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MULTIPLE BOUNDED DISCRETE CHOICE CONTINGENT VALUATION: 
PARAMETRIC AND NONPARAMETRIC WELFARE ESTIMATION AND A 

COMPARISON TO THE PAYMENT CARD 

 

Abstract  

 In multiple bounded discrete choice (MBDC) surveys, respondents indicate how 

certain they would be to vote in favor of a policy at different prices by choosing, for 

example, among “definitely yes”, “probably yes”, “not sure”, “probably no”, and 

“definitely no” response options for each price. In estimating non-market values from 

MBDC data, past researchers have made markedly different assumptions with respect to 

the assumed correlation of within-respondent decisions (one for each price) and the 

correspondence of stated payment certainty to actual behavioral intentions. The first 

objective of this paper is to provide guidance for future research efforts by 

discriminating between existing models and proposing new estimators that relax some 

important statistical assumptions of existing models. Contrary to a previous study, 

results in this paper suggest that within-respondent decisions should be treated as being 

perfectly correlated. The second objective is to examine whether it is worthwhile to 

collect the additional information on payment certainty, as it may place additional 

cognitive burden on respondents as well as data analysts. Using data from previous 

studies, MBDC is compared with the payment card, a related elicitation approach that 

does not gauge payment certainty. This comparison provides strong and systematic 

evidence that “definitely yes” and “probably yes” MBDC respondents would vote “yes” 

while other respondents would vote “no” in the absence of the certainty categories. 
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1. Introduction 

Over three decades after its introduction, contingent valuation (CV) remains a 

popular method for estimating the willingness to pay (WTP) for nonmarket goods, 

especially those with a nonuse value component. Accepted practice is to ask a single 

dichotomous choice (DC) valuation question, to which respondents simply answer yes 

or no as to whether they are willing to pay the offered price for the nonmarket good. 

The method is favored on cognitive grounds as answering the valuation question is 

similar to voting in an election or making a market purchase. When properly framed, 

DC questions also have desirable incentive properties (see Carson, Groves, and 

Machina 2000). However, DC is notorious for extracting minimal information on the 

respondent’s WTP. Further, researchers caution against assuming respondents are 

absolutely certain of their yes or no decision. It is realistic to presume, for example, that 

some respondents are indifferent to a yes or no vote (Opaluch and Segerson 1989) and 

that subjects have an inherent (and perhaps predictable) randomness in their preferences 

(Li and Mattsson 1995).  

In order to address concerns about the accepted practice, a laundry list of 

alternative elicitation mechanisms have been proposed in attempt to gather more 

information on the respondent’s WTP. The double-bounded DC elicitation format and 

its variants elicit yes/no answers to a sequence of two or more payment amounts (e.g., 

Cameron and Quiggin 1994). Champ et al. (1997), Johannesson et al. (1999), and 

others, ask “yes” DC respondents to indicate how certain they are that they would be 

willing to pay the stated price. Other researchers (e.g., Ready, Whitehead, and 

Blomquist 1995; Vossler and Kerkvliet 2003) incorporate payment certainty directly 

into the valuation question, rather than in a follow-up question. Because of strong 

arguments against open-ended questions (see Mitchell and Carson 1987), recent 

mechanisms predominantly include discrete choice valuation questions.     
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The multiple bounded discrete choice (MBDC) format, introduced in the recent 

literature by Welsh and Poe (1998), is the only format that asks the respondent about 

multiple payment amounts while collecting information on payment certainty. 

Specifically, for each price, the respondent indicates how certain she would be to vote 

in favor of a policy by choosing, for example, among “definitely yes”, “probably yes”, 

“not sure”, “probably no”, and “definitely no” response options. As such, within the 

realm of discrete choice valuation formats one can regard the MBDC approach as rather 

extreme in terms of the amount of information it attempts to elicit on the respondent’s 

WTP.  

Since the MBDC approach is still in its infancy, important issues such as 

incentive compatibility and bid design effects are not yet fully explored.1 However, 

along with the potential wealth of information collected from them, there are good 

reasons for considering MBDC questionnaires. First, use of MBDC questionnaires 

lessens the burden of optimal bid design endemic to single and double-bounded DC 

since they present each respondent with a full range of possible payment amounts 

(Alberini 1993; Kanninen 1995). Second, the double-bounded DC elicitation format and 

its variants present respondents with (unannounced) follow-up bids based on previous 

responses. A wealth of research suggests that anchoring, resentment, or other 

unintended response effects force the respondent’s underlying WTP distribution to shift 

between initial and follow-up DC valuation questions (Cameron and Quiggin 1994; 

Herriges and Shogren 1996; Alberini, Kanninen, and Carson 1997; Bateman et al. 2001; 

Whitehead 2002). Bateman et al. (in press) demonstrate that changing the choice set 

visible to respondents as they progress along a valuation exercise leads to anomalous 

behavior. In contrast, respondents behave consistently with economic theory when the 

entire choice set is visible throughout the experiment. Drawing from these results, it is 

                                                 
1 Vossler et al. (2003c) provide an overview of findings to date. 
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unlikely that MBDC questionnaires are plagued with unintended response effects as 

they present respondents with all payment amounts at the same time.   

While there is yet a solid premise for endorsing the MBDC format, given its 

potential advantages and the increasing number of field applications that are using this 

approach, further investigation is warranted. The main objectives of this paper are to 

thoroughly examine the gamut of statistical methods for analyzing MBDC survey data 

and to compare the MBDC approach with the payment card (PC), which can be 

regarded as a special case of the MBDC questionnaire that does not collect information 

on payment certainty. To meet these objectives, this study makes use of data from three 

existing studies that use both elicitation formats.   

