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Abstract

We analyzed the volatility dynamics of three developed retkU.K., U.S. and Japan), during the period 2003-2011,
by comparing the performance of several multivariate vidlatmodels, namely Constant Conditional Correlation
(CCC), bynamic Conditional Correlation (DCC) andnsistenDCC (cDCC) models. To evaluate the performance
of models we used four statistical loss functions on theydéilue-at-Risk (VaR) estimates of a diversified portfohio i
three stock indices: FTSE 100, S&P 500 and Nikkei 225. Wedasene-day ahead conditional variance forecasts.
To assess the performance of the abovementioned models arahsure risks over different time-scales, we proposed
a wavelet-based approach which decomposes a given tines seridifferent time horizons. Wavelet multiresolution
analysis and multivariate conditional volatility modets @ombined for volatility forecasting to measure the coeiov
ment between stock market returns and to estimate daily MeRei time-frequency space. Empirical results shows
that the asymmetricDCC model ofAielli (2009 is the most preferable according to statistical loss fonstunder
raw data. The results also suggest that wavelet-based siodetase predictive performance of financial forecasting
in low scales according to number of violations and failurebabilities for VaR models.

Key words: Dynamic conditional correlations, Value-at-Risk, watelecomposition, Stock prices

1. Introduction

Measuring market risk is the most interest of financial managnd traders. The most widely used measure of
risk managment is the Value-at-Risk (VaR), which was inicetl by Jorion (1996). Forecasting VaR is based on
the volatility models. The well-known volatility model ifie¢ generalized autoregressive conditional heteroskedas-
ticity (GARCH) model ofEngle(1982 andBollerslev(1986. The success of this model has subsequently led to a
family of univariate and multivariate GARCH models whictazapture different behavior in financial returns. The

development of this family of models has led to the develapméconditional VaR forecasts.
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The literature on multivariate GARCH models is large andagding.Engle and Krone(1995 defined a general
class of multivariate GARCH (MGARCH) models. The populaesmrediagonal VECH model ofBollerslev et al.
(1988, the BEKK model ofEngle and Krone(1995. While, popular, these models have limitatidn particular,
diagonal VECH lacks correlation between the variance terms, BEKK ltave poorly behaved likelihood function
(making estimation difficult, especially for models with rmdhan two variables), and VECH has a large number of
free parameters (which makes it impractical for models witbre than two variables). To deal with the curse of
the dimensionalitfgngle (2002 proposed the dynamic conditional correlations (DCC) nhedech generalizes the
specification oBollerslev(1990 by assuming a time variation of correlation matridsse and Tsu{2002 defined a
multivariate GARCH model which includes time-varying adations and yet satisfies the positive-definite condition.
Ling and McAleer(2003, McAleer et al.(2009 andCaporin and McAlee(2009 2010 proposed another family of
multivariate GARCH models which assume constant condifigorrelations, and do not suffer from the problem of
dimensionality, by comparison with the VECH and BEKK modéie convenient of these models is that modeling
conditional variances allows large shocks to one variabbdfect the variances of the other variables.

Another important topic in the financial econometrics is disgmmetric behavior of conditional variances. The
basic idea is that negative shocks have a different impatit@oonditional variance evolution than do positive shocks
of similar magnitude.Cappiello et al (2006, Aielli (2008 andPalandri(2009 extended the DCC model &ngle
(2002 to an asymmetric DCC model which is a generalization of ti&CDmodel (authors develop a model capa-
ble of allowing for conditional asymmetries not only in viliies but also in correlations). Authors used several
asymmetric versions of the DCC model. In our article, we daseversion which allows asymmetry in conditional
variance. This phenomenon was raised\&son(1997) in introducing the Exponential GARCH (EGARCH) model,
and was also considered Ilosten et al(1993 (GJR-GARCH models)Rabemananjara and Zakoigh993 and
Zakoian(1994) (Threshold GARCH models) for the univariate case. Morendly, in the area of finance, several em-
pirical studies based on symmetric and asymmetric muititet GARCH models have been employed. For instance,
Cappiello et al(2006 used the asymmetric generalized-DCC (AG-DCC) specibicaid investigate asymmetries in
conditional variances and correlation dynamics of threeigs of countries (Europe, Australia and North America).
They provide evidence that equity returns show strong exmid®f asymmetries in conditional volatility, while little
is found for bond returngChiang et al(2007) applied a DCC model to nine Asian stocks and confirm a coategi-
fect during the Asian crisiddo et al.(2009 applied various multivariate GARCH models to investigdie evidence
of asymmetry and time-varying conditional correlationsazen five sectors of Industrial Production of the United

States. They provide also, strong evidence of asymmetriditonal volatility in all sectors and some support of

1SeeBauwens et a(2006 for more details.



time-varying correlations in various sectoral paiBittner and Hay@2011) used a bivariate DCC model to extract
dynamic conditional correlations between European staatkats.Chang et al(2011) employed several multivariate
GARCH models (CCC, DCC, VARMA-GARCH and VARMA-AGARCH) to ndel conditional volatility in the re-
turns of rubber spot and futures in major rubber futures abbder spot Asian markets, in order to investigate volgtilit
transmissions across these markets. Their results prpvesence of volatility spillovers and asymmetric effedts o
positive and negative return shocks on conditional vatatiKenourgios et al(2011) applied the AG-DCC model and

a multivariate regime-switching Gaussian copula modebfatare non-linear correlation dynamics in four emerging
equity markets (Brazil, Russia, India and China) and twoettpped markets (U.S. and U.K.Arouri et al. (2017
employed a VAR-GARCH approach to investigate the returkelge and volatility transmission between oil and stock
markets in Gulf Cooperation Council countriéshrech and Sylwest¢2011) used DCC multivariate GARCH mod-
els to examine the dynamic linkage between U.S. and Latinriae stock markets. Their results show an increase
in the degree of co-movement between Latin American equitskets and U.S. equity ones.

In this study, we employ three multivariate GARCH models;tsas the CCC model d@ollerslev (1990, the
DCC model ofEngle (2002 and thecDCC model ofAielli (2008. These models impose a useful structure on the
many possible model parameters. However, parameters ohdldel can easily be estimated and the model can be
evaluated and used in straightforward way. Our empiricghodology follows a two-step approach. The first step
applies these dynamic conditional correlation models tdehoonditional volatility in the returns of three develdpe
stock markets (U.K., U.S. and Japan stock markets), in dalexamine the evidence of time-varying conditional
variances and correlations between stock markets. Moreverder to show the asymmetric effects of positive
and negative return shocks on conditional volatility theAREH and GJR-GARCH models dfelson(1991) and
Glosten et al(1993, respectively, were employed for modeling univariatedibonal volatility. In the second step,
we re-examine the dynamic conditional correlation analgsnong the three major developed stock markets through
a novel approach, wavelet analysis. This technique is amemising tool as it is possible to capture the time and
frequency varying features of co-movement within an unifregnework which represents a refinement to previous
approaches. This wavelet-based analysis takes accoutistietion between the short and long-term investor. From
a portfolio diversification view, there exist a kind of int@ss whose are more interested in the co-movement of stock
returns at higher frequencies (lower scales), that is,t¢kom fluctuations, and also, there exist a kind of investor
whose focuse on the relationship at lower frequencies érnighales), that is, long-term fluctuations. The study of
the co-movement of stock market returns, i.e. dynamics wémaes and correlations, across scales is crucial for risk
assessment of a portfolio. In terms of risk management, lzehigo-movement (higher covariances) among assets of

a given portfolio implies lower gains. According to invest@r traders, evaluating the co-movement of assets is a
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great importance to best assess the risk of a portfolio. r8eapplications of wavelet studying the co-movement of
stock indices have been recently appliedharkasi et a2005, Rua and Nune®009, Rua(2010 andMasih et al.
(2010.

In this paper, we investigate also the selection of the wmaritite GARCH models used in the two approaches
(with and without wavelet analysis) to identify which modhels the best out-of-sample forecasting performance. The
assessment of the forecast performance of these modelsad ba out-of-sample one-day ahead conditional matrix
forecasts. However, to measure model performance we usedttistical loss functior.

The empirical evidence showed that the conditional vagarend correlations of U.K., U.S. and Japan stock
market returns were dynamic and the three markets wereyhaghtelated. We showed also, that #2CC model
of Aielli (2008 is preferable than the CCC and DCC models based on one-@ayl alut-of-sample forecasts. With
regard to wavelet-based multivariate conditional valgtipproach, our findings suggested a multi-scale behavior
of the three markets under study, which decomposes thesuitidver into three sub-spillovers and decomposes the
market risk measured by VaR into wavelet VaR (WVaR) estimaltesddition, this new approach help traders and
investors to reduce risk management on their investing tiarzons.

The purpose of the paper is four-fold. First, we estimatetirariate conditional volatility for stock market
returns using several recent models of multivariate canhd volatility. Second, we investigate the importance of
volatility spillovers on the conditional variance acrdss three developed markets. Third, we focuse on the foliagast
performance of the multivariate conditional volatility dels under study for the last 250 days of the data set. Fdrecas
comparison is based on four different loss functions iniclgdhe mean squared error, the mean absolute error, the
mean absolute percentage error and the logarithm loss dfourth, we propose a wavelet-based multi-resolution
analysis in order to combine between traditional multesriconditional volatility models and wavelet decompositi
The combination of wavelet decomposition and dynamic damthl correlation models was introduced to analyze the
comovements and volatility spillovers between three dged markets on multi-scale framework, based on behavior
of investors. Finally, we compare the performance of wavedsed multivariate conditional volatility model agadins
the traditional one for one-day ahead forecast.

