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Judging Statistical Models of Individual Decision Making Under Risk Using In- and 

Out-of-Sample Criteria 

 

Abstract: Despite the fact that conceptual models of individual decision making under 

risk are deterministic, attempts to econometrically estimate risk preferences require some 

assumption about the stochastic nature of choice. Unfortunately, the consequences of 

making different assumptions are, at present, unclear.  In this paper, we compare two 

popular error specifications (Luce vs. Fechner), with and without accounting for 

contextual utility, for two different conceptual models (expected utility and rank-

dependent expected utility) using in- and out-of-sample selection criteria. We find 

drastically different inferences about structural risk preferences across the competing 

specifications.  Overall, a mixture model combining the two conceptual models assuming 

Fechner error and contextual utility provides the best fit of the data both in- and out-of-

sample. 

JEL codes: C91, C25, D81 

Keywords:  error specification, expected utility theory, experiment, probability 

weighting, rank dependent utility, risk 
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1. Introduction 

Virtually all conceptual models of risky choice, including expected utility theory 

(EUT) and the behavioral alternatives such as prospect theory, are deterministic. The 

deterministic nature of the theories presents a challenge for applied economists 

attempting to econometrically estimate risk preferences in a sample of individuals. In 

essence, the analyst must make assumptions about the decision making process that go 

above and beyond the content of the theory, making it difficult to conduct clean tests of 

the underlying theory itself and to confidently identify underlying structural parameters. 

While a few previous studies have analyzed the extent to which different stochastic error 

specifications influence estimates of risk preferences (e.g., Hey, 2005, Loomes, 2005), 

there have been new developments in the field (e.g., Wilcox, 2011) that have not been 

addressed in previous model comparisons, and there has been an almost exclusive focus 

on the ability of models to fit the data in-sample.   

 The focus on in-sample fit is particularly important in determining which decision 

making theory, EUT or a behavioral alternative, best describes lottery choices.  EUT is a 

relatively parsimonious theory, characterizing risk preferences simply by the curvature of 

the utility function over income or wealth. Some popular functional forms such as 

constant relative (or constant absolute) risk aversion consist of a single parameter.  

Behavioral theories often proceed by adding parameters to the basic EUT set-up.  

Cumulative prospect theory, for example, allows for different degrees of curvature in the 

gain and loss-domains and for additional parameters describing the extent to which 

individuals under- or over-weight low probability events (both in the gain and loss 

domains). Given the additional parameters, there might be a tendency for such behavioral 

models to over-fit the data, and while in-sample test statistics, such as Akaike or 

Bayesian Information Criteria, suggest improvements in model fit, this is no guarantee 

the model will perform better predicting out-of-sample. Although several previous 

studies have compared different decision making models under risk  (Harless and 

Camerer, 1994, Hey and Orme, 1994), and Carbone and Hey (2000) have attempted to 

reconcile differences between studies based on differential assumptions made about how 

choice errors are modeled, to our knowledge previous research has not systematically 
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compared different error specifications and risk models insofar as their ability to predict 

out-of-sample. 

Because most experimental studies are performed with a relatively small sample 

of subjects, it would seem that most analysts are attempting to extrapolate risk 

preferences out-of-sample to the more general population, and as such, studying out-of-

sample prediction performance appears a worthwhile line of inquiry. Judging out-of-

sample prediction performance is not always easy for discrete choice problems, and as 

such, we turn to the out-of-sample-log-likelihood function approach long used in the 

marketing literature for model selection (Erdem, 1996, Roy et al., 1996) and further 

elucidated in the economics literature by Norwood et al. (2004a, 2004b).   

 The purpose of this paper is to use several in- and out-of sample model selection 

criteria to determine which stochastic error specification and theoretical model best fits 

lottery choice data gathered in an experimental setting.  In particular, we compare two 

different error specifications (Luce vs. Fechner), with and without accounting for 

Wilcox’s (2011) contextual utility specification, for two different conceptual models 

(EUT and rank-dependent EUT) using in- and out-of-sample selection criteria.  

Moreover, we further investigate Harrison and Rutström’s (2009) claim that a combined 

model (combining EUT and rank-dependent EUT) leads to improved inferences. 

 The next section of the paper describes the laboratory experiment we conducted to 

elicit preferences for competing lotteries.  Then, we describe the competing approaches 

used to estimate risk preferences, after which we present the results from the competing 

models. Following this discussion, we discuss different model selection criteria and 

indicate the best fitting models.  The last section concludes.  