Given the breadth of elicited information, it is not surprising that several 

approaches for estimating WTP from MBDC responses already appear in the literature 

(Welsh and Poe 1998; Cameron et al. 2002; Alberini, Boyle, and Welsh 2003; Evans, 

Flores, and Boyle 2003). However, these analytical methods are somewhat at odds as 

important statistical and behavioral assumptions underlying them differ considerably. 

While the behavioral intention of the respondent is an open empirical question, the 

objective here is to provide guidance as to the appropriateness of underlying statistical 

assumptions and to add attractive estimators to the analyst’s choice set.  

In an effort to explore the impact of adding a certainty dimension, MBDC is 

compared with the PC, which also presents the respondent with a large set of potential 

payment amounts, but does not collect information on payment certainty.2 If MBDC 

responses can be predictably parceled into yes and no decisions, then the added 

complexity of the MBDC approach arguably yields little benefit. Indeed, to the extent 

that respondents have cognitive difficulty with the MBDC format, the much simpler PC 

may be preferred a priori.   

                                                 
2 While some PCs simply ask the respondent to circle their maximum WTP from a set of possible 
choices, other PC applications indeed elicit a yes or no decision for each payment amount. 
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The next section of the paper overviews existing methods for analyzing MBDC 

data, and raises important issues with respect to the interpretation and modeling of 

responses from this method. Section 3 introduces and provides motivation for 

alternative MBDC models. Section 4 briefly describes the data. Statistical assumptions 

and model performance is examined in Section 5. Section 6 presents comparisons of 

MBDC and PC WTP distributions. Concluding remarks appear in Section 7.     

 

2. Review of Existing Methods for Analyzing MBDC Data 

Four models for estimating non-market values from MBDC data appear in the 

recent literature: the Welsh-Poe interval model (Welsh and Poe 1998); the Dual 

Uncertainty Decision Estimator (DUDE) of Evans, Flores, and Boyle (2003); the binary 

choice random effects model (Alberini, Boyle and Welsh 2003); and the ordered choice 

model (Cameron et al. 2002; Alberini, Boyle, and Welsh 2003). These models are 

distinguishable in terms of (1) the assumed correlation between decisions from the same 

individual, and (2) the correspondence between the respondent’s level of payment 

certainty and her assumed behavioral intentions.  

Welsh and Poe (1998) recode categorical responses into simple yes/no decisions 

and model the resulting interval that bounds the respondent’s WTP, employing the 

interval data model commonly used for analyzing PC (Cameron and Huppert 1989) and 

double-bounded DC (Hanemann, Loomis, and Kanninen 1991) data. Welsh and Poe 

(1998) estimate “definitely yes”, “probably yes”, and “not sure” versions of the model. 

The name of the model refers to the lowest certainty level recoded as yes. Implicit in 

this approach is that one WTP distribution underlies the respondent’s multiple 

decisions: i.e., there is perfect response correlation.  

Evans, Flores and Boyle (2003) develop the Dual Uncertainty Decision 

Estimator (DUDE), which extends the Welsh-Poe interval model by linking categorical 

responses to subjective payment probabilities. Similar to the Welsh-Poe model, a single 
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WTP distribution underlies within-subject responses. However, as an alternative to the 

simple yes/no recoding of responses, probability weights are assigned to payment 

certainty levels. The Welsh-Poe interval model represents a special case of the DUDE 

estimator where recoded yes responses receive a probability weight of 1.0 while no 

responses receive a weight of 0.0.  

Alberini, Boyle, and Welsh (2003) estimate a binary choice probit model with 

random effects. Identical to the Welsh-Poe “probably yes” model, Alberini, Boyle, and 

Welsh (2003) treat “definitely yes” and “probably yes” as yes, and other responses as 

no. However, rather than using the yes/no responses to define the respondent’s WTP 

interval, each yes/no decision becomes a separate observation within a panel data 

framework. The multiple observations from the same individual are considered random 

draws from separate, but correlated WTP distributions: i.e., responses are freely 

correlated. A similar assumption underlies the bivariate probit model used for double-

bounded CV data (Cameron and Quiggin 1994).   

Cameron et al. (2002) and Alberini, Boyle, and Welsh (2003) estimate ordered 

logit and probit models, respectively. The ordered models treat the certainty categories 

as ordered response propensities and, from the data, estimate threshold parameters that 

define where respondents switch between certainty levels.3 As in the random effects 

probit, an observation is created from each of the respondent’s decisions. However, an 

underlying model assumption of Alberini, Boyle, and Welsh (2003) is that each within-

respondent decision is a random draw from an independent WTP distribution – as 

though different respondents provided them. Cameron et al. (2002) realize the likely 

correlation between within-respondent decisions and, as a compromise, they weight 

each observation such that the effective sample size is equal to the number of 

respondents.    

                                                 
3 Alberini, Boyle, and Welsh (2003) let the thresholds be a linear function of respondent attributes, 
following the approach of Wang (1997). This formulation does not affect WTP in their study. 
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Table 1 summarizes the underlying assumptions of existing MBDC models. The 

log-likelihood functions for these models are included as Appendix A. I now outline the 

four research topics explored in this paper using data from three published studies. 
 