The structure of the paper is organized as follows: Se@ipresents the data used for the empirical analysis and
the multivariate conditional volatility methodology. Sen 3 reports the empirical results under raw data. Wavelet

analysis is discussed in sectidnFinally, concluding remarks are stated in secton

2Hansen et al(2003, Hansen and Lundg2009, Becker and Clemen{@008 and others, showed that evaluation of univariate votgtitre-
cast is well understood, while for an applied point of viewrthre no clear guidelines available on model evaluation atettson in multivariate
setting (sed.aurent et al(2011)).



2. Methodology and empirical specifications

2.1. Data

Our data on stock market prices consist of the S&P 500, FTSEah@ NIKKEI 225 composite indices for U.S.,
U.K. and Japan. We collect daily data over the period fromudan01, 2003 to February 04, 2011. Indices are
obtained from DataStream. We use daily data in order torretd&iigh number of observations to adequately capture
the rapidity and intensity of the dynamic interactions bestw markets.

Returns of market (indexi) at timet are computed as; = log(R /P -1) x 100, whereR ; andR;_; are the

closing prices for day andt — 1, respectively.

2.2. Descriptive statistics

The summary statistics of the data are given in Table panel A (Tablel), for each return series, the mean value
is close to zero. For each return series the standard daviatiarger than the mean value. Each return series displays
a small amount of skewness and large amount of kurtosis @anethrns are not normally distributed.

In panel B (Tablel), unconditional correlation coefficients in stock marketex returns indicate strong pairwise
correlations. The correlation between S&P 500 and FTSE 4Q@sitive and larger than the correlation between

NIKKEI 225 and FTSE 100. This could be due to the high tradeesbatween the two markets.

Table 1
Descriptive statistics of stock market returns.

Panel A: Descriptive statistics.

Mean Max Min Std.dev Skewness Kurtosis Jarque-Bera
FTSE 100 0.0199 9.384 -9.265 1.252 -0.0914 9.019 B0
S&P 500 0.0187 10.957 -9.469 1.314 -0.256 11.410 1183308
NIKKEI 225 0.0097 13.234 -12.111 1.544 -0.466 8.889 7088
Panel B: Unconditional (market return) correlation matrix
FTSE 100 S&P 500 NIKKEI 225
FTSE 100 1.000 0.55 0.34
S&P 500 1.000 0.11
NIKKEI 225 1.000

Notes: * denotes the rejection of the null hypothesis of normality at the 1% level afalgue-Bera test. The data frequency is
daily and covers the period from 01 January 2003 to 04 February. 2011

The results of the unit root tests for all sample of level @si¢in logs) and returns in each market are summarized
in Table2. The Augmented Dickey-Fuller (ADF) and Phillips-PerroPjRests are used to explore the existence of

unit roots in individual series. The results show that allines are stationary.



Table 2
Unit root tests.

Panel A: Stock market level prices (in log)

Prices ADF test Phillips-Perron test

None Constant Constant and trend Constant Trend
FTSE 100 0.724 -1.870 -1.920 -1.847 -1.866
S&P 500 0.644 -1.908 -1.879 -1.951 -1.912
NIKKEI 225 0.247 -1.744 -1.807 -1.670 -1.733
Panel B: Stock market returns
Returns ADF testt{statistic) Phillips-Perron test

None Constant Constant and trend Constant Trend
FTSE 100 -35.171 -35.177 -35.171 -49.933 -49.924
S&P 500 -37.754 -37.758 -37.754 -52.593 -52.587
NIKKEI 225 -34.817 -34.811 -34.833 -46.359 -46.382

Notes: Entries in bold indicate that the null hypothesis is rejected at 1% level.

2.3. Model specifications

The econometric specification used in our study has two coemts. To model the stock market return we used
a vector autoregression (VAR). To model the conditionalarare we used a multivariate GARCH model.
A VAR of order p, where the ordep represents the number of lags, that incluNesriables can be written as the

following form:

p
Yt:cboJer(Dth—iﬁLft, t=1,....,T 1)
i=

whereY; = (Y, ... ,YNt), is a column of observations on current values of all varsbteehe modetp; is N x N
matrix of unknown coefficientspy is a column vector of deterministic constant termss (€x, . . ., sNt), is a column
vector of errorss Our basic VAR will have the three stationary variables, fiogt differences of FTSE 100, S&P
500 and NIKKEI 225 stock market prices (will be defined in erimail section). We focused on the modelling of
multivariate time-varying volatilities. The most widelged model is DCC one dEngle (2002 which captures the
dynamic of time-varying conditional correlations, comyréo the benchmark CCC moddsdllerslev(1990) which

retains the conditional correlation constant.

3Following Brooks (2002, the main advantage of the VAR is that there is no need to fypetich variables are the endogenous variables and
which are the explanatory variables because in the VAR ghdicted variables are treated as endogenous variablesisThach variable depends
on the lagged values of all selected variables and helpsitudag the complex dynamic properties of the data. Note thlecsion of appropriate
lag length is crucial. If the chosen lag length is too lardatiee to the sample size, the degrees of freedom will be redland the standard errors
of estimated coefficients will be large. If the chosen lag thnig too small, then the selected lags in the VAR analysis mapeable to capture
the dynamic properties of the data. The chosen lag lengthdheuree of the problem of serial correlation in the residua

4The CCC specification can be presented as:

H; = D{RD,, where,D; = diag\/m is a diagonal matrix with square root of the estimated unit@@ARCH variances on the diagon&l.is
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Figure 1 Time series plots of FTSE 100, S&P 500 and NIKKEI 225 stockketindices. We plot the daily level
stock market indices (left panel) and corresponding ret@iight panel) in the period January 01, 2003 to February
04, 2011.

The specification of the DCC model is as follows:

p

It :“+ Z‘L¢Srt7$+€ta t:].,...,T, & |Qlle ‘/V(07 Ht)7 (2)
=

& = (eukt fuse, &rt) = Hi '’z 2~/ (0,13), 3)

Ht = E(gtgt |Ql,1)7 (4)

where,r; is a 3x 1 vector of the stock market index retuw,is the error term from the mean equations of stock

market indices (EquatioB), z is a 3x 1 vector ofi.i.d errors andH; is the conditional covariance matrix. Equati®n

the time-invariant symmetric matrix of the correlation retuwith p; = 1.
In CCC model, the conditional correlation coefficients amstant, but conditional variances are allowed to vary in time
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can be re-written as follows:

UK t Huk ) @1 P sl |Tukt-s EUK t

rust | = | Mus +Zl G G, G| |fust-s| T | eust
S=

rIpt Hap @ B B3| | Nets €3t

To represent the Engle’s (2002) DCC-GARCH model for the psepof this study, let; = (rux, rust,rmt)’ be
a 3x 1 vector of stock market returns, such thals , rys andrjp are the returns of FTSE 100, S&P 500 and NIKKEI
225 indices, respectivelyi [, ,~ 4 (0,H).

The DCC-GARCH specification of the covariance matkiy, can be written as:

H; = DtR:Dy )

whereD; = diag(/huk, v/hust. v/hspt) is 3x 3 diagonal matrix of time-varying standard deviation froni-u
variate GARCH models; i.ehi; = w + aisft_lJrBi hit—1, i=UK, US, JP, andR = {pjj } is the time-varying condi-
tional correlation matrix.

The estimation procedure of DCC-GARCH model is based on tages. In the first stage, a univariate GARCH
model is estimated. In the second step, the vector of steizdal residuals) = riﬁt/\/ﬁ is employed to develop

the DCC correlation specification as follows:

R = diag(q[l%{z, .. ,q;ét/z) Qtdiag(qfft/z, . ,q;:it/z) ©)

whereQt = (qij,) is a symmetric positive define matrixQ; is assumed to vary according to a GARCH-type

process:

Q=(1—61—6)Q+ 610 1+ 6Q1 (7)

The parameter§; and 6, are scalar parameters to capture the effects of previowkstamd previous dynamic
conditional correlation on current dynamic conditionatretation. The paramete and 8, are positive and; +
6, < 1. Qis 3x 3 unconditional variance matrix of standardized residggds The correlation estimators of equation

7 are of the form:

Gij t
Vit
8

Pijt =



In the DCC model the choice @is not obvious ag) is neither a conditional variance nor correlation. Althbug
E(Utflfh/,l) is inconsistent for the target since the recursio@imloes not have a martingale representatigxelli
(2008 proposed theorrectedDynamic Conditional CorrelatiorcDCC) to evaluate the impact of both the lack of
consistency and the existence of bias in the estimated paeasof the DCC model dingle(2002. He showed that
the bias depends on the persistence of the DCC dynamic perathe

In order to resolve this issudjelli (2008 introduces theDCC model, which have the same specification as the

DCC model ofEngle(2002, except of the correlation proce®g is reformulated as follows:

Qu=(1—61—6)Q+ 610 10 1+ 6:Q1 (8)

wheren; = diag{Q;}/?ny.
To investigate the asymmetric properties of stock marketrns we introduce the conditional asymmetries in
variance.Cappiello et al(2006 estimate several asymmetric versions of the dynamic tiondi correlation models.

The version which we use is based on the following speciticati

n=p+y> ®r stea, t=1..T, &lo_,~A(0H)

Hy =DiRD; where D;=diag(y/hyt,/hzt,v/hat)

hi = @ +aigh g+ Wl o i 1+ Bhiia for i=UKUSJIP
R=Q'QqQr ! where Q =diag{,/0Lt,/ %zt /T3t }

Q= (1-61—0)Q+Bun1n_; + Q1.

3. Empirical results

In this section we initially employed a vector autoregresg\VAR) model to examine the relationship among
stock market returns of the three developped countries.n@atel is estimated on set of stationary variable. These
variables are returns in stock market prices for the Unitedylom (U.K), United States (U.S) and Japan.

Table3 reports the findings of the VAR(8) model (lags is selected b@ ériterion).

5seeAielli (2009 for further details.