 

2. Experimental procedures 

2.1. Description of the experiment 

A conventional lab experiment was conducted using z-Tree software (Fischbacher, 

2007). Subjects consisted of undergraduate students at the University of Ioannina, Greece 
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and were recruited using the ORSEE recruiting system (Greiner, 2004). During the 

recruitment, subjects were told that they would be given the chance to make more money 

during the experiment.1  

Subjects participated in sessions of group sizes that varied from 9 to 11 subjects per 

session (all but two sessions involved groups of 10 subjects). In total, 100 subjects 

participated in 10 sessions that were conducted between December 2011 and January 

2012. Each session lasted about 45 minutes and subjects were paid a €10 participation 

fee. Subjects were given a power point presentation explaining the lottery choice tasks as 

well as printed copies of instructions. They were also initially given a five-choice training 

task to familiarize them with the choice screens that would appear in the tasks involving 

real payouts. Subjects were told that choices in the training phase would not count toward 

their earnings and that this phase was purely hypothetical. 

Full anonymity was ensured by asking subjects to choose a unique three-digit code 

from a jar. The code was then entered at an input stage once the computerized experiment 

started. The experimenter only knew correspondence between digit codes and profits. 

Profits and participation fees were put in sealed envelopes (the digit code was written on 

the outside) and were exchanged with digit codes at the end of the experiment. No names 

were asked at any point of the experiment. Subjects were told that their decisions were 

independent from other subjects, and that they could finish the experiment at their own 

convenience. Average total payouts including lottery earnings were 15.2€ (S.D.=4.56). 

 

2.2. Risk preference elicitation  

We elicited risk preferences using the popular Holt and Laury (2002) multiple price 

list (MPL) task, at two payout (low vs. high) amounts. The baseline H&L MPL presented 

subjects with a choice between two lotteries, A or B, as illustrated in Table 1.  In the first 

row, the subject was asked to make a choice between lottery A, which offers a 10% 

                                                 
1 Subjects were told that “In addition to a fixed fee of 10€, you will have a chance of receiving additional 
money up to 25€. This will depend on the decisions you make during the experiment.” Stochastic fees have 
been shown to be able to generate samples that are less risk averse than would otherwise have been 
observed (Harrison et al., 2009). 
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chance of receiving €2 and a 90% chance of receiving €1.6, and lottery B, which offers a 

10% chance of receiving €3.85 and a 90% chance of receiving €0.1. The expected value 

of lottery A is €1.64 while for lottery B it is €0.475, which results in a difference of €1.17 

between the expected values of the lotteries. Proceeding down the table to the last row, 

the expected values of both lotteries increase, but the rate of increase is larger for option 

B.  For each row, a subject choose A or B, and one row was randomly selected as binding 

for the payout. The last row is a simple test of whether subjects understood the 

instructions correctly.2 The high payout task is identical to the control (shown in table 1) 

except that all payouts are scaled up by a magnitude of five. 

Instead of providing a table of choices arrayed in an ordered manner all appearing at 

the same page as in H&L, each choice was presented separately showing probabilities 

and prizes (as in Andersen et al., 2011)). Subjects could move back and forth between 

screens if they wanted to revise their choices. Once all ten choices were made, 

inaccessible no further changes were possible. In addition to the choices shown in table 1, 

subjects also made a similar set of ten choices except the magnitudes of all payoffs were 

scaled up by a factor of five.  The order of appearance of the set of ten choices (low vs. 

high payouts) for each subject was completely randomized to avoid order effects 

(Harrison et al., 2005). An example of one of the decision tasks is shown in Figure 1. For 

each subject, one of the choices was randomly chosen and paid out. 

 

3. Structural estimation of risk preferences 

3.1. Conceptual specification: Expected utility vs. Rank dependent utility theory 

To estimate risk preferences, we follow the framework of Andersen et al. (2008). Let 

the utility function be the CRRA specification: 

(1)   
1

1

rM
U M

r






 

                                                 
2 16 out of 100 subjects failed to pass this test concerning comprehension of lotteries and were omitted 
from our sample. 
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where r is the CRRA coefficient and where r=0 denotes risk neutral behavior, r>0 

denotes risk aversion behavior and r<0 denotes risk loving behavior. 

 If we assume that expected utility theory (EUT) describes subjects’ risk preference 

tasks, then the expected utility of lottery i can be written as: 

(2)     
1,2

i j j
j

EU p M U M


   

where  jp M  are the probabilities for each outcome jM  that are induced by the 

experimenter (i.e., columns 1, 3, 5 and 7 in Table 1).  