 
 
Table 1.  Overview of Existing MBDC Models 
 
Model 
(citation) 

Correlation of 
within-respondent 
decisions 

Correspondence between 
payment certainty 
categories and behavioral 
intentions 

Welsh-Poe 
(Welsh and Poe 1998)  

Perfect correlation Categorical responses 
recoded as simple yes and 
no decisions 
 

DUDE 
(Evans, Flores, and Boyle 2003) 

Perfect correlation Probability weights 
assigned to categories 
 

Binary choice random effects 
(Alberini, Boyle, and Welsh 2003) 

Responses are 
freely correlated 

Categorical responses 
recoded as simple yes and 
no decisions 
 

Ordered choice 
(Cameron et al. 2002; Alberini, 
Boyle, and Welsh 2003) 

Responses are 
independent 

Certainty categories 
treated as ordered choices. 
Assumed that the 
propensity to vote yes 
switches from negative to 
positive within the “not 
sure” category 

 

A. Assumptions regarding within-respondent decisions 

 MBDC respondents choose among the payment certainty categories for several 

possible payment amounts. Existing models assume that these within-respondent 

decisions are perfectly correlated, completely independent, or freely correlated (i.e., 

something between independence and perfect correlation). A natural research question 

is which assumption is appropriate. Evidence from double-bounded DC questionnaires 

suggests that WTP distributions of initial and follow-up DC responses are highly 
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correlated, but can be statistically different due to widely cited response-effects (see 

Cameron and Quiggin 1994). It is unclear whether this finding extends to MBDC data, 

as respondents see all payment amounts at the same time, rather than in an iterative 

manner. 

 Unlike double-bounded DC, there is no obvious way to test for shifts in the 

respondent’s underlying WTP distribution across valuation questions. That is to say, the 

price associated with each decision does not vary across respondents and so one cannot 

estimate separate WTP functions for each of the respondent’s decisions and then test for 

equality of these WTP functions. As an alternative approach, Alberini, Boyle, and 

Welsh (2003) test whether the correlation coefficient (ρ) in a binary choice random 

effects (probit) model is statistically different from zero. Similar to the bivariate probit 

model used for double-bounded DC data, the binary choice random effects model 

allows within-respondent decisions to be freely correlated and the correlation 

coefficient measures the degree of correlation. Failure to reject the hypothesis that the 

correlation coefficient is statistically different from zero lends support for treating 

within-subject decisions as stemming from independent WTP distributions. Although 

there is no reliable test of ρ = 1 (see Alberini 1995), a correlation coefficient near 1 

provides evidence that within-subject responses can be treated as perfectly correlated.  

 Alberini, Boyle, and Welsh (2003) estimate the correlation coefficient in a 

random effects probit model to be 0.06, which – although statistically different from 

zero – suggests that the within-subject response correlation is very small such that 

assuming independence is unlikely to significantly distort the standard errors for 

estimated model parameters and corresponding WTP estimates. Alberini, Boyle, and 

Welsh (2003) appear startled by this result, as they state (footnote 13, p. 50): 
“We were surprised to obtain such a low estimate of the correlation 
coefficient…. Perhaps this result reflects the routine’s difficulty in identifying ρ. 
In this study … our expectation [was] to find that ρ is close to one. This 
expectation was not borne out in the estimation results.” 
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This result carries with it serious implications. First, it would suggest that the 

Welsh-Poe and DUDE models are inappropriate. Second, and more importantly, it 

would imply that the MBDC approach causes considerable response-effects such as 

those that plague responses to follow-up DC questions. If separate WTP functions 

underlie each of the respondent’s decisions, then there is little hope that valid WTP 

estimates can even be derived from MBDC questionnaires. That is to say, decisions 

from the individual are random and correspondingly meaningless. Clearly, the issue of 

within-subject response correlation warrants further investigation as it has series 

implications for the validity of MBDC surveys. 

 

B. On the use of random effects models 

 A binary choice random effects model conceptually serves as a compromise 

between the interval data models that assume, in essence, a perfect correlation between 

within-subject responses, and models that assume response independence. However, the 

standard random effects model assumes that the random effect is normally distributed. 

Further, the degree of correlation between any two WTP decisions from the same 

respondent is assumed to be equal (see Greene 2002, p. 690-693). In general, 

distributional assumptions play a key role in the estimation of WTP from discrete 

choice cross-section data models. It is therefore likely that estimation of WTP from 

discrete choice panel models is sensitive to the assumed distribution of the random 

effect. The restriction of equal correlation across within-subject decisions seems 

problematic. If the respondent’s underlying WTP distribution does differ across 

decisions, it is unlikely that such revisions would occur at an equal rate. For instance, 

the respondent may “learn” about their underlying WTP as part of the process of 

responding to the valuation questions. The effects of a learning process would 

presumably diminish over decisions, violating the equal correlation assumption.  
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C. Estimation of WTP from Ordered Choice Models 

The use of ordered choice models (e.g., ordered probit, ordered logit, etc.) has 

appeal since the analyst can avoid recoding responses into yes or no decisions, or 

assigning probability weights to certainty levels.4 In the absence of information on how 

certainty category responses reflect actual behavior, a reasonable expectation is for the 

switch between a “yes-ish” and a “no-ish” response to occur somewhere within the “not 

sure” interval. Unfortunately, unlike in a binary choice model, you cannot tell where the 

“propensity to say yes” passes from negative to positive. As such, the model implies a 

fitted interval of WTP and not a point estimate (Cameron et al. 2002). Specifically, the 

lower WTP bound is where respondents switch between “not sure” and “probably yes” 

and the upper bound is where respondents switch between “not sure” and “probably 

no”.  To obtain mean and median WTP point estimates, Alberini, Boyle, and Welsh 

(2003) restrict the two estimated thresholds that bound the “not sure” category to be 

symmetric around zero and thus assume that the propensity to say yes passes from 

negative to positive at the midpoint of the “not sure” category. An important research 

question is whether this symmetry assumption is appropriate. Without making this 

assumption a range of possible values has to be considered, and the range of values 

tends to be rather wide for useful policy purposes. 