SAielli (2009 showed that the lack of consistency of the three-step D@ ator depends strictly on the persistence of the parametisiag
the correlation dynamics and on the relevance of the innanstiThe bias is an increasing function of béttand6; + 6,. The parameter estimates
obtained from fitting DCC models are small, and close to zer@f@nd close to unit fob; + 6,.



3.1. Conditional variance and volatility analysis

This subsection presents the empirical results from symcnand asymmetric multivariate models. In the first
step the univariate GARCH(1,1) model for each stock markditied. We model the conditional variance as a
GARCH(1,1), EGARCH(1,1) and TGARCH(1,1). In the seconggtee symmetric multivariate GARCH(1,1) mod-
els, such as; Constant Conditional Correlation (CCC), thadmic Conditional Correlation (DCC), thmorrected
Dynamic Conditional CorrelationcDCC) and the asymmetric multivariate GARCH(1,1) modelghsas; aCCC,
aDCC and a&DCC are fitted.

Symmetric and asymmetric univariate GARCH analy3iable 4 reports the model estimates (panel A) and related
diagnostic tests (panel B) for the three models and for theetstock markets. Firstly, panel A of Talleshows
that the parameters in the conditional variance equatiomsalk statistically significant, except for thee’s in the
EGARCH model for the three markets. The estimated valyg @ARCH effect) is close to unity (in all models the
estimated values are greater than 0.90) and is significanédi% level for each model. This indicates a high degree
of volatility persistence in the U.K, U.S and Japan stockketreturns. Secondly, results given by the GARCH(1,1)
model assume that positive and negative shocks will haveahee influence in conditional volatilities forecasts. In
order to identify the asymmetry in conditional volatilgiewe fitted the univariate EGARCH(1,1) and TGARCH(1,1)
models. This asymmetry is generally reffered to as a "l@&rand a "Threshold" effects. The EGARCH(1,1) model
captures this "leverage" asymmetry and the TGARCH(1,1juzep this "threshold" asymmetfy.

The results showed that the asymmetric parametard is positive and significantly different from zero at the
5% level in the EGARCH(1,1) model, indicating that U.K, Uiglalapan stock markets exhibit a leverage effect with
positive shocks (good news) and significantly differentfroero at 1% level in the TGARCH(1,1) model, identifying
that the U.K, U.S and Japan stock markets exhibit a threg#ftddt with positive effect.

To select the adequate model for our data, we compare betWweehree models using three criteria; such as the
Log-likelihood, Akaike Information Criterion (AIC) and &warz Information Criterion (SIC). We showed that the
asymmetric GARCH model; TGARCH(1,1) has a superior gooslioééit for the data employed. For instance, AIC
in the TGARCH(1,1) is lower than in GARCH(1,1) and EGARCH(1lmodels.

"The EGARCH (Exponential GARCH) model dfelson(1991) is formulated in terms of the logarithm of the conditionalizace, as in the
EGARCH(1,1) model,

|&t—a] &-1
log(ht) = w+a——=+y———— +Blog(h_1).
g(hr) U YRS Blog(hk—1)
The parametrization in terms of logarithms has the obviousradga of avoiding non-negativity constraints on the paramset
The TGARCH (Threshold) GARCH model or GJR-GARCH model defing®losten et al(1993 andZakoian(1994 augments the GARCH

model by including an additional ARCH term conditional on #ign of the past innovation,

he=w+ag? 1+ 00 ,op&’1+Bh 1.
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Table 3
VAR diagnostic test.

FTSE 100 [p-value]

S&P 500 [p-value]

NIKKEI 225 [p-value]

Panel A: Univariate diagnostic test

Q(12) 3.8854 [0.421] 5.4819 [0.241] 3.2173[0.522]
ARCH test 85.192 [0.000] 73.997 [0.000] 53.224 [0.000]
JB test 811.82 [0.000] 1732.9[0.000] 964.66 [0.000]
Std.dev 0.0114 0.0128 0.0123

Panel B: Multivariate diagnostic test

Q(12) [p-value] 39.6760 [0.309] AIC -18.523

JB test [p-value] 2841.6 [0.000] SIC -18.321

Log-likelihood 19561.61

The VAR was estimated using eight lags (the lag was selected using the id@orr). p-values show the statistical significance

of the results.

Table 4
GARCH parameter estimates stock market indices for raw data
United Kingdom United States Japan
GARCH EGARCH TGARCH GARCH EGARCH TGARCH GARCH EGARCH TGARCH

Panel A: model estimates.
w 0.0078* —9.2720 0.0101 0.0112* —9.0095 0.0114* 0.0218* —8.9373 0.0244*
a 0.0894 1.0788 00080 00707 2.3070 —0.0078 00753 0.1645 00449
B 0.9055 0.9594 0.9267 0.9190 0.9616 0.9416 0.910r 0.9306 0.9091
yord 0.1266° 0.1064 0.0651 01055 0.2179 0.0562*
Log-likelihood  6875.8 6848.3 6900.5 6764.4 6734.5 6797.5 6497.1 6468.2 6504.5
AlC -6.5331 -6.5050 -6.5556 -6.4272 -6.3969 -6.4577 -6.1731 -6.1437 -6.1792
SIC -6.5250 -6.4916 -6.5449 -6.4191 -6.3834 -6.4469 -6.1650 -6.1303 -6.1685
Panel B: diagnostic test for standardized residuals.
Q(24) 21.1221 18.6651 19.0830 39.6830 34.7351 40.3153 22.6904 .6923 25.6935
p-value 0.6315 0.7696 0.7475 0.0231 0.0724 0.0197 0.5381 0.7681 688.3
Qs(24) 34.6176 37.0246 33.1795 37.9826 45.9568 31.3504 19.1083 .06G6% 14.5893
p-value 0.0424 0.0235 0.0593 0.0184 0.0020 0.0891 0.6386 0.0381 79D.8

Notes: The estimates are produced by the univariate GARCH(1,1), univariatREB@A,1) and TGARCH(1,1) models. The univariate variance estimates are
introduced as inputs in the estimation of the CCC, DCCe&@C models. The estimated coefficiendenotes the constant of the variance equatiorepresents the
ARCH term,f3 is the GARCH coefficienty andd are the asymmetric effects.

**,* and* indicate significance at 10%, 5% and 1%, respectiv@l{24) andQs(24) respectively represent the Ljung-Box Q statistics of order 24 computed on the
standardized residuals and squared standardized residuals. Value of the estimatgdrteef multiplied by 1¢ for the EGARCH model. Values in bold indicate
the selected model.

Panel B of Tablel depicts the Ljung-Box statistics computed on the standaddiesiduals and squared standard-
ized residuals. We showed that all #9624) andQs(24) values don't reject the null hypothesis of no serial cotieta

in the standardized residuals and squared standardizedatsat 1% level.

Symmetric and asymmetric dynamic conditional correlatioalysis. In the second step the symmetric and asym-
metric multivariate GARCH(1,1) models were estimated ideorto investigate the constant and time-varying condi-
tional correlation in the stock markets under study. To fis#h models, the standardized residuals of the univariate
GARCH(1,1) models specification (discussed in the first sfepur study) was employed for the estimation of the
symmetric models; CCC, DC@PCC and asymmetric models; aCCC, aDCGDEC. The DCC anaDCC esti-

mates of the conditional correlations between the valigsdiof the FTSE 100, S&P 500 and NIKKEI 225 returns are
11



Table 5
CCC diagnostic under raw data

Log-likelihood: -7233.3 AIC: 6.8872 SIC: 6.9194
Diagnostic test for standardized residuals.

FTSE 100 S&P 500 NIKKEI 225
Q(12) 25.9838 17.2378 13.8918
p-value 0.0107 0.14086 0.3076
Qs(12) 26.1324 17.1204 13.3307
p-value 0.0102 0.1451 0.3454

The Constant Conditional Correlation (CCC) modeBaflerslev(1990 assumes that the conditional variance for each rehyrn,
i=UK, US, JP, follows a univariate GARCH process. The specificatios is a

re =®o+ Z&l Dori_s+ &, & ‘QFlN A(0,Hy)

& = Htl/zzt, 7z~ A (0,l3)

H; = E(stst/ |§2171)7
wherert = (ruk t,fust, rJRt)/ is the vector of stock market index returgs= (&uk t, €ust. E‘]Rt)/ is the error term from the mean
equation of stock market indices (Equat®nz is a 3x 1 vector ofi.i.d errors andH; is the conditional covariance matrix, which
satisfies the following equation:

H: = DtRDy
. 1/2 ,1/2 ,1/2 - . . L . .

whereD; = diag (hUK_’t,hUSt,hJRJ, andR= {pjj}, for i,j=UK,USJP, is the unconditional (time-invariant) correlation
matrix. The off-diagonal elements of the conditional covariance matebgen by

Hij:hﬁ/zh}t/zpipi#J

e ** and* indicate significance at 10%, 5% and 1%, respectivel{12) andQs(12) respectively represent the Ljung-Box Q
statistics of order 12 computed on the standardized residuals anddgtemdardized residuals.

Table 6

Constant conditional correlation estimates under raw.data
Stock market returns FTSE 100 S&P 500 NIKKEI 225
FTSE 100 1 0.5692 (0.0149) 02583 (0.0212)
S&P 500 1 0.175T (0.0222)
NIKKEI 225 1

The table summarizes the estimated invariant correlations between thelJX and Japan stock markets, as they are produced
by the CCC model. Values in)(are standard error$*, ** and* indicate significance at 10%, 5% and 1%, respectively.

12



given in tables7 and8. Results showed that all coefficients are statisticallpisicant at 1% and 5% levels.