 Despite the intuitive and conceptual appeal of EUT, a number of experiments 

suggest that EUT often fails as a descriptive model of individual behavior.  Although 

there are many proposed alternatives to EUT, here we consider Rank Dependent Utility 

(RDU) (Quiggin, 1982), which was incorporated into Tversky and Kahneman’s (1992) 

cumulative prospect theory.  RDU extends the EUT model by allowing for non-linear 

probabilitiy weighting associated with lottery outcomes. To calculate decision weights 

under RDU, one replaces expected utility in equation (2) with: 

(3)         
1,2 1,2

i j j j j
j j

EU w p M U M w U M
 

      

where      2 2 1 1 11w w p p w p w p      and  1 1w w p , with outcomes ranked from 

worst (outcome 2) to best (outcome 1) and  w   is the weighting function.  We assume  

 w   takes the form proposed by Tversky and Kahneman (1992):  

(4)    
1

1w p p p p
       

 When 1  , it implies that  w p p  and this serves as a formal test of the 

hypothesis of no probability weighting.    

 

3.2. Stochastic error specification: Fechner vs. Luce 

To explain choices between lotteries, one option is to utilize the stochastic specification 

originally suggested by Fechner (1860/1966) and popularized by Hey and Orme  (1994). 

In particular, the following index: 
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(5)  F
B AEU EU EU   

 
can be calculated where EUA and EUB refer to expected utilities (or rank-dependent 

expected utilities) of options A and B (the left and right lottery respectively, as presented 

to subjects), and where μ is a noise parameter that captures decision making errors. The 

latent index is linked to the observed choices using a standard cumulative normal 

distribution function  EU  , which transforms the argument into a probability 

statement.   

 There are two observationally equivalent interpretations of the Fechner error 

specification. The most natural, given the set-up above, is that the term μ literally 

captures the effect of decision making errors on the part of the subjects. Another way to 

interpret this speciation is through the random utility framework (McFadden, 1974). In 

this framework, utility consists of a systematic component, EUA, observable to the 

analyst, and a stochastic component, εA, unobserved by the analyst but presumed known 

to the subject. In the random utility framework, the probability of choosing option A over 

B is the probability that EUA - EUB > εB - εA.  If the difference is distributed normally with 

mean zero and standard deviation μ, then the probability of choosing A over B is given 

by  EU   which, of course, is the same expression shown above. 

 An alternative to the Fechner error specification, is the Luce error (Luce, 1959) 

popularized by Holt and Laury (2002). In this case the index in (5) can be written as: 

(6) 
 

   
exp

exp exp
BL

A B

EU
EU

EU EU


 

 


 

 

3.3. Contextual utility 

Wilcox (2011) proposed a “contextual utility” error specification which modifies the 

Fechner and Luce error specifications, respectively as: 

(7)  CF
B AEU EU EU c   

 
and  

(8) 
 

    
exp

exp exp
BCL

A B

EU c
EU

EU c EU c
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In (7) and (8), c is a normalizing term, defined as the maximum utility over all prizes 

in a lottery pair minus the minimum utility over all prizes in the same lottery pair. It 

changes from lottery pair to lottery pair, and thus it is said to be contextual. The 

contextual utility correction is basically a way to accommodate lottery-specific 

heteroskedasticity. 

 

3.4. Estimation 

After defining the conceptual model, error specification, and contextual specification, 

the conditional log-likelihood can then be written as: 

(9)        ln , ; , ln | 1 ln 1 | 1i i
i

L r y Z y Z y      X
 

where  jZ EU   for the Luce or the Luce with contextual utility error story (j=L, CL) 

and 
jZ EU

 

for the Fechner or the Fechner with contextual utility error story (j=F,

 

CF).  1 1iy    denotes the choice of the option B (A) lottery in the risk preference task i. 

Subjects were allowed to express indifference between choices and were told that if that 

choice was selected to be played out, the computer would randomly choose one of the 

two options for them and that both choices had equal chances of being selected. The 

likelihood function for indifferent choices is constructed such that it implies a 50/50 

mixture of the likelihood of choosing either lottery so that (9) can be rewritten as: 

(10)  
    

 

ln | 1 ln 1 | 1

ln , ; , 1 1
ln ln 1 | 0

2 2

i i

i i

Z y Z y

L r y
Z Z y


     
 

          

X  

Equation (10) is maximized using standard numerical methods. The statistical 

specification also takes into account the multiple responses given by the same subject and 

allows for correlation between responses by clustering standard errors, which were 

computed using the delta method. 