 

 

 

D. Insensitivity of WTP estimates to alternative DUDE Model probability assignments 

 In their Benchmark DUDE Model, Evans, Flores, and Boyle (2003) average 

estimates from three psychology studies and derive subjective probability weights of 

                                                 
4 Note that it is not necessary to assume within-subject response independence to estimate an ordered 
choice model, as a random effects panel structure can also be assumed here. 
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0.75 and 0.15, respectively to “probably yes” and “probably no” responses. 

Probabilities of 1, 0.5, and 0 are assigned to the “definitely yes”, “not sure”, and 

“definitely no” categories, respectively. While holding constant the probability weights 

for “definitely yes”, “not sure”, and “definitely no” categories, they consider two other 

“symmetric” assignments. The Probably DUDE Model assigns weights of 0.6 and 0.4 to 

“probably yes” and “probably no” categories, respectively. In the Definitely DUDE 

Model, the same categories receive weights of 0.99 and 0.01. Applying these three 

DUDE Models to data from the first MBDC field study (Welsh et al. 1995) and 

assuming a normal distribution for WTP, they conclude that “within the class of 

symmetric (and approximately symmetric) assignments, the parameter estimates from 

the DUDE model are relatively insensitive to the specific probability assignment.” 

Since the “definitely yes”, “not sure”, and “definitely no” assignments seem defensible, 

an interesting research question is whether DUDE models applied to other data show a 

similar insensitivity to alternative probability assignments for “probably yes” and 

“probably no” categories.   

 

3. New Methods for Analyzing MBDC Data 

Indifference Interval Model 

 The main drawback of the Welsh-Poe and DUDE models is the need to recode 

“not sure” responses as either “yes” or “no”, or to assign a probability weight to this 

category. Since there is only one study that investigates the criterion validity of MBDC 

responses (Vossler et al. 2003b), many researchers may be skeptical about blindly 

second-guessing the respondent’s stated intentions. While the ordered choice model 

avoids the second guessing of responses, to obtain a WTP point estimate the researcher 

has to make some assumption about where in the “not sure” interval the propensity to 

say yes passes from negative to positive. However, under the premise that one WTP 

function drives all within-respondent decisions, we know the range of prices for which 
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the respondent may be “not sure”. In the studies to date, the majority of respondents do 

pick one or more of the three intermediate categories, allowing us to define the 

individual’s “not sure” price region with reasonable precision.      

Let tL denote the highest price the subject responded at least “probably yes” to 

and let tU denote the lowest price the subject responded either “probably no” or 

“definitely no” to. Then, the transition between “yes” and “no” falls within the interval 

[tL, tU]. The likelihood function is analogous to that of the Welsh-Poe model and is 

included in Appendix A.    

 

Nonparametric Estimation of Interval Models 

 Nonparametric estimators are useful as they are robust against misspecification 

of the response probability distribution. Nonparametric estimation seems especially well 

suited for MBDC data. Only in rare instances do respondents state a higher level of 

payment certainty for a higher payment amount. As a result, the cumulative response 

propensities are monotone decreasing with respect to price. This is in contrast to DC 

data, where it is common that the raw proportion of yes responses is not monotone (see 

Haab and McConnell 1997), and a rule for imposing monotonicity must be used to 

construct a valid nonparametric cumulative distribution function (cdf). Given the added 

parametric structure of the random effects and ordered choice models, nonparametric 

estimation is only feasible for MBDC interval data models, which now includes the 

Welsh-Poe, DUDE, and Indifference interval models. 

 Nonparametric estimation involves three steps: (1) estimating the value of the 

WTP cumulative density function (cdf) for each bid amount in the survey; (2) defining 

or estimating the upper and lower bounds of the cdf; and (3) a rule for interpolating 

between estimated discrete points of the cdf. The value of the WTP cdf at each bid can 

be estimated nonparametrically using techniques for survival analysis with censored 

data described by Turnbull (1974, 1976). Such nonparametric techniques have been 
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previously applied to single and double-bounded CV data (e.g., Kriström 1990; Carson, 

Wilks, and Imber 1994).   

 Let k =1,…, K denote the order bids are presented in the MBDC survey, Fk 

denote the value of the cdf for the kth bid, and tk denote the value of the kth bid.  For the 

Welsh-Poe and DUDE models likelihood (recall that the Welsh-Poe model is a special 

case of the DUDE model), the following log-likelihood is maximized with respect to 

F1,…, FK: 
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where the Pi’s are the probability weights in the DUDE model and take on values of 1 

or 0 in the Welsh-Poe model. For the Indifference Interval Model the log-likelihood is: 
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where LBi = Li0 + ∑ =

K

k 1 Lik*Fik and UBi = ∑ =

K

k 1 Uik*Fik. Lik equals 1 if bid k is the 

highest price respondent i chose either the “definitely yes” or “probably yes” category 

for, and equals 0 otherwise; Li0 equals 1 if the respondent gave a “not sure”, “probably 

no” or “definitely no” response to the lowest bid, and equals 0 otherwise; and Uik equals 

1 if bid k is the lowest price respondent i chose either the “probably no” or “definitely 

no” category for, and equals 0 otherwise. Hence, to facilitate estimation, a set of dummy 

variables is created to identify the upper and lower bounds of the indifference interval 

for each respondent. 

 The likelihood functions [1] and [2] are straightforward analogs to the 

associated parametric models, as presented in Appendix A. In order to construct a valid 

cdf, both [1] and [2] are estimated subject to the restriction that 1 > F1 > F2 > … > FK > 
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0. As mentioned above, estimates of Fk will be generally non-increasing in price. 