For the CCC model (Tableand®6), the correlation between FTSE 100 and S&P 500, FTSE 100 #KE 225
and S&P 500 and NIKKEI 225 are each positive and statisticainificant at 1% level, and the highest correlation
is between FTSE 100 and S&P 500 followed by the correlatiawéen FTSE 100 and NIKKEI 225. This indicates
the positive comovement between the three markets. Fariost we found that the co-movements between U.K
and U.S are higher than the co-movements between U.S and. Jdpwever, we remarked that estimated constant
conditional correlation coefficients of the sample stockkats do not seem to be informative on dynamic linkages
and co-movements between the abovementioned marketsallmtythe dynamic (pairwise) correlation structure of
U.K., U.S. and Japan stock markets, we employed the DCERGL models in trivariate framework.

For the DCC an@DCC models (Tableg and8), the estimated parametdisand 8, capture the effect of lagged
standardized shocksnt_lnt’fl, and '7{31'7?:1 and lagged dynamic conditional correlatiortd;_1, on current dy-
namic conditional correlations, respectively. We remdriteat these parameters are significant, and this statistica
significance in each market indicates the presence of tianging stock market correlations. Following the dynamic
conditional variance, the three markets under study predimilar behavior and the estimated conditional variance
shows a sharp spikes in the period between 2007 and 2008 (&xienom value of estimated conditional variance is
in October 21, 2008 for FTSE 100 returns, in October 16, 2@08he S&P 500 returns and in November 03, 2008
for NIKKEI 225 returns). This period is related to the Ws@bprimefinancial crisis. This financial crisis led U.K, U.S
and Japan capital markets to abrupt downturns, dramaticaiteasing systematic volatility.

We conclude that the estimates of the conditional variahased on DCC ancDCC models suggest the presence
of volatility spillovers in the U.K, U.S and Japan stock netrketurns.

As shown in Figure, we remarked also that the dynamic conditional correlatufithe three markets under study
show considerable variation, and can vary from the constamditional correlationsg;k _us, puk—Jp andpys_jp)
indicating that the assumption of constant conditionatelation for all shocks to returns is not supported empligica
We stated that during the period 2003-2006, correlatiohsdmn U.K. and U.S. decreased (58% to 38%)), as indicated
in Figure2. Whereas, after 2006 we remarked a substantial increaserefations between U.K. and U.S., it might
be due to the Afghanistan, Iraq and Liban wars and the amnmesidaprimefinancial crisis.

The diagnostic tests for standardized residuals of CCC havdeshown in Tabl® and those of DCC andDCC
models are shown in panel B of Tabl@ésaand8. Ljung-Box Q(12) and Qs(12) statistics for the residuals models
indicate no serial correlation in either the standardizsidualsQ(12) or the squared standardized residu@dél2),
inferring that the fitted models are appropriate for the éatgloyed.

To investigate the asymmetry in the conditional volatilig fitted the aCCC, aDCC andc®CC models. The

13



Table 7
DCC estimates under raw data

01 6 Log-likelihood AlIC
Panel A: model estimates.
Coefficient 0005218 0.992655 -7211.0 6.8679
Std.error 0.001416 0.002210
t-Stat 3.685000 449.1000
p-value 0.000200 0.000000
Panel B: diagnostic test for standardized residuals.
FTSE 100 S&P 500 NIKKEI 225
Q(12) 21.6339 16.2283 13.9273
p-value 0.04180 0.18100 0.30530
Qs(12) 25.7240 18.5131 13.3440
p-value 0.01170 0.10090 0.34450

Estimates of a symmetric version Bhgle(2002 dynamic conditional correlation model are computed. The specificetias

re = q30+zg:1q3srt_s+ & & |Qt "~ JV(O, Ht)

EUK t
& = (“—US’[) = Htl/ZZn 7z~ .4 (0,13)

EJPt
Hy =D{RD; where Dy =diag(\/hukt, /hust,/haer)
hit:(*l“'aigiz’t,l“'pihi,tfla i=UK,USJP

The dynamic conditional correlatid® = {pij }t is a time-varying matrix defined as

R=Q Q" where Q ! dlag{\/ﬁn/%zm/%s}
Q=(1-61—-6)Q+6in 11 ;+6Q 1 where n=D;lg.

Q is the unconditional covariance matrix pf The elements ofl; are{HIJ }t Vhichjepij wherepgi = 1. ***, ** and* indicate
significance at 10%, 5% and 1%, respectivel¥(12) and Qs(12 respectively represent the Ljung-Box Q statistics of order 12
computed on the standardized residuals and squared standardided|ses

results are reported in Tab® In the asymmetric case, we focused on the TGARCH(1,1)ebasmlel to model the
asymmetric behavior in the conditional volatilitisThe asymmetric dynamic conditional correlation estimaies

all significant at 1% level (as shown in Tal8le Based on the log-likelihood values and AIC criterion néed in the
last two columns of Tabl®, the asymmetricDCC (a€DCC) is supperior to the aCCC and aDCC. Moreover, as it
can be seen, the log-likelihood values and AIC criteria o€&Dand aeDCC are nearly equivalent, hence the choice

of model needs to be made on other grounds (see the followingestion).

8The results from Tablé indicate that TGARCH(1,1) model compared to GARCH(1,1) andARGH(1,1), achieves a significant improvement
in the log-likelihood function, AIC and SIC. As shown in Tabkl the TGARCH(1,1) model has the lowest AIC and SIC, and maximieddb-
likelihood value. For instance, the AIC values are -6.55661577 and -6.1792 for the FTSE 100, S&P 500 and NIKKEI 228rres, respectively.
The log-likelihood values are 6900.5, 6797.5 and 6504.5tHer FTSE 100, S&P 500 and NIKKEI 225 returns, respectively.e @pparent
superiority of the TGARCH specification compared with EGAR@tddels is that the former is more robust to large shocks. Thistion is
supported byNelson and Fostg1994. The authors showed that the TGARCH model is consistermasir of the conditional variance of near
diffusion processes.
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Table 8
correctedDCC (cDCC) estimates under raw data.

6, 6, Log-likelihood AIC
Panel A: model estimates.
Coefficient 0005282 0.992716 -7210.5 6.8674
Std.error 0.001430 0.002047
t-Stat 3.692000 484.8000
p-value 0.000200 0.000000
Panel B: diagnostic test for standardized residuals.
FTSE 100 S&P 500 NIKKEI 225
Q(12 21.6228 16.3030 13.9019
p-value 0.04190 0.17770 0.30700
Qs(12) 25.6085 18.5792 13.3573
p-value 0.01210 0.09920 0.34360

Aielli (2008 proposed a consistent DCEQCC) model. He suggested that the DCC correla@pishould take a slightly different
from than given in DCC model. The specification is similar to DCC one, ex@ie@; which becomes

Q=(1-6—6)Q+61n 10 1 +6Q-1
ni = diag{Q}2 ny

e and* indicate significance at 10%, 5% and 1%, respectively12) andQs(12) respectively represent the Ljung-Box Q
statistics of order 12 computed on the standardized residuals and dgtemdardized residuals.

Table 9
Asymmetric dynamic conditional correlation model undev data.
61 6, Log-likelihood AIC BIC
aCCC -7169.5 6.8293 6.8696
aDCC 000550.00162* 0.99130.00295* -7148.3 6.8111 6.8568
acDCC 000560.00162* 0.99130.00273* -7148.0 6.8108 6.8565

This table presents estimates coefficients for the asymmetric CCC [aCE€&3ymmetric DCC [aDCC] model and the asymmetric
cDCC [a<DCC] model. The specification is similar to those in DCC aixCC models (given in Tableg and8), except of the
conditional variances follow the asymmetric TGARCH modelGibsten et al(1993. The value in parentheses are standard
errors. * indicate significance at 1% level. Log-likelihood is the log-likelihood valueC Ad the Akaike information criterion.
Values in bold indicate the selected model.
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Figure 2 Time-varying conditional variances (left column) and citiodal correlations (right column) from DCC
model. The pictures on the left column:(a), (c) and (e) rédeconditional variances of U.K, U.S and Japan stock
market indices and those on the right column:(b), (d) ande@fprt conditional correlations among the same group of
stock market indices. The blue line (horizontal) is the ¢tantsconditional correlation estimate.

3.2. Forecast performance evaluation

To evaluate the volatility forecasting performance of elifint multivariate GARCH models and to compare be-
tween them, further loss functions can be used. The poptalistical loss functions employed to assess the accuracy
of competing models in the forecasting of volatilities owgaily trading horizon are Mean squared Error (MSE),
Mean Absolute Error (MAE), Mean Absolute Percentage EfRAPE) and Logarithm Loss Error (LLE). These loss
metrics are expressed as follows:

1M Ao 2
MSE = ng (Gmk— G) 9)
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MAE =+ 3 |Gni— 83| (10)
m=1
1 M Cmk — a-m
MAPE = ”; 52 (11)
1 M A2\72
LLE, = o > [10g(Gnk) —log(67)] (12)
m=1

whereM is the number of forecast data poings;x = k' Hmk denotes the portfolio volatility forecast generated by
modelk for daym; 62 is the actual volatility on dayn.

The assessment of the forecast performance of the varidaslityy models described in sectidh3is based on
out-of-sample one-day ahead prediction conditional waga and correlations. This forecasting study is done by
first removing the last 250 observations from our samplésstesm 02 January 2003 and ends 04 February 2011. A
forecast of volatilities and correlations are generatedtfe periodn+ 1, wheren is the size of the first sample to be
estimated starts 02 January 2003 and ends 19 February 2@16gtimation is based on three models: CCC, DCC
andcDCC). The second sample, starting 03 January 2003 and ending- 1, is used to forecast the volatility and
correlation ofn+ 2 based on the estimated models (CCC, DCC@C) for the second sample. The procedure of
estimation and forecasting steps is repeated 250 timekdavailable sample from 02 January 2003 to 04 February
2011° More specifically, we produce the 250 one-day ahead foregaswhere¢n, m=n+1,...,n+ 250 is the
forecast of the conditional variance.