 Instead of discriminating between EUT and RDU models, one could allow the data 

generating process to admit more than one choice models. Harrison and Rutström (2009) 

allowed more than one process to explain observed behavior instead of assuming that the 

data are generated by a single process. They estimated a model where some choices were 
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allowed to be EUT-consistent and other choices were allowed to be Prospect Theory-

consistent (which is also equivalent to the rank dependent model in our experimental 

design) and found roughly equal support. A mixture model poses a different question to 

the data. As Harrison (2008) noted, “if two data-generating processes are allowed to 

account for the data, what fraction is attributable to each, and what are the estimated 

parameter values?” 

 Let EUT  denote the probability that EUT is correct and 1RDU EUT    denote the 

probability that the RDU model is correct. We can then replace (8) or (9) with: 

(11)    ln , , , ; , lnEUT RDU EUT EUT RDU RDUL r r y L L      X
. 

 

4. Estimated risk preferences 

 The purpose of this section is to demonstrate the implications of different 

assumptions about error specification and conceptual model, and illustrate how these 

choices can lead to significantly different characterizations of risk preferences; facts 

which make necessary the possibility to discriminate between models based on model fit 

criteria. 

 Tables 2 and 3 show the estimated parameters from the EUT, RDU and mixture 

models when we assume Fechner or Luce error, with and without contextual utility. First 

compare the conceptual models, EUT and RDU, under the assumption of a Fehcner or 

Luce error specification without accounting for contextual utility. Results show that 

subjects are on average risk averse (estimates of r span between 0.638 to 0.682) and that 

the introduction of probability weighting does not have a significant effect on risk 

aversion. This is mainly because the estimate for γ in the probability weighting function 

of the RDU model is very close to 1. Thus in the context of EUT and RDU the choice 

between a Fechner and a Luce error specification does not seem to have a substantive 

effect on implied risk preferences. 

 However, when we consider the mixture model with Fechner or a Luce error, 

dramatically shifts in implied risk preferences occur. First note, that the mixture 

probabilities πEUT and πRDU are reversed in magnitude depending on which error 

specification is assumed. Under Fechner error, roughly 14% of choices are explained by 
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EUT (86% by RDU) while under Luce error, roughly 85% of choices are supported by 

EUT (15% by RDU). In addition, the estimated risk aversion coefficients imply risk 

loving preferences for EUT and risk aversion for RDU under a Fechner error, while it is 

the exact opposite for the Luce error story. Clearly, the results regarding underlying risk 

preferences are highly sensitivity to assumptions about error specification, a fact which 

may well cause some skepticism over previous analyses reporting a single specification.    

 Now we turn to the impact of contextual utility. The EUT model is least affected by 

the introduction of contextual utility in both the Fechner and Luce error specification. 

Although, the CRRA estimates are lower in magnitude as compared to the non-contextual 

utility specifications (compare for example, the 0.58 estimate with 0.68 for the Fechner 

error), the estimates still imply significant risk aversion. The most significant effects are 

found in the RDU specifications. CRRA coefficients span around zero, implying risk 

neutrality, while γ is estimated to have an unusually large value of 3. While large, this 

particular value for γ, is not totally unrealistic, and Figure 2 shows it implies significant 

under-weighting for all probabilities. In fact, it implies that subjects totally ignore choices 

with probabilities lower than 0.2. The most commonly observed values for γ, e.g. when 

γ=0.6, also imply under-weighting for probabilities larger than 0.35. 

 The introduction of a mixture specification not only produces different results as 

compared to the non-contextual utility counterparts, but it also produces different 

characterizations of risk preferences depending on whether the Fechner or Luce error are 

assumed. For example, under the Fechner error, the mixture probabilities imply that 

about 31.6% of all choices are EUT consistent while under the Luce error only about 6% 

of the choices are consistent with EUT. Under the Fechner error, the risk aversion 

coefficients imply risk aversion for EUT and risk neutrality of RDU while both CRRA 

estimates under the Luce error specification span around zero implying risk neutrality. 

Note that under Luce error, πEUT fails to reject the null, which implies that the mixture 

model could collapse to the RDU specification. In addition, γ values are estimated at the 

more commonly observed values of 0.4 and 0.5, respectively. 

 Taken together, the results in tables 2 and 3 demonstrate that the menagerie of error 

stories that one could adopt for modeling risk preference estimation can lead to a variety 

of characterizations of risk preferences. In fact, in tables 2 and 3, the estimated 
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coefficient or relative risk aversion spans across models from a low of -0.632 (extreme 

risk seeking) to a high of 0.687 (extreme risk aversion).  Moreover, the estimate of the 

shape of the probability weighting function under RDU goes from γ=0.391 (extreme 

under-weighting of low probability events) to γ=0.9 (near linear probability weighting 

implying EUT) to γ=3.345 (under-weighting of all probabilities) depending on what is 

assumed about the error and contextual utility specification. Thus, it is critically 

important to be able to select between competing models based on model fit criteria. 