Discussion of the case where Fk-1 = Fk for some k is relegated to a footnote.5   

 After estimating the Fk, one can construct a valid, nonparametric cdf and 

calculate mean and median WTP employing the same methods as for nonparametric DC 

models. The majority of previous DC applications use the Turnbull lower-bound 

estimator (see Haab and McConnell 1997), where the probability mass in each price 

interval is massed at the lower end-point of that interval. Rather than adapt this 

explicitly conservative approach, as questioned in Poe and Vossler (2002), I follow the 

approach of Kriström (1990). For the cdf to be valid, the upper bound (i.e., the highest 

price at which F = 0) and the lower bound (i.e., the lowest price for which F  = 1) on 

WTP need to be chosen or estimated from the data. In the absence of knowledge 

regarding the upper bound, linear extrapolation can be used to estimate it: 

 

 Upper WTP Bound (tK+1) = 







−

−
+

−

−

KK

KK
KK FF

ttFt
1

1                                              [3] 

To preclude negative WTP, one can assume F = 1 at t0 = $0. Alternatively, linear 

extrapolation or other methods are available for estimating the lower WTP bound.6  

 As an estimate of the cdf between bids (including the upper and lower WTP 

bound), Kriström uses linear interpolation, which coincides with the assumption that the 

probability mass between bids is uniformly distributed and results in a piecewise linear 

cdf. With the cdf constructed in this manner, the calculation for Mean WTP is: 

                                                 
5 If Fk-1* = Fk*, a quick solution is to decrease Fk by a negligible amount by decreasing Pi (WTP > tk) by 
0.00001 for one respondent. If Fk = 0, then the corresponding bid should be dropped from the model, and 
perhaps used as the upper WTP bound. Since no assumption is made regarding the value of the cdf 
between any two bids, it can be shown that when all individuals respond to all bids, the solution for (1) 

has Fk* = 1/n ∑
−

n

i 1
Pi (WTP > tk), and hence if estimation problems are encountered the data can be 

easily checked to determine the source of the problem.  
6 For instance, to allow for negative WTP one can assume symmetry around $0 (see Kriström 1997).  
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where FK+1 = 0 and F0 = 1. Median WTP is the price such that F = 0.5. Since the mean 

and median are linear functions of parameter estimates (i.e., the Fk), standard errors and 

confidence intervals can be calculated by conventional methods using the maximum 

likelihood parameters and covariance matrix. Without assuming normality, 

nonparametric bootstrap and simulation techniques are available for generating 

confidence intervals (see Poe, Severance-Lossin, and Welsh 1994).   

 Even if the end goal is to estimate a parametric model, the nonparametric cdf 

may be useful in discriminating between parametric distribution functions. For instance, 

the nonparametric distribution can be tested against parametric distributions using 

standard tests, such as the Smirnov Test (Conover 1980). Further, large differences 

between the nonparametric mean and median suggests that an asymmetric parametric 

distribution may be appropriate.   

  

Robust Binary and Ordered Choice Models 

 As discussed in Section 2, estimating a random effects model involves imposing 

a rather rigid parametric structure on the data. Alternatively, a robust estimation 

approach is available that avoids such structure and is consistent with a random effects 

specification under the assumption that within-respondent decisions are freely 

correlated. Even if a random effects model is appropriate, a simple cross-section model 

that treats all within-respondent decisions as independent observations can be used to 

obtain consistent coefficient estimates; however, the estimated covariance matrix is 

incorrect (Maddala 1987). White’s (1982) “sandwich” estimator provides a consistent 

estimate of the appropriate asymptotic covariance matrix. Let V represent the 
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(uncorrected) variance matrix from the cross-section model, usually estimated by the 

inverse of the Hessian matrix. The sandwich estimator is: 
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where lnLik is the value of the (maximized) log-likelihood function for individual i and 

bid k. This covariance estimator can be generally applied to discrete choice models. As 

such, it serves as a “robust” alternative to both binary and ordered choice random 

effects models.  

 

4. Data 

 In attempt to make general conclusions about the performance of various 

modeling approaches, and to corroborate prior findings, this paper analyzes data from 

three published studies. To the best of my knowledge, these are the only studies in the 

literature that use both MBDC and PC questionnaires. The first dataset (hereafter 

referred to as CLASSROOM) comes from a 1994 classroom experiment where students 

at Cornell University were asked their annual WTP for reduced fluctuations in Glenn 

Canyon Dam releases (Welsh and Poe 1998). The first MBDC field application utilized 

an extensive version of this survey (Welsh et al. 1995). Evans, Flores and Boyle (2003) 

apply the DUDE model to data from the field application. 

 The second dataset (POWER, hereafter) comes from a green electricity program 

survey conducted in Erie County, New York in 1996. In the survey, Niagara Mohawk 

customers were asked how much they were willing to pay per month to join Niagara 

Mohawk Power Company’s Green ChoiceTM program, a green electricity program that 

would fund a tree planting program and a landfill gas project that could replace fossil 

fuel generated for 1,200 households. This study was a large research effort that 
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compared MBDC, PC, open-ended, DC, conjoint analysis, and real purchase decisions. 

Cameron et al. (2002) and Poe et al. (2002) provide details on the study. While there 

were three MBDC survey versions, the focus in this paper is on the base survey version, 

which included bids that correspond closely with the PC survey.   