The actual volatilityg? is unobservable. The use of squared returns as a proxy fealaglatility is used in the
literature (se&ang et al (2009, Sadorsky(2006 andWei et al.(2010). In our empirical study, the proxies of actual
volatilities are as follows: for forecasts based on the tergld return series (original stock market return serigs),
proxied the actual volatility by the squared retunrs,

Table 10 presents the forecast accuracy statistics that consisteofriean of four loss functions: MSE, MAE,
MAPE and LLE. In terms of these criteria and based on symmatddels, we find that DCC model produces smaller
values than those produced by CCC amiCC. In terms of these statistics and basing in asymmetridetso the
a-cDCC model produces the smallest values. Moreover, we regdatthkat all loss functions values produced by

asymmetric models are smaller than those calculated by gyritnones. In summary, we can conclude that, in our

9For instance, forecasting the DCC model is as follows: thigairsample consists of the first 1862 daily observations, 32 January 2003
to 19 February 2010. The last 250 trading days constitutedgple for which we compute one-day ahead forecasts. Weineag¢stl the DCC
model basing on the initial sample every day using a recursitaadgall estimations and forecasts are computed with Oxbte6). After that,
we computed the conditional variance and conditional cati@i forecast values. These forecast values are used tauteitie loss functions of
the weighted portfolio defined before.
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Table 10
Volatility forecasts performance.

Symmetric models Asymmetric models
CCC DCC cbCC aCccC abCC a-cDCC
MSE  0.16923 0.15971 0.15986 0.09237 0.08652  0.08639
MAE  0.40981 0.39822 0.39844 0.30178 0.29195  0.29170
MAPE 313.908 304.884 304.990 221.732 214.423  214.199
LLE 111.794 111.208 111.220 105.430 104.763 104.744

The table reports the loss functions over the 250 forecasting obsewdionthe symmetric and asymmetric dynamic
conditional correlation models. Th8SE MAE, MAPE and LLE of the weighted portfolio are computed as fol-

lows: MSE = M~13M (cm‘,kfgﬁgz, MAE, = M715M . |Gnk— 55|, MAPE = M~13M . |(Gmk—52) /52| and LLE, =
M*lz,’\r"bl [Iog(cmvk) — Iog(%rzn)]z, whereM is the number of forecast data pointd & 250); ¢y denotes the volatility fore-

cast of the portfolio constituted of three stock market indices and geaeogt modek for daym, it is defined by equatiot4; §2m
is the actual portfolio volatility on dayn.

forecasting study, asymmetric models produce more aczwatility forecasts as compared to those models with

symmetric conditional volatility.

3.3. Application to Value-at-Risk

In this section, we present a methodology allowing us to agmphe VaR of diversified portfolio. A portfolio

with weightk; in stock market index has return as

P =k'r (13)

wherery = (ruk t,fust, rJRt)l denotes the vector of stock market returns of FTSE 10R{), S&P 500 (ys;) and
NIKKEI 225 (rjpt). K = (kuk, Kus, K3p) = (0.27,0.40,0.33) is the weight vector of the three given indicés.

The portfolio variances are as follows

G= KIHtK (14)

whereH; is the conditional covariance defined in sectibn

The multivariate GARCH-based VaR estimatesdatay holding periods are computed as follows:

VaR, (n,a) = 0K Hesi + Za /G (15)

10These weights are computed using fhdunction portfolio.optim of the PerformanceAnalytics R package, which computes an efficient
portfolio from the given return series in the mean-variareese. The computed portfolio has the desired expected retwrmo other portfolio
exists, which has the same mean return, but a smaller variance.
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where the argumenty) of VaR is used to denote the time horizag, denotes the corresponding quantile which
depends on the chosen distribution. For instance, when eingpa 99% VaR using normal distribution, = 2.33.
Gyl = (K'Ht+| k)Y is the square root of the daily conditional variance foreofithe portfolio generated from model
k (CCC, DCC,DCC), made at timé—+1. . is the conditional mean forecast at timne |, generated from VAR(8)

model.

3.3.1. Backtesting VaR measures
In order to analyze our results implied by different timeyiag volatilities models, we use the above estimation
to compute one-day ahead out-of-sample VaR. We performeathkidsting analysis based on likelihood ratio test

(Kupiec (1995 andChristoffersern{1999) and dynamic quantile regression tdsh@le and Manganel{2004).

Unconditional coverage Kupiec (1995 developped the likelihood ratio te&tlR c as follows:
Letn; = z{‘gl 1; be the number of days ovemg period that the portfolio loss was larger than the VaR egtima

where

1 if re1<VaRi|g

0 if re1>VaRi1 g

Ty =

n; ~ %(np, M) is a Binomial variable representing the numbereateedancesr exceptionsn the sample of
lengthng. The null hypothesis of the failure probability, is tested against the alternative hypothesis that theréail
probability differs fromrp.1* The LR statistic is

M

LRuc= —2In[(1— m)™ ™7™ +2In {(1—:1)()n1] (16)

o” Mo
Asymptotically,LRyc ~ x?(1).
Conditional coverage.Christoffersen(1998 developped a likelihood statistic to test joint assumpiidé uncondi-

tional coverage and independence of failures. He testsuléypothesis of independence against the alternative of

first-order Markov structure ofl. 1}, with transition matrix

Mo 1-mma

1-mo T2

11The null hypothesis foKupiec (1995 test is,Hq : 1= ny/ny = 1, wherert is the expected proportion of exceedances, which equals the
desired coverage levat (usually equal to 1% and 5%).
12The null hypothesis fo€hristoffersen(1999 test is,Hg : oo = 1.
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wherer; = p(1y,1 =i | 1y =i),i = 0,1. Letn;j be the number of observationskf ;1 assuming valuefollowed
by j, fori,j = 0,1; andr; = nij/ 5 j nij is the corresponding probability. Hence, we ha@ge= no1/(noo -+ no1) and

fm1 = ng1/(Mo-+ N11). The statistic of the test is given by

LRse = LRyc+ LRind ~ x2(2) 17)

where

LRng = —2In[(1— m)™ ™ a™] +2In[(1— fipa) "0 (1 — fag) MO}
Asymptotically,LRing ~ x2(1).

Dynamic Quantile.Engle and Manganell[2004) proposed the dynamic quantil®Q) test to correct for the inef-
ficiency in the conditional coverage test Ghristoffersen(1998. They defined an indicator functiodit;(a) =

]l{rt<VaR<a)‘QH} — a to test the VaR of long position as follows:

_ 1-a if rg1<VaRga
Hitey1(a) = v rila (18)
—-a, else

Engle and Manganel(R004) suggested to test jointly the following hypothesis:

E(Hitir1) =0, (1)
Ho .
Hitir1 is uncorrelated with variables included in the informatsen. (2)

These two tests (1) and (2) can be done using artificial regneblit;. 1 = X 18 + U1, whereX; 1 is aN x K
matrix whose first column is a column ones and remaining coBiare additional explanatory variablés.

UnderHg, Engle and Manganel(2004 show that the dynamic quantile test statistic is given by

_ BowsXXPois _

w1 o "X (19)

DQ

The statistical adequacy of VaR forecasts is obtained byptégious tests. It is well-known that these tests have
limited power in distinguishing among various models foRVaJsing these metrics, we cannot conclude whether

an adequate model is more accurate than another one. Lag®hmsrepresent an alternative approach that can be

13\We include five lags oflit; and the current VaR as explanatory variables. HeHie — (l, Hit;_1, Hit;_», Hit;_3, Hit;_4, Hit;_s, VaR(a))
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Table 11
Daily VaR forecasts.

Model Mean VaRo-level

1% 25% 5% 10%
Symmetric models
CCC 1.48782 1.25373 1.05289 0.82008
DCC 1.46673 1.23595 1.03796 0.80845
cDCC 1.46716 1.23632 1.03827 0.80869
Asymmetric models
aCCcC 1.27590 1.07515 0.90292 0.70327
aDCC 1.25483 1.05739 0.88801 0.69166
a<cDCC 1.25426 1.05692 0.88761 0.69135

Notes: The table presents the out-of-sample daily VaR of the weightedlmnbnsisted of three stock market indices (FTSE 100,
S&P 500 and NIKKEI 225). We used quantile for normal distribution. ¥alin bold show the selected model for better forecasts.
used to compare modelsopez(1998 suggested a loss function based on regulatory needs. lgeged measuring
the accuracy of VaR forecasts on the basis of distance betaleserved returm;, and forecastefaR values. He

defined a penalty variable as follows:

2
1+ (Ft+1 —VaR1 | ) , it 1 <VaRy1 g

0, if rep1>VaRi1 o

LFty1 =

In our study we computed the loss functibR as a sum ofF 1, witht =0,...,ng.

Table 11 depicts the out-of-sample mean daily VaR of the weightedfgito consisted of the FTSE 100, S&P
500 and NIKKEI 225 stock market returns. We remarked thattb®CC model yields the lowest average daily VaR
estimates at 1%, 2.5%, 5% and 10% levels. The backtestingsismaonsiders a comparison over the last 250 days
(from February 19, 2010 to February 04, 2011) and focuseslynan exceptions or violations, i.e. the number of
times in which the portfolio returns underperform the VaRasae, and.R,¢, LR;c andDQ tests statistics. We also
calculated the failure probability and statistic loss fimts suggested byopez(1998. Tables12 and13 present
unconditional, conditional and dynamic quantile testistias. The results showed that symmetric and asymmetric
models have been rejected by R, LR.c andDQ tests. Hence, these models are slow at updating the VaRsvalue
when market volatility changes rapidly.