 

5. Model selection criteria 

5.1. Information criteria 

Information criteria like the Akaike’s information criterion (AIC) and the Bayesian 

information criterion (BIC) are common measures of goodness of fit; however, the 

statistics do not reveal how well a model fits the data in an absolute sense, i.e., there is no 

null hypothesis being tested. Nevertheless, these measures offer relative comparisons 

between models on the basis of information lost from using a model to represent the 

(unknown) true model. 

Table 4 shows that based on AIC and BIC criteria, the contextual utility specifications 

are always preferred over their non-contextual utility counterpart specifications. When 

comparing between EUT, RDU and the mixture specifications, AIC and BIC coincide in 

indicating that the Luce error with contextual utility (for EUT) and the Fechner error 

story with contextual utility (for RDU and mixture) are the error stories best fitting the 

data. 

When comparing between models, the mixture specification with Fechner error and 

contextual utility shows the lowest AIC/BIC values.  

 

5.2. Non-nested tests 

 The classical approach for testing between non-nested models is the Vuong test 

(Vuong, 1989). The Vuong test is a model selection test that compares between 

competing models and chooses the best model based on some predefined criteria. The 

Vuong test, as many other model selection criteria, is based on the Kullback-Leibler 



12 
 

Information Criterion (KLIC), which measures the distance between a hypothesized 

likelihood function and the true likelihood function. 

The null hypothesis of the Vuong test is: 

(12) 
 
 0

| ;
: ln 0

| ;

i i f

i i g

f Y X
H E

g Y X





 
  
  

 

where θf and θg are parameters and f(·), g(·) are the likelihood functions of the two 

competing models. The null in (12) implies that the two models are equivalent. The 

alternative hypothesis favors the model with the higher average log-likelihood, if it is 

significantly greater than the average log-likelihood of the competing model.
 

 Because the Vuong test is only normally distributed asymptotically, small sample 

sizes may pose a problem. A non-parametric alternative to the Vuong test is the Clarke 

test (Clarke, 2003). The Clarke test is a paired sign test of the differences in the 

individual log-likelihoods from two non-nested models. The null hypothesis is that the 

probability of the log-likelihood paired differences being greater than zero is equal to the 

probability of the log-likelihood paired differences being less than zero, which in essence 

is a binomial test with p = 0.5. The Clarke test is similar to the Wilcoxon sign-rank test, 

but without the additional assumption that the distribution of paired differences is 

symmetric.  

 If the models are equally close to the true specification, half the log-likelihood 

differences should be greater than zero and half should be less than zero. If one model is 

“better”, then more than half the log-likelihood differences should be greater than zero. 

The null hypothesis of the Clarke test is: 

(13)    0 : median of ln | ; ln | ; 0i i f i i gH f Y X g Y X  
 

 Table 5 shows results from Vuong’s tests which are performed between error 

specifications for the EUT, RDU and the mixture models. We first compare the errors 

with contextual utility versus the errors without contextual utility. The large positive 

values, and the corresponding low p-values, indicate that the null that the two competing 

models are equivalent is rejected in all cases. In fact, the contextual utility specification is 
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favored against the non-contextual utility specification across EUT, RDU and the mixture 

models. 

 Next, we compare the Fechner and Luce error specifications with contextual utility. 

The large negative value for EUT favors the Luce error while for RDU the Fechner error 

is favored. For the mixture model, we fail to reject the null when we compare between 

the two contextual utility specifications, although the result is marginally not significant 

in favor of the Fechner error. In all, results from Vuong’s tests support the results from 

the AIC and BIC model selection criteria. 

 Vuong’s test is suitable for non-nested models, thus we do not compare error 

specifications between EUT, RDU and the mixture models since these are, by 

construction, nested in each other. For example, one can test whether the mixture model 

collapses to EUT or RDU by testing whether the mixture probabilities are statistically 

significantly different from zero. Or one can test whether RDU collapses in EUT by 

testing whether γ=1. For the Fechner error specification with contextual utility (note that 

although this specification is not favored by Vuong’s test, the test marginally fails to 

reject the null), Wald tests in Table 2 show that it neither collapses to either EUT or 

RDU, nor does RDU in the mixture specification collapses to EUT. 