The third dataset (ANGLER, hereafter) is from a survey of anglers who held a 

fishing license in Maine during 1994. Anglers were asked to value their fishing 

experiences for the 1994 open-water season (April 1, 1994 through September 30, 

1994). Specifically, consumer surplus was elicited by asking respondents what they 

were willing to pay over and above their total trip expenditures. Split samples were 

presented with surveys that presented the array of bids in either ascending (lowest bid 

first) or descending (highest bid first) order. Responses from the version with bids in 

ascending order are used for comparability with the CLASSROOM and POWER 

datasets. Results of the study appear in Alberini, Boyle, and Welsh (2003). 

 

5. MBDC Estimation Results and Model Selection 

For parametric models, I adopt the framework of Cameron and James (1987) for 

estimating the parameters of a WTP function. Suppose WTP or some transformation of 

WTP, f (WTP), is a linear function of covariates X and a random error term ε such that 

 

 iii X)WTP(f ε+β=                                                                                             [6] 

 

where i denotes the individual, β is a vector of parameters to be estimated, and ε  has 

zero mean, a cumulative distribution function (cdf) denoted by F(ε ), and variance 2σ . 

While WTP is not directly observed through responses to discrete choice questions, the 

presence of varying bids, coupled with a choice of F(ε ) allow direct estimation of β via 

maximum likelihood. Choices of f (WTP) and F(ε ) jointly define a distribution for 

WTP.  
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 In choosing an appropriate parametric distribution for WTP, I compared 

estimated normal, log-normal, logistic, log-logistic, and two-parameter Weibull 

response functions with corresponding nonparametric estimates under various 

behavioral assumptions. For illustrative purposes, consider Figures 1, 2, and 3, which 

display estimated parametric (normal, log-normal, and Weibull) and nonparametric 

functions corresponding to the Welsh-Poe “probably yes” model for the three datasets. 

In all cases, the normal distribution (the logistic is very similar) noticeably 

overestimates the cdf at intermediate bids, and underestimates the cdf for high bids. The 

log-normal distribution (the log-logistic is very similar) coincides with the 

nonparametric distribution for low to intermediate bids, but overestimates the cdf for 

high bids. The Weibull generally approximates the nonparametric cdf well. The 

Smirnov Test, which is based on the maximum distance between two cdfs, is used to 

test for differences between parametric and nonparametric functions. Using the normal 

distribution, the equality of distributions for each of the datasets is rejected at the 5% 

significance level. This is somewhat troubling given that in previous analysis of the 

datasets, the authors assume either a normal or logistic distribution for ε . The log-

normal is rejected for the POWER dataset only, while the Weibull is never rejected. 

Overall, Weibull mean WTP estimates more closely mimic nonparametric estimates 

than do estimates from the normal and log-normal distributions. Distribution and 

welfare comparisons are qualitatively similar under alternative behavioral assumptions. 

Therefore, as a reasonable approximation, all presented parametric models assume a 

Weibull distribution. For the Weibull distribution, f (WTP) = ln(WTP) and ε  is 

distributed extreme value, such that F(ε ) = exp[-exp(-ε )].   
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Figure 1.   Estimated WTP Distributions for the “Probably Yes” Welsh-Poe 

Model, CLASSROOM Dataset 
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Figure 2.   Estimated WTP Distributions for the “Probably Yes” Welsh-Poe 

Model, POWER Dataset 
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Figure 3.   Estimated WTP Distributions for the “Probably Yes” Welsh-Poe 

Model, ANGLER Dataset 
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Table 2 presents “definitely yes”, “probably yes”, and “not sure” versions of the 

binary choice (Weibull) random effects model for the three datasets. Tables 3a, 4a, and 

5a present binary choice models for the same three coding schemes, as well as ordered 

choice models. Tables 3b, 4b, and 5b present parametric and nonparametric interval 

models, including: “definitely yes”, “probably yes”, and “not sure” Welsh-Poe models; 

Benchmark, Probably, and Definitely DUDE models; and the Indifference Interval 

Model. 

 Random Effects models are estimated using LIMDEP econometric software. For 

this model, coefficients correspond with a reparameterization of the WTP function. See 

Appendix A for details. All other models are estimated with user-defined maximum 

likelihood routines in LIMDEP. Ninety-five percent confidence intervals for mean and 

median WTP point estimates are constructed using 10,000 random draws from the 

maximum likelihood coefficient vector and covariance matrix, following the approach 

of Krinsky and Robb (1986).  

 

A. Examination of Within-Subject Response Correlation 

 As shown in Table 2, the correlation coefficient ranges from 0.959 to 0.985 in 

the various binary choice random effects models. This result is consistent with the 

expectation of negligible response-effects stemming from the presence of multiple bids, 

but is in stark contrast to Alberini, Boyle, and Welsh (2003), who estimate ρ = 0.06 for 

a probit version of the “probably yes” model using the ANGLER dataset. The 

difference in estimated correlation coefficients is not due to our omission of covariates 

used by Alberini, Boyle, and Welsh (2003), or the choice of parametric distribution. For 

completeness, I estimated a probit version of the “probably yes” random effects model – 

with and without covariates – and obtained correlation coefficients of 0.947 and 0.985, 

respectively. Estimated models are included as Appendix B. SAS and STATA provide 

similar estimates of the correlation coefficients in random effects models.     
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Table 2.  Binary Choice Random Effects Models 
 

CLASSROOM Dataset (n=2,403) 

 Definitely Yes Probably Yes Not Sure 
γ0 6.908  (1.156) 15.129 (2.437) 29.337 (5.204) 
-γt 4.059  (0.633) 4.836  (0.786) 6.874  (1.230) 
ρ  0.979  (0.006) 0.978  (0.007) 0.985  (0.005) 
Mean WTP 21.03 54.26 136.48 
Median WTP 5.01 21.17 67.65 