For symmetric models, at 1% significance level, CCC, DCC eD@C models provide the same number of
violations and failure probabilities. The same remark i@vghin case of asymmetric models. The results in Tables
12 and 13 showed that all symmetric models produce the lowest numbeotations and failure probabilities. For
instance, we identify 13 and 23 violations and 5.22% and%®.p3values for the DCC model at 1% and 5% level,

respectively. While, for the asymmetric DCC model we find 18 8t violations and 7.22% and 12.44% p-values at
21



Table 12
Summary results for daily VaR diagnostic tests in symmeise.

Exeedances Fail. prob. (%) LRy LRing LRcc DQ LF
1% daily VaR
CccC 13 5.22 22.403 94.587 116.991 93.013 21.728
DCC 13 5.22 22.403 94.587 116.991 93.538 22.103
cDCC 13 5.22 22.403 94.587 116.991 93.441 22.087
2.5% daily VaR
CccC 18 7.22 41.188 120.452 161.640 121.155 31.706
DCC 18 7.22 41.188 120.452 161.640 121.685 32.149
cDCC 18 7.22 41.188 120.452 161.640 121.586 32.131
5% daily VaR
ccc 21 8.43 53.960 129.689 183.649 231.252 40.484
DCC 23 9.23 63.003 136.722 199.726 340.902 42.967
cDCC 23 9.23 63.003 136.722 199.726 340.788 42.948
10% daily VaR
ccc 33 13.25 113.481 173.093 286.574 391.790 61.424
DCC 35 14.05 124.484 178.564 303.049 519.173 63.944
cDCC 35 14.05 124.484 178.564 303.049 519.110 63.924

Notes: The table presents the evaluation of out-of-sample daily VaR fevalghted portfolio (consisted from three stock market
indices) generated by symmetric models. it reports test statistics ov@blastays (February 19, 2010 to February 03, 2011).
Fail. prob.: The failure probability.R,c: The LR test of unconditional coverageR;,q: The LR test of independenceR..: The
joint test of coverage and independence. DQ: The Dynamic Quantild_testhe loss function. Values in bold show the selected
model for better forecasts.

1% and 5% level, respectively.

As shown in Tabled2 and 13, we also reported theF criterion, which facilitates the selection of optimal VaR
model for risk manager. It is clearly that CCC and aCCC mopgrigide the lowesLF values at 1%, 2.5%, 5% and
10% levels. For symmetric volatilty models, the study idfsag the CCC model as the best performing model for a
firm, followed bycDCC and DCC models. For the asymmetric volatility models jaemtify the aCCC model as the
best performing model, followed by DCC aeBhCC models. However, we remarked that DCC aBbCC models

provide approximately the same performance.
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Table 13
Summary results for daily VaR diagnostic tests in asymmetise.

Exeedances Fail. prob. (%) LRyc LRing LRing DQ LF
1% daily VaR
aCCC 18 7.22 41.188 120.452 161.640 116.833 29.947
aDCC 18 7.22 41.188 120.452 161.640 116.352 30.462
a<DCC 18 7.22 41.188 120.452 161.640 116.394 30.470
2.5% daily VaR
aCCC 21 8.43 53.960 130.774 184.734 182.956 38.503
abDCC 24 9.63 67.671 142.213 209.884 244.406 42.074
a<DCC 24 9.63 67.671 142.213 209.884 244.437 42.083
5% daily VaR
aCCC 30 12.04 97.505 162.832 260.338 361.907 53.707
aDCC 31 12.44 102.758 166.311 269.069 375.634 55.327
a<DCC 31 12.44 102.758 166.311 269.069 375.646 55.338
10% daily VaR
aCCC 37 14.85 135.752 183.844 319.597 576.566 70.127
abDCC 38 15.26 141.483 186.050 327.534 607.452 71.764
a<DCC 18 15.26 141.483 186.050 327.534 607.448 71.776

Notes: The table presents the evaluation of out-of-sample daily VaR favéighted portfolio (consisted of three stock market
indices) generated by asymmetric models. it reports test statistics ov2bladays (February 19, 2010 to February 03, 2011).
Fail. prob.: The failure probability.R,c: The LR test of unconditional coverageR;,q: The LR test of independenceR..: The
joint test of coverage and independence. DQ: The Dynamic Quantild_testhe loss function. Values in bold show the selected
model for better forecasts.

4. Wavelet-based approach

In this section we employed a new approach, called wavedgisform'* We used a discrete wavelet trans-
form (DWT), more specifically, we adopt the maximal overlagctdéte wavelet transform (MODW)in a Multi-
resolution Analysis (MRA) framework8

In our study, we sample the daily stock market returns aeudifit scalej as follows: Dy (2-4 days),D, (4-

8 days),D3 (8-16 days),D4 (16-32 days)Ds (32-64 days)Dg (64-128 days)D7 (128-256 days)Dg (256-512
days)!’ We used Daubechies Least Asymmetric wavelet transformatidengthL = 8 via LA(L) to obtain multi-

scale decomposition of the return series. The MRA yieldsdatiti@e decomposition through MODWT given by

14The wavelet transform has two types of transform, namely,jcoats wavelet transform (CWT) and discrete wavelet trams{®WT). Since
most of the time series have a finite number of observationsjsheete version of wavelet transform is used in finance and@uwic applications.
The wavelet transform decomposes a time series in terms of semedary functions, called, waveletg; r (t) = %w[(t —u)/1]. Where%

is a normalization facton is the translation parameter amds the dilation parametery(t) must fulfill several conditions (se&encay et al.
(2002 andPercival and Walde(2000): it must have zero mearf,’s @ (t)dt = 0, its square integrates to unit! ¢?(t)dt = 1 and it should also

satisfy the admissibility condition, @ Cy = f3* Wd)\ <+ whereW(A) is the Fourier transform afi(t), thatisW(A) = [12 g(t)e 1 ldt.

Following the latter condition we can reconstruct a timeeseit).

15We use the MODWT because we can align perfectly the details fitee decomposition with the original time series. In compariso
with the DWT, no phase shift will result in the MODW1TGEncay et al(2002). Fore more information about the MODWT, please refer to
Percival and Walde(200Q andGengcay et al(2002).

18For more details, seallat (1989 andPercival and Walde(2000.

1"We decompose our time series up to scale 8 (staldog, [(T —1)/(L — 1)+ 1], whereT is the number of observations of stock market
returns T = 2112), and_ is the length of the wavelet filter LA(8)). We used thaveletsR package for the MODWT.
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X(t) = 3k&x@k®) + 3 Sedi®), j=1,....
=S(t) +Dy(t) +Dy-a(t) +...+Da(t)

(20)

whereS;(t) refers to the smooth series and it represent the approximéiat captures the long memory term
propertiesDj(t), j = 1,...,J. refers to details series, which represent the contribuifidnequencyj to the original
series.

The wavelet detailDj(t), captures local fluctuations over the whole period of tintéeseat each scale, while the
wavelet smooth$;(t), gives an approximation of the original series at sdale

After computing the MODWT crystals (details and smooths)deery stock market return, and from the decom-
posed seried], ..., Dg, Sg) we classify the short, medium and long term series as fali@®hort term= D3 + Dy +
D3; Medium term= D4 + D5 + Dg; Long term= D7 4+ Dg + S. This choice of time-horizon decomposition is used
to classify three types of investors or traders, such ag,gimedium and long term ones, i.e. to analyze the behavior
of investors among different time-horizons. Here the higlieequency component Short terBy + D, + D3 repre-
sents the short-term variations due to shocks occurrindiateascale of 2 to 16 days, it provides daily and weekly
spillovers, the next component Medium tery, + Ds + Dg represents the mid-term variations at time scale of 32 to
128 days, it defines the monthly and quarterly spilloverd,tae third component Long ter®; + Dg + Sg represents
the long-term variations of 256 days and more, it providesahnual spillovers. The main advantage of this classi-
fication is to decompose the risk and the volatility spille/ato three investment horizons. Therefore, we focus in
three sub-spillovers. All market participants, such asil@grs, traders and investors, who trade in stock markets (
our study, U.K., U.S. and Japan stock markets) make desisieer different time scales. In fact, due to the different
decision-making time scales among investors, the timghvarvolatilities and correlations of stock market indices
will vary over the different time scales associated withstinborizons (investment strategies).

In order to analyze the comovements in returns and volaslithe analysis is based on new time series: Short
term, Medium term and Long term) between the three markdisedebefore and to investigate the dynamics and
spillover effects, we applied a trivariate dynamic coraiil correlation (CCC, DCC areDCC) model. We proceed
the same specifications presented in se@i@to model the conditional mean and the conditional varianweditted

a VAR(1)-MGARCH(1,1) to the three new series as follows:

X = Co+AX_1+ U
(21)

Uy =Dz

!

whereX; = (FTSE-Shokt S&P500-Shogt NIKKEI-Short;) , ¢p is a (3 x 1) vector of constantsA is (3 x 3) co-
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Table 14
Unit root tests of wavelet components.

FTSE 100 S&P 500 Nikkei 225
ADF test KPSS test ADF test KPSS test ADF test KPSS test
Short term —42.986" 0.006f —46.451" 0.019 —43.018 0.008
Medium term —54.386 0.016° —52.996" 0.013 —49.944 0.004
Long term —33.796" 0.520° —34.725% 0.486 —47.833 0.648
Notes: The table reports results of the augmented Dickey-Fullddickéy and Fuller (1979) and

Kwiatkowski—Phillips—Schmidt—ShinK{viatkowski et al. (1992) tests. The KPSS test contains a constant and not a time
trend. While, the ADF test without constant and trend. The null hypotldAF test is that a time series contains a unit root,
I(1) process, whereas the KPSS test has the null hypothesis of statiol{@ityrocess.

* indicate the rejection of the unit root null at 1% significance level.

efficient matrix,u; is (3 x 1) vector of error term from the mean equations of decomposeessandz refers to a
(3x 1) vector of independently and identically distributed esror

To ensure the stationarity of our reconstructed seriesr{®on, Medium term and Long term series), we applied
the ADF and KPSS tests to our decomposed data. As shown ie Tabll test statistics are statistically significant
at 1% level, therefore indicating stationarity.