 Table 5 shows results from Clarke’s non-parametric test. For each model (EUT, 

RDU, mixture), we first compare the contextual utility with the non-contextual utility 

counterparts. Each comparison involves two, one-sided tests. For EUT, RDU and the 

mixture models, the Fechner error with contextual utility is favored as compared to the 

non-contextual utility counterpart. The Luce error with contextual utility is favored in the 

RDU model, while Clarke’s tests show that in EUT and the mixture specification Luce 

error with and without contextual utility are equivalent. 

 Further comparisons, show that the Fechner error with contextual utility is favored for 

RDU and the mixture specifications. For EUT, Clarke’s test shows that Luce error with 

contextual utility performs better than Fechner error with contextual utility, while it is 

equivalent with the Luce error without contextual utility. This is an indication that 

inferences that involve assumptions about transitivity between pairs of models tested may 

not follow in these types of tests. 
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5.3. Out-of-sample predictions 

The out-of-sample log likelihood (OSLLF) criterion evaluates models by their fit out 

of sample. In essence, the OSLLF approach uses one set of data to estimate the 

parameters of the model, and then, given these parameters, calculates the likelihood 

function values observed at out-of-sample observations. The OSLLF value is calculated 

by using out-of sample observations to calculate the likelihood function: 

(14)     ,
ˆˆ | ln |

N

i f i
i i

I f Y f y  


      

where ,
ˆ

f i   is the parameter vector estimated without the ith set of observations. The 

OSLLF value can be calculated in several ways (Norwood et al., 2004a). The estimate 

,
ˆ

f i   could be calculated using cross-validation where ,
ˆ

f i   is estimated using every 

observation except i. This is referred to as “leave one out at a time forecasting.” 

Alternatively, one could partition the observations into groups where each group is 

iteratively omitted and ,
ˆ

f i   is estimated. Then, the omitted group of observations can be 

used to calculate the OSLLF. This procedure is known as grouped-cross-validation. In 

what follows, we carry out group-cross validation with individuals being the partitions, 

where each partition contains twenty observations (as many as the choices of the subject).  

Essentially, we leave one subject (and their associated 20 choices) out at a time, estimate 

the model, and calculate (14) for the subject.  The process is repeated for every subject in 

the sample.   

 Table 4 reports OSLLF values for each of the error specification for each conceptual 

model (EUT, RDU and the mixture model). The results reveal that the contextual utility 

specifications rank higher than their non-contextual utility counterparts across all models. 

For EUT, the error specification that ranks highest is the Luce error with contextual 

utility while the Fechner error with contextual utility ranks higher for RDU and the 

mixture model. Across all error specifications and conceptual models, the Fechner error 

with contextual utility ranks highest both in terms of OSLLF. 
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6. Conclusion 

 To derive estimates of individual’s risk preferences, analysts have to have some 

mechanism for translating the conceptual models of risky decision making into an 

empirical model that includes stochastic errors. The results presented in this paper reveal 

that seemingly innocuous assumptions about this stochastic process can lead to 

substantially different inferences about risk preferences. Indeed, one can estimate 

parameters consistent with a high level of risk seeking or a high level of risk aversion 

depending on how errors are incorporated into the statistical model; a finding which 

suggests caution in naively assuming adopting a single error specification.    

 A battery of in- and out-of-sample model selection criteria suggest that the model that 

best fits our data is an EUR-RDU mixture model assuming a Fechner error with 

contextual utility. We find that 32% of the sample is characterized by EUT with a 

coefficient of relative risk aversion equal to 0.4, and 68% is characterized by RDU with a 

coefficient of relative risk aversion statistically indistinguishable from zero but with a 

probability weighting function implying significant overweighting of low probability 

outcomes and under-weighting of moderate to high probability outcomes.  

  



16 
 

Table 1. The H&L Multiple Price List 

Lottery A 

 

Lottery B EVA (€) EVB (€) Difference (€) 

Open CRRA 
interval if subject 
switches to 
Lottery B 
(assumes EUT) p € p € p € P € 