POWER Dataset (n=2,942) 

 Definitely Yes Probably Yes Not Sure 
γ0 -1.888 (0.206) 1.884  (0.133) 1.459  (0.131) 
-γt 2.635  (0.186) 3.230  (0.202) 3.529  (0.206) 
ρ  0.959  (0.059) 0.970  (0.004) 0.971  (0.003) 
Mean WTP 2.34 7.62 5.17 
Median WTP 0.43 1.60 1.36 

ANGLER Dataset (n=8,540) 

 Definitely Yes Probably Yes Not Sure 
γ0 14.751 (1.119) 21.365 (1.324) 26.102 (2.069) 
-γt 3.909  (0.290) 4.480  (0.278) 4.846  (0.385) 
ρ  0.976  (0.004) 0.975  (0.003) 0.979  (0.003) 
Mean WTP 111.31 223.71 413.32 
Median WTP 39.66 108.52 202.49 

Notes: Standard errors are in parentheses. All estimated parameters are statistically different from zero 
at the 5% level. The two-parameter Weibull distribution is assumed for parametric models.  
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Table 3a.   MBDC Binary and Ordered Choice Models, CLASSROOM Dataset 

(n=2,403) 
 

Binary Choice Models 

 Definitely Yes Probably Yes Not Sure 
β  
(std. error) 
[robust std. error] 

2.585 
(0.057) 
[0.124] 

3.693 
(0.042) 
[0.097] 

4.616 
(0.047) 
[0.101] 

σ   
(std. error) 
[robust std. error] 

1.581 
(0.059) 
[0.107] 

1.233  
(0.047) 
[0.079] 

1.173 
(0.053) 
[0.082] 

Mean WTP 
(95% C.I.) 
[robust 95% C.I.] 

18.69 
(16.75, 20.93) 
[14.63, 24.08] 

45.09 
(41.19, 49.44) 
[37.38, 54.86] 

109.70 
(97.14, 124.36) 
[88.88, 136.64] 

Mean WTP 
(95% C.I.) 
[robust 95% C.I.] 

7.43 
(6.49, 8.50) 
[5.64, 9.81] 

25.57 
(23.26, 28.04) 
[20.73, 31.57] 

65.74 
(60.37, 71.50) 
[53.58, 80.84] 

Ordered Choice Model 

 Coefficient Std. Error Robust Std. Error 
β  5.502   0.073 0.131 

1µ  0.800   0.051 0.073 

2µ  1.853   0.077 0.164 

3µ  2.937   0.096 0.120 
σ  1.420   0.044 0.086 
Mean WTP 
Interval 

48.40 – 138.62 

Median WTP 
Interval 

22.87 – 65.48 

Mean WTP1   
(95% C.I) 
[robust 95% C.I.] 

81.91 
(73.49, 91.25) 
[66.02, 102.51] 

Median WTP1 
(95% C.I) 
[robust 95% C.I.] 

38.69 
(35.52, 42.18) 
[30.84, 48.48] 

Notes: Standard errors are in parentheses. All estimated parameters are statistically different from zero 
at the 5% level. The two-parameter Weibull distribution is assumed for parametric models. 1 Welfare 
measures calculated based on symmetry assumption – see text.   
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Table 3b.  MBDC Interval Data Models, CLASSROOM Dataset (n=185) 
 

Welsh-Poe Interval Models 

 Definitely Yes Probably Yes Not Sure 
Parametric Estimates: 
β  2.600  (0.124) 3.697  (0.098) 4.669  (0.103) 
σ  1.591  (0.097) 1.257  (0.077) 1.238  (0.088) 
Mean WTP 
[95% C.I.] 

19.13 
[15.02, 24.46] 

45.88 
[37.90, 55.75] 

119.87 
[96.10, 150.51] 

Median WTP 
[95% C.I.] 

7.51 
[5.71, 9.87] 

25.45 
[20.51, 31.50] 

67.70 
[54.58, 83.68] 

Nonparametric Estimates: 
Mean WTP 
[95% C.I.] 

19.33 
[14.52, 24.26] 

53.86 
[40.87, 66.82] 

128.61 
[107.40, 149.72] 

Median WTP 
[95% C.I.] 

8.21 
[6.49, 10.34] 

28.10 
[20.97, 34.98] 

62.50 
[47.42, 79.64] 

DUDE Models 

 Benchmark DUDE Probably DUDE Definitely DUDE 
Parametric Estimates: 
β  4.155  (0.129) 4.264  (0.150) 4.216  (0.107) 
σ  1.597  (0.108) 1.830  (0.129) 1.337  (0.088) 
Mean WTP 
[95% C.I.] 

90.97 
[68.71, 121.31] 

122.30 
[86.15, 176.17] 

80.90 
[64.85, 101.35] 

Median WTP 
[95% C.I.] 

35.51 
[26.93, 46.59] 

36.35 
[26.47, 49.68] 

41.51 
[32.94, 52.12] 

Nonparametric Estimates: 
Mean WTP 
[95% C.I.] 

88.12 
[70.35, 105.70] 

95.21 
[77.06, 113.55] 

91.16 
[72.72, 109.41] 

Median WTP 
[95% C.I.] 

33.12 
[24.56, 43.91] 

33.12 
[24.56, 43.91] 

40.90 
[32.19, 47.57] 

Indifference Interval Model 

 Parametric Nonparametric 
β  4.146  (0.099)  
σ  1.157  (0.083)  
Mean WTP 
[95% C.I.] 