Table 15 presents estimates from two types of conditional volgtiégressions: (i) a univariate GARCH model,
and (ii) a univariate EGARCH model for each market and at ¢éiastscale. A GARCH(1,1) model and EGARCH(1,1)
model proved adequate for capturing conditional heteesbticity. As shown in Tablé5 the univariate GARCH
models display more statistically significant coefficiethin a univariate EGARCH ones. In terms of GARCH model,
thea andp coefficients (ARCH and GARCH effects, respectively) arafpasand statistically significant in all stock
markets, indicating highly persistent volatility dynamia short-term horizon (lower scales/ higher frequencies)

The time scale constant conditional correlations amongthtee stock market returns from the CCC model are
summarized in Tabld6. The results indicate that the highest constant correldtietween markets is shown in
medium-term horizon, which corresponds to monthly and tgulgrtime horizons. Therefore, the comovements
between the three markets are higher in medium horizon tharoeements in short or long horizons. For instance,
the correlations between U.K. and U.S. are as follows: 52.68%0% and 65% for short, medium and long term,
respectively, and the correlations between U.S. and Jaarld%, 55.7% and 35.1% for short, medium and long
term, respectively. Furthermore, we remark that time scafestant correlations between U.K. and U.S. are stronger
than the others in all time scales.

Parameter estimates for the conditional variance-cavegi@quations in the DCC ar®CC models are reported
in Table17. Coefficientsf; and 6, reflect the ARCH and GARCH effects, respectively. The edtdm@arameters

of the DCC andcDCC models are statistically significant at 1% level in aihdi scales, and the suéi + 6, close
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Table 15
Univariate GARCH(1,1) estimates for different time horigo

W a B y Log-likelihood  AIC

Short term

FTSE 100 o076 0.1056° 0.8896° -2638.6 2.5027
S&P 500 00089* 0.0757 0.9149 -2740.2 2.5989
NIKKEI 225 0.0188 0.0868 0.8992 -3045.3 2.8881
Medium term

FTSE 100 8657 0.1172 574.33 -0.5419
S&P 500 08863 0.0944 658.69 -0.6268
NIKKEI 225 0.9542 0.0014 -156.81 0.1503
Long term

FTSE 100 —0.0508 10027 2.5384 2950.9 -2.7907
S&P 500 —0.0608 10209 22234 2953.6 -2.7932
NIKKEI 225 —0.0485 10232 2.2854 2008.5 -1.8982

Notes: The table summarizes the estimated coefficients produced byitagate GARCH(1,1) model for short and medium term
horizon series and EGARCH(1,1) model for long term horizon sefiiég. univariate variance estimates are introduced as inputs
in the estimation process of the CCC, DCC abiCC models. The estimated coefficientdenotes the constant teron,andf are

the ARCH and GARCH terms, respectively, in the conditional variancat@ns,y is the asymmetric parameter.

The above estimates are for the sample period of 02 January 2003 &h8daFy 2011. Significance levels at 1%, 5% and 10%
are denoted by, ** and***, respectively. Log-likelihood is the logarithm maximum likelihood functiotuea AIC is the Akaike
information criterion.

Table 16
Constant conditional correlation estimates under wavetetn series
Short term Medium term Long term
FTSE 100 S&P 500 NIKKEI FTSE 100 S&P 500 NIKKEI FTSE 100 S&P 500 NIKKEI
225 225 225

FTSE 100 1.000 827 0.242 1.000 0689 0.570° 1.000 0650 0.283
S&P 500 1.000 a30 1.000 0557 1.000 0351
NIKKEI 225 1.000 1.000 1.000

The table reports the estimated time scale conditional correlations betwebnkthd).S. and Japan stock markets, as they are
produced by the CCC modeél.indicate significance at 1% level.

to unity for the two models and at each scale, implying higrsiséent volatility in short, medium and long term
horizons. Based on DCC model, the degree of persistéhce 6., are 0.997, 0.894 and 0.995 for short, medium
and long term, respectively. Based ddCC model the degree of persistence is 0.997, 0.995 and 0999 short,
medium and long terms, respectively. The short run persistef shocks on dynamic conditional correlations is the
greatest for high scales (0.594 and 0.831), while the laigag run persistence of shocks to conditional correlation
is 0.997 (0.004+0.993) for low scales. We remark also thasttort run persistence shocks increases by scales, while
the long run persistence shocks decreases among scales.

The scale spillover effect in volatility provide strong pistence for all components (Short term, Medium term
and Long term), this phenomenon result from the trading t#dogeneous group of investors. In fact, at finest scales
(Short term component), market participants are hedgiradesfists, speculators and market makers. Therefore, they
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Table 17
Estimates of the multivariate GARCH(1,1) models (DCC ab€C) for different time horizons.

61 6, Log-likelihood AIC
DCC model
Short term 0004457(0.0017)* 0.993156(0.0032* -8002.8 7.59530
Medium term 0719497(0.0066)* 0.1752990.0078* 14834.1 -14.0408
Long term 05946830.0269* 0.400597(0.0277)* 40909.8 -38.7454
c¢DCC model
Short term 0004560(0.0016* 0.9931990.0027)* -8002.2 7.59470
Medium term 07634990.0055* 0.2316450.0056* 15229.6 -14.4155
Long term 0831890(0.0242* 0.1675280.0244* 43104.5 -40.8247

Notes: This table reports the estimates parameters of DCECR2GE models. Significance levels at 1%, 5% and 10% are denoted
by *, ** and***, respectively. Log-likelihood is the logarithm maximum likelihood functiotuea AIC is the Akaike information
criterion.
trade the three markets (U.K., U.S. and Japan) simultahedCisn and In(2003 showed that speculators and market
makers intensively trade to realize a quick profit (or mirienioss) over short time scales. In the intermediate scales
(mid-horizon; Medium term component), the main tradersiaternational portfolio managers who mainly follow
index tracking trading strategieim and In (2003 showed that trades typically occurs on a weekly to monthly
basis, with little attention paid to daily prices. At highases (Long term component), the main traders are central
banks which operate on long-term horizons and often conkidg-term economic fundamentals for their strategy.
The forecasting performance of the CCC, DCC aBD€C models at each scale is evaluated by comparing the four
statistical loss functions defined in secti®r2. This forecasting study is based on recursive out-of-saropk-day
ahead forecast of variance-covariance matrix of dynammzlitional models at each time horizon, i.e. Short term,
Medium term and Long term components. The "wavelet" vatptihodels are estimated based on 1863 observations
corresponding to the period 02 January 2003 to 19 Februdr.2lhe variables used in the models are: Short term,

Medium term and Long term components. We compare the accofacavelet volatility forecasts based on:

LM , 1/2
RMSEk(j):{M > [amk(i) = 62(1)] } ;
m=1

and
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Table 18
One-day out-of-sample volatility forecasts performaraedifferent time horizons.

Forecast loss functions

RMSE MAE MAPE LLE
Panel A: Short term
CCC 1.488636 0.725253 5.076901 8.356644
DCC 1.488659 0.723788 5.050991 8.336478
cDCC 1.489430 0.718159 4.958577 8.273333
Panel B: Medium term
CCC 0.139242 0.082996 1.001749 24.867650
DCC 0.139241 0.082996 1.001749 24.865190
cDCC 0.139241 0.082996 1.001749 24.864380
Panel C: Long term
CCC 0.015626 0.012123 0.999986 73.91793
DCC 0.015626 0.012123 0.999986 73.91789
cDCC 0.015626 0.012123 0.999986 73.91788

Notes: The table summarizes the four Ioslszmetrics estimates at different ionzons. The RMSE is defined
as; RMSE(]) = {34, [anici)— 83(1)12/M} ", the MAE is defined as; MARL) = Y [anu(i)— 63()| /M,
the MAPE is defined as; MAH&] = {sM . lGnk(i) —62(i)|/|64(])|} /M and the LLE is defined as; LLEj) =
M [Iog(cm,k(j))flog(am( ))] /M, where,¢yk(]) is the wavelet volatility forecast generated by madklédr daymand scale
j and62(j) is the actual volatility on dayn at scalej.

M 22112
LLE(j Z [log(Gmk(j)) —log(Gm(i))] "

M &,

wheregn(]) is the wavelet volatility forecast generated by mddégr daymand scalg andé?(j) is the actual
volatility on daym at scalej. The actual wavelet volatility is not observable, therefare define three proxies of
62(j), such as(Short termj, (Medium term§ and (Long term§, for the short-term horizon, medium-term horizon
and long-term horizon, respectively.

Table18 summarizes the results of the one-day out-of-sample libfdtirecast loss functions. We observe that,
at low scales (Short term component) and in terms of MAE, MAdPE LLE criteria, thecDCC model provides
better volatility forecasts, it has lower loss functionued than CCC and DCC models. While, at intermediate scales
(Medium term component) and high scales (Long term compipritie three dynamic conditional correlation models
show similar accuracy in one-day out-of-sample forecabts\alues of RMSE, MAE and MAPE are equals).

Table 19 presents mean WVaR estimates for each of the dynamic conditaorrelation models under 99%,
97.5%, 95% and 90% confidence levels over the out-of-sangslepfrom February 22, 2010, to February 04, 2011.
This basic statistic can be shown as the preliminary unaledatg of average performance during the forecasting

period before the implementation of backtesting tests aarket risk loss criteria. As shown in Takl®, the WVaR
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Table 19
Daily WVaR forecasts.

