is consistent with our findings from
Section 4.

Comparing the results of Proposition 3 to a hypitaéone-sided benchmark witts, =0,
we find by analyzing equation (22) that the optimeghtion choice is qualitatively affected by
the two-sidedness of the market. While there iglifference for the case &f< x <1/4, we
find that for 1/4<x <1/2, it may happen that the optimal platform location the
benchmark case ix; =1/4, whereas fora, # 0, we could havex, =1/2 (or vice versa).
This result is consistent with our interpretatioh Rroposition 3, because the network

externalities crucially influence the relative ptability of the two market sides.

In case that the optimal location choiceqs=1/4, the profit is

(a,)" +(a,)" +t,[{-218,+t,+ 8V, + 20V
8lt,

(23) n. (N=2)=

¥ =1/4

LATv,) +a, O, + 4,)+ 020+ t+ 4 )
8, ’

whereas forx =1/2, we obtain

(a,)" +(a,) +t,[{-4T8,+t,+ 8V, + 4V )

(24) n._ (N=2)= s

¥ =1/2

L ATv,)" + 20, T, + 200, )+ 20,0+t + 2V,)
8(1, '

Since for N =1, we have the single-homing solution of Sectioth®,operator’s profit in this
case is given by equation (2). Comparing equati®) ¢r (24) with equation (2), it can be
shown that fora, <0, M"(N=1)<N" (N=2). If a, >0 anda_, <0 or a, >0, we obtain

ambiguous results, i.e. the monopolist will operatker one or two platforms.
6. Conclusions and Implications

This paper analyzes the monopolistic location ahoic a two-sided market. To some extent,
the results of our analysis are consistent withfitisings from one-sided markets: In Sections
3 and 4 we found that the optimal location choioder two-sided single-homing and two-

sided multi-homing corresponds to the one-sidedcterark. While in case of two-sided

13



single-homing, optimal platform locations are a ahd 3/4, the monopolist chooses perfectly
homogeneous platforms in the optimum under twoesidelti-homing. The two-sidedness of
the market only has a quantitative impact on optipneges and profit, whereas the optimal

location choice is not affected.

To our knowledge, this paper is the first one talgre the monopolistic location choice in a
competitive bottleneck scenario, since there ione-sided equivalent to this setting. When
comparing the results of our two-sided frameworla toypothetical one-sided benchmark, we
found that the optimal platform locations were d¢allg determined by the relative
profitability of the two-market sides and hence,tbg network externalities. In case that the
single-homing side is more profitable, the optinoalation choice corresponds to the case of
two-sided single-homing. If the multi-homing siderelatively more profitable, we find the
opposite result. It is also possible that the platf operator is indifferent between both
strategies.

In addition, our paper contributes to the econohwérature dealing with mergers on two-
sided markets: Our results imply that two-sided geersimulations with fixed platform
locations (at arbitrary locations or at their comitpee benchmarks), do not correctly describe
the economic behaviour under monopoly. In otherdspmodels that assume fixed locations
(usually at the ends of the Hotelling line), exogesly impose an additional restriction that
potentially reduces the profit under “joint-manageni. The same argument holds for the
number of platforms: Our results indicate that thenopolistic platform operator may
voluntarily decide to close down one platform. Céiag the correct monopolistic benchmark
is basal for merger assessment as it affects veetfamparisons and therefore conclusions and

policy implications.
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