0.1 2 0.9 1.6  0.1 3.85 0.9 0.1 1.640 0.475 1.17 -∞ -1.71 

0.2 2 0.8 1.6  0.2 3.85 0.8 0.1 1.680 0.850 0.83 -1.71 -0.95 

0.3 2 0.7 1.6  0.3 3.85 0.7 0.1 1.720 1.225 0.50 -0.95 -0.49 

0.4 2 0.6 1.6  0.4 3.85 0.6 0.1 1.760 1.600 0.16 -0.49 -0.15 

0.5 2 0.5 1.6  0.5 3.85 0.5 0.1 1.800 1.975 -0.18 -0.15 0.14 

0.6 2 0.4 1.6  0.6 3.85 0.4 0.1 1.840 2.350 -0.51 0.14 0.41 

0.7 2 0.3 1.6  0.7 3.85 0.3 0.1 1.880 2.725 -0.85 0.41 0.68 

0.8 2 0.2 1.6  0.8 3.85 0.2 0.1 1.920 3.100 -1.18 0.68 0.97 

0.9 2 0.1 1.6  0.9 3.85 0.1 0.1 1.960 3.475 -1.52 0.97 1.37 

1 2 0 1.6  1 3.85 0 0.1 2.000 3.850 -1.85 1.37 +∞ 

Note: Last four columns showing expected values and implied CRRA intervals were not 
shown to subjects. 
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Table 2. Estimates assuming Fechner error with and without contextual utility 
 Fechner error Fechner error with contextual utility 
  Coef. Std.Err. 95% C.I. LogL Coef. Std.Err. 95% C.I. LogL 

EUT 
r 0.682 0.050 0.584 0.780 

-748.614
0.580 0.060 0.462 0.697 

-723.632
μ 0.428 0.058 0.314 0.542 0.242 0.020 0.203 0.280 

RDU 
r 0.650 0.040 0.571 0.728 

-747.947
-0.038 0.105 -0.244 0.168 

-702.763γ 0.908 0.061 0.788 1.028 3.345 0.350 2.659 4.032 
μ 0.378 0.041 0.297 0.458 0.274 0.014 0.246 0.302 

Mixture 

rEUT -0.632 0.269 -1.160 -0.105 

-713.872

0.409 0.081 0.251 0.566 

-693.940

rRDU 0.672 0.028 0.616 0.727 -0.291 0.173 -0.630 0.047 
γ 0.881 0.062 0.758 1.003 0.391 0.036 0.322 0.461 
μ 0.229 0.023 0.183 0.275 0.106 0.017 0.073 0.140 
πEUT 0.142 0.041 0.061 0.223 0.316 0.098 0.124 0.509 
πRDU 0.858 0.041 0.777 0.939 0.684 0.098 0.491 0.876 

 Wald tests: 
 
γ=1: p-value=0.135 and 0.056 for RDU and 
mixture models, respectively 
πEUT =0 & πRDU =1: p-value=0.00 
πEUT =1 & πRDU =0: p-value=0.00 
πEUT =0.5 & πRDU =0.5: p-value=0.00 
 
 
 

 Wald tests: 
 
γ=1: p-value=0.00 and 0.00 for RDU 
and mixture models, respectively 
πEUT =0 & πRDU =1: p-value=0.00 
πEUT =1 & πRDU =0: p-value=0.00 
πEUT =0.5 & πRDU =0.5: p-value=0.061 
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Table 3. Estimates assuming Luce error with and without contextual utility 
 Luce error Luce error with contextual utility 
  Coef. Std.Err. 95% C.I. LogL Coef. Std.Err. 95% C.I. LogL 

EUT 
r 0.677 0.049 0.580 0.773 

-738.096 
0.598 0.060 0.480 0.717 

-719.187
μ 0.231 0.031 0.170 0.291 0.138 0.012 0.114 0.162 

RDU 
r 0.638 0.040 0.561 0.716 

-737.252 
-0.016 0.121 -0.254 0.222 

-705.638γ 0.900 0.058 0.787 1.013 3.275 0.367 2.556 3.994 
μ 0.199 0.021 0.157 0.241 0.163 0.010 0.144 0.181 

Mixture 

rEUT 0.687 0.061 0.569 0.806 

-718.001 

0.084 0.192 -0.292 0.460 

-696.607

rRDU -0.558 0.275 -1.097 -0.019 0.059 0.125 -0.186 0.304 
γ 0.413 0.230 -0.038 0.864 0.508 0.029 0.451 0.565 
μ 0.145 0.030 0.086 0.205 0.071 0.012 0.048 0.094 
πEUT 0.853 0.058 0.739 0.966 0.064 0.178 -0.285 0.412 
πRDU 0.147 0.058 0.034 0.261 0.936 0.178 0.588 1.285 

 Wald tests: 
 
γ=1: p-value=0.082 and 0.011 for RDU and 
mixture models, respectively 
πEUT =0 & πRDU =1: p-value=0.00 
πEUT =1 & πRDU =0: p-value=0.011 
πEUT =0.5 & πRDU =0.5: p-value=0.00 
 
 
 

 Wald tests: 
 
γ=1: p-value=0.00 and 0.00 for RDU 
and mixture models, respectively 
πEUT =0 & πRDU =1: p-value=0.721 
πEUT =1 & πRDU =0: p-value=0.00 
πEUT =0.5 & πRDU =0.5: p-value=0.014 
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Table 4. Information criteria and out-of-sample Log-Likelihood function summary 
statistics 