Mean WVaRa-level

1% 25% 5% 10%

CCC model

Short term 1.7684 1.4902 1.2514 0.9747
Medium term 0.0381 0.0321 0.0270 0.0210
Long term 0.0025 0.0021 0.0018 0.0014
DCC model

Short term 1.7641 1.4865 1.2484 0.9723
Medium term 0.0381 0.0321 0.0270 0.0210
Long term 0.0025 0.0021 0.0018 0.0014
c¢DCC model

Short term 1.7455 1.4708 1.2352 0.9620
Medium term 0.0381 0.0321 0.0270 0.0210
Long term 0.0025 0.0021 0.0018 0.0014

Notes: The table presents the out-of-sample daily VaR of the weightedlmetross wavelet scales. We used quantile for normal
distribution.

estimates produced by tlt®CC model at short-term horizon (low scales or high freqies)are smaller than those
of CCC and DCC models in 99%, 97.5%, 95% and 90% confidencéslet®r instance, at 99% confidence level,
the average WVaR is 1.7455 for the cDCC model, while those d2@ad DCC are 1.7684 and 1.7641, respectively.
We remark also, that WVaR at medium-term horizon (internmedézales) and long-term horizon (high scales or
low frequencies) produced by the three models are equalgafth confidence level, 99%, 97.5%, 95% and 90%.
However, the mean WVaR decreases from lower scales to higies; such that, Short term component (low scales/
high frequencies) provides high WVaR estimates, followedvmsdium term (intermediate scales) component and
Long term (high scales/ low frequencies) component, atadfidence levels.

To accurately comparing the forecasting ability of the riwred models in terms of WVaf€ backtesting diag-
nostic tests: unconditional coverageKiipiec (1995, conditional coverage d€hristoffersen(1999, and dynamic
guantile ofEngle and Manganell[2004) are introduced and used for determining the accuracy okleawmodel-
based VaR measurements. We used also, the regularity lestofio of Lopez (1998 based on wavelet market risk

(WVaR) defined before. It is defined in wavelet case as follows:

18The multivariate GARCH-based WVaR estimate for one-day ahemtésts are defined as follows:
VaI:{<+m(j) = K’dt+m + 2 Gim(j)-

wherez, denotes the normal quantile, d,m is the wavelet mean one-day ahead forecast estimate computedebgsting VAR(1) based on
wavelet components series. The wavelet weighted portfeliarn isdtptf = K/dli d = (dUK,[, dust, dJP.t) denotes the vector of wavelet return
components of FTSE 10Qik (), S&P 500 @yst) and NIKKEI 225 @jpt), K = (Kuk, Kus, Kap) is the vector of weights in the portfolio.

G(j) = k'H(j)k, whereH, (j) is the wavelet conditional variance-covariance matrix aefiim sectior.3. Briefly, the wavelet conditional mean
and wavelet conditional variance-covariance estimatesacelated from forecasting the model defined in equalibn
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Table 20
Summary results for daily WVaR diagnostic tests.

Exceedances  Fail. prob. (%) LRy LRing LRec DQ LF(j)
1% WVaR Cccc
Short term 7 2.81 533 58791 64325 68020 68.020
Mediumterm 88 35.34 49078 310040 800318 740416 96.628
Long term 98 39.35 57829 329860 901689 940457 99.037
DCC
Short term 7 2.81 533 58791 64325 67173 8.723
Mediumterm 88 35.34 49078 310040 800318 740416 96.628
Long term 98 39.35 57829 329860 901689 940457 99.037
cbCC
Short term 7 2.81 533 58791 64325 68115 8.857
Mediumterm 88 35.34 49078 310040 800318 740416 96.628
Long term 98 39.35 57829 329860 901689 940457 99.037
25%WvaR CCC
Short term 11 4.41 1960 83318 99278 67001 14.978
Mediumterm 90 3.61 50812 312373 818685 760083 98.894
Long term 98 39.35 57829 329860 901689 940457 99.044
DCC
Short term 11 4.41 1860 83318 99278 65107 15.003
Mediumterm 90 36.14 50812 312373 818685 760083 98.893
Long term 98 39.35 57829 329860 901689 940457 99.044
cbCC
Short term 11 4.41 1560 83318 99278 67182 15.199
Mediumterm 90 36.14 50812 312373 818685 760083 98.893
Long term 98 39.35 57829 329860 901689 940457 99.044
5% WVaR Ccc
Short term 16 6.42 3364 110467 143731 101254 23.170
Mediumterm 94 37.75 53897 314791 853588 7821788 103.126
Long term 99 39.75 58071 330707 910879 950355 100.049
DCC
Short term 16 6.42 3264 110467 143731 98500 23.204
Mediumterm 94 37.75 53897 314791 853588 782788 103.126
Long term 99 39.75 58071 330707 910879 950355 100.049
cbCC
Short term 16 6.42 3364 110467 143731 101542 23.457
Mediumterm 94 37.75 53897 314791 853588 782788 103.126
Long term 99 39.75 58071 330707 910879 950355 100.049

Notes: The table presents the evaluation of out-of-sample daily WVaRdavahelet details. it reports test statistics over last 250
days (February 19, 2010 to February 03, 2011). Exceedanceetefim "exceedance” refers to an instance when portfolio losses
are greater than corresponding VaR estimates in the backtest, In the tiethuterms "breaches" and "violations" are also used
when referring to "exceedances". Fail. prob.: The failure probablliR,.: The LR test of unconditional coverageRi,g: The

LR test of independence.R.c: The joint test of coverage and independence. DQ: The Dynamictugest. LF (j): The loss
function. The respective critical valuesloR,c andLR statistics at 5% significance level are 3.84 and 5.99.

2
1+ (dt+1—VaR+1(j) [ ) ;i e <VaRua()) e
0. if i1 >VaRua(j) o

LFe1() = (22)

The statistical adequacy of the WVaR forecasts computedéthtiee dynamic conditional correlation models is
obtained by the backtesting procedure described beforevilveharacterize the model as an adequate one for the
volatility forecasting, if the null hypothesis cannot retied1° Table20 presents the summary backtesting statistics for

the daily WVaR forecasts of wavelet return series. In termsRyf, LRing, LR.c andDQ statistics, the null hypothesis

Lrejection of the null hypothesis indicates that the compMaR! estimates are not sufficiently accurate.
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are rejected at 1%, 2.5% and 5% significance level. Accortintpese metrics, we cannot conclude whether an
adequate multivariate model is more accurate than anotteg®aColumn 9 of Table20 shows the mean loss function
values. A WVaR model is preferred to another one, if it yielttsrger averaging loss criterion valukF (j ), defined as

the sum ofLF+(j), that isLF (j) = 312, LF(j). At 99%, 97.5% and 95% confidence levelf, (j) statistic indicates
that DCC andcDCC models provide strong WVaR performance (smélE(j) values) than CCC model. We can
note also, that the three dynamic conditional correlatialets have the same WVaR performance at medium-term

(intermediate scales) and long-term (high scales) hosifon99%, 97.5% and 95% confidence levels.

5. Concluding remarks

The empirical analysis in the paper examined the co-movisreerd spillover effects in the stock market returns
of three developed countries: U.K., U.S. and Japan for thieg@1 January 2003 to 04 February 2011. Three multi-
variate conditional correlation volatility models wereeds namely CCC model dollerslev(1990, DCC model of
Engle(2002 andcDCC model ofAielli (2008. Empirical results show that multivariate estimates wsgaificant
for all returns in the CCC, DCC areDCC models. However, these models showed evidence of Niylatillovers
and asymmetric effects of negative and positive shocks wélemagnitude on the conditional variances. The statis-
tical significance of DCC andDCC estimates indicates that the conditional correlatiwege dynamic. In fact, the
variance-covariance analysis produced useful informatio the dynamic correlations between the three developed
markets, and for each pairwise series, the dynamic conditicorrelations vary considerably from their respective
constant correlations, implying the absence of any constamelation between the stock markets under study. The
empirical findings showed that the U.K. and U.S. markets wagkly correlated since the end of 2007 (the beginning
of subprimecrisis), followed by the U.K. and Japan markets and U.S. apad markets. These results confirm the
presence of spillover effects between pairwise stock niagkarns. The paper also compared one-day ahead con-
ditional volatility forecasts from the dynamic conditidr@rrelation models used in the study, using 250 one-day
out-of-sample forecasts, and showed that asymmel{eC model is preferred over the other models, according to
the four used statistical loss metrics: mean squared emean absolute error, mean absolute percentage error and
logarithm loss error.

The paper also combined the wavelet analysis and multieacianditional volatility models to analyze the co-

movements and volatility spillover effects in a multi-sdtamework. Unlike the traditional multivariate dynamic

20The abovementioned backtesting tests focused on examirérartiuracy of failure frequency and the independence ofiheé process for
VaR models. However, there are a large number of VaR modelsahgiass these statistical evaluation tests. How do risk neasiaoose among
alternative VaR models? which model will generate fewer r@guy capital requirements and induce less oppurtunity afosapital?. To answer
these gquestions we use a regulatory loss function relatethtket risk.
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conditional correlation volatility models, the waveleaded dynamic conditional correlation approach allows one
to decompose the spillover effect and co-movement into nsabyspillovers and sub-comovements on various time
scales according to heterogeneous groups of traders aestdns. However, wavelet analysis help investors to uncove
the complex pattern of return and volatility spillovers dwit own horizon, and make a good hedging strategy on
their risk. The findings of wavelet analysis show that maltite estimates were significant for all wavelet time
series. Moreover, wavelet-based multivariate modelsligighvolatility spillovers on the conditional variancerfall
stock markets under study. In fact, the wavelet study ssfekys decomposes the total spillover into sub-spilloyers
respectively for short-term, mid-term and long-term honig. The out-of-sample forecasts over wavelet scales are
evaluated using four statistical loss functions and oneatfieead wavelet VaR (WVaR) forecast accuracy. The out-of-
sample forecast results showed that high scales (Long temmpanent) provide smaller statistical loss metrics values

than lower scales (Short component).
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