EUT  AIC BIC OSLLF

F 1501.227 1512.080 -759.043

CF 1451.263 1462.117 -733.911

L 1480.192 1491.045 -747.636

CL 1442.374 1453.228 -729.002

RDU    

F 1501.894 1518.173 -759.351

CF 1411.525 1427.805 -714.008

L 1480.504 1496.784 -747.694

CL 1417.276 1433.556 -715.762

Mixture    

F 1437.744 1464.876 -724.702

CF 1397.880 1425.013 -705.556

L 1446.001 1473.134 -730.439

CL 1403.214 1430.346 -710.062

Note: CF=Fechner error with contextual utility, CL=Luce error with contextual utility, 
F=Fechner error, L=Luce error. Best fitting model is indicated in bold. 
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Table 5. Vuong’s non-nested tests 

EUT Vuong statistic p-value 
CF vs. F 3.324 0.00 
CL vs. L 2.927 0.002 
CF vs. CL -3.038 0.999 
RDU   
CF vs. F 4.251 0.00 
CL vs. L 3.451 0.00 
CF vs. CL 6.568 0.00 
Mixture   
CF vs. F 3.872 0.00 
CL vs. L 3.838 0.00 
CF vs. CL 1.158 0.123 
Note: CF=Fechner error with contextual utility, CL=Luce error with contextual utility, 
F=Fechner error, L=Luce error 

  



21 
 

Table 6. Clarke’s non-parametric non-nested tests 
EUT  
H1: Median of CF-F>0 Binomial(n = 1680, x ≥ 890, p = 0.5) =  0.0078 
H1: Median of CF-F<0 Binomial(n = 1680, x ≥ 790, p = 0.5) =  0.9931 
  
H1: Median of CL-L>0 Binomial(n = 1680, x ≥ 836, p = 0.5) =  0.587 
H1: Median of CL-L<0 Binomial(n = 1680, x ≥ 844, p = 0.5) =  0.432 
  
H1: Median of CF-CL>0 Binomial(n = 1680, x ≥ 620, p = 0.5) =  1.00 
H1: Median of CF-CL<0 Binomial(n = 1680, x ≥ 1060, p = 0.5) =  0.00 
  
H1: Median of CF-L>0 Binomial(n = 1680, x ≥ 836, p = 0.5) =  0.587 
H1: Median of CF-L<0 Binomial(n = 1680, x ≥ 844, p = 0.5) =  0.432 
RDU  
H1: Median of CF-F>0 Binomial(n = 1680, x ≥ 950, p = 0.5) =  0.00 
H1: Median of CF-F<0 Binomial(n = 1680, x ≥ 730, p = 0.5) =  1.00 
  
H1: Median of CL-L>0 Binomial(n = 1680, x ≥ 926, p = 0.5) =  0.00 
H1: Median of CL-L<0 Binomial(n = 1680, x ≥ 754, p = 0.5) =  1.00 
  
H1: Median of CF-CL>0 Binomial(n = 1680, x ≥ 1030, p = 0.5) =  0.00 
H1: Median of CF-CL<0 Binomial(n = 1680, x ≥ 650, p = 0.5) =  1.00 
Mixture  
H1: Median of CF-F>0 Binomial(n = 1680, x ≥ 966, p = 0.5) =  0.00 
H1: Median of CF-F<0 Binomial(n = 1680, x ≥ 714, p = 0.5) =  1.00 
  
H1: Median of CL-L>0 Binomial(n = 1680, x ≥ 838, p = 0.5) =  0.548 
H1: Median of CL-L<0 Binomial(n = 1680, x ≥ 842, p = 0.5) =  0.471 
  
H1: Median of CF-CL>0 Binomial(n = 1680, x ≥ 897, p = 0.5) =  0.003 
H1: Median of CF-CL<0 Binomial(n = 1680, x ≥ 783, p = 0.5) =  0.997 
  
H1: Median of CF-L>0 Binomial(n = 1680, x ≥ 947, p = 0.5) =  0.00 
H1: Median of CF-L<0 Binomial(n = 1680, x ≥ 733, p = 0.5) =  1.00 
Note: H0: Median of model f – g = 0 for all tests, where f, g=CF, CL, F, L and 
CF=Fechner error with contextual utility, CL=Luce error with contextual utility, 
F=Fechner error, L=Luce error 
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Figure 1.  Example Decision Task  
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Figure 2. Comparison of probability weighting functions for three gamma (g) values 
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