68.06 
[55.49, 83.97] 

65.31 
[54.33, 75.61] 

Median WTP 
[95% C.I.] 

41.35 
[33.54, 50.80] 

43.49 
[36.13, 53.17] 

Notes: Standard errors are in parentheses. All estimated parameters are statistically different from zero 
at the 5% level. The two-parameter Weibull distribution is assumed for parametric models.  
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Table 4a.  MBDC Binary and Ordered Choice Models, POWER Dataset (n=2,942) 
 

Binary Choice Models 

 Definitely Yes Probably Yes Not Sure 
β   
(std. error) 
[robust std. error] 

0.048 
(0.070) 
[0.151] 

0.942 
(0.048) 
[0.113] 

1.613 
(0.051) 
[0.126] 

σ   
(std. error) 
[robust std. error] 

2.053 
(0.095) 
[0.130] 

1.617 
(0.065) 
[0.096] 

1.796 
(0.066) 
[0.119] 

Mean WTP 
(95% C.I.) 
[robust 95% C.I.] 

2.20 
(1.91, 2.57) 
[1.72, 2.87] 

3.72 
(3.31, 4.19) 
[3.04, 4.57] 

8.39 
(7.28, 9.72) 
[6.34, 11.29] 

Mean WTP 
(95% C.I.) 
[robust 95% C.I.] 

0.49 
(0.41, 0.59) 
[0.35, 0.71] 

1.42 
(1.26, 1.59) 
[1.09, 1.84] 

2.60 
(2.33, 2.90) 
[1.97, 3.44] 

Ordered Choice Model 

 Coefficient Std. Error Robust Std. Error 
β  2.385   0.056 0.112 

1µ  0.751   0.043 0.104 

2µ  1.470   0.060 0.200 

3µ  2.334  0.076 0.140 
σ  1.897  0.057 0.110 
Mean WTP 
Interval 

4.55 – 9.34 

Median WTP 
Interval 

1.25 – 2.56 

Mean WTP1   
(95% C.I) 
[robust 95% C.I.] 

6.52 
(5.79, 7.35) 
[5.23, 8.24] 

Median WTP1 
(95% C.I) 
[robust 95% C.I.] 

1.78 
(1.59, 2.00) 
[1.29, 2.49] 

Notes: Standard errors are in parentheses. Except for β in the “definitely yes” model, all estimated 
parameters are statistically different from zero at the 5% level. The two-parameter Weibull distribution is 
assumed for parametric models. 1 Welfare measures calculated based on symmetry of the fitted WTP 
interval – see text.   
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Table 4b.  MBDC Interval Data Models, POWER Dataset (n=260) 

Welsh-Poe Interval Models 

 Definitely Yes Probably Yes Not Sure 
Parametric Estimates: 
β  -0.167 (0.166) 0.900  (0.120) 1.604  (0.135) 
σ  2.400  (0.162) 1.764  (0.106) 1.954  (0.113) 
Mean WTP 
[95% C.I.] 

2.53 
[1.76, 3.71] 

4.00 
[3.11, 5.20] 

9.54 
[7.11, 12.93] 

Median WTP 
[95% C.I.] 

0.35 
[0.24, 0.52] 

1.29 
[0.98, 1.68] 

2.43 
[1.81, 3.25] 

Nonparametric Estimates: 
Mean WTP 
[95% C.I.] 

1.99 
[1.51, 2.47] 

3.57 
[3.24, 4.20] 

9.67 
[6.67, 12.65] 

Median WTP 
[95% C.I.] 

0.50 
[0.27, 0.88] 

1.66 
[1.35, 2.15] 

2.93 
[2.36, 4.13] 

DUDE Models 

 Benchmark DUDE Probably DUDE Definitely DUDE 
Parametric Estimates: 
β  1.180  (0.153) 1.257  (0.173) 1.266  (0.133) 
σ  2.240  (0.135) 2.524  (0.156) 1.941  (0.113) 
Mean WTP 
[95% C.I.] 

8.21 
[5.81, 11.79] 

12.01 
[7.97, 18.50] 

6.72 
[5.05, 9.06] 

Median WTP 
[95% C.I.] 

1.43 
[1.02, 2.00] 

1.39 
[0.95, 2.04] 

1.74 
[1.30, 2.33] 

Nonparametric Estimates: 
Mean WTP 
[95% C.I.] 

7.31 
[4.71, 9.91] 

9.70 
[6.35, 13.01] 

6.18 
[4.11, 8.24] 

Median WTP 
[95% C.I.] 

1.48 
[1.15, 2.06] 

1.43 
[1.05, 2.06] 

1.74 
[1.34, 2.30] 

Indifference Interval Model 

 Parametric Nonparametric 
β  1.282  (0.121)  
σ  1.743  (0.111)  
Mean WTP 
[95% C.I.] 

5.76 
[4.41, 7.62] 

5.25 
[4.33, 6.18] 

Median WTP 
[95% C.I.] 

1.90 
[1.46, 2.47] 

2.36 
[1.72, 2.80] 

Notes: Standard errors are in parentheses. Except for β in the “definitely yes” model, all estimated 
parameters are statistically different from zero at the 5% level. The two-parameter Weibull distribution is 
assumed for parametric models.  
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Table 5a.  MBDC Binary and Ordered Choice Models, ANGLER Dataset 

(n=8,540) 
 

Binary Choice Models 

 Definitely Yes Probably Yes Not Sure 
β   
(std. error) 
[robust std. error] 

4.524 
(0.031) 
[0.053] 

5.257 
(0.026) 
[0.045] 

5.880 
(0.025) 
[0.052] 

σ   
(std. error) 
[robust std. error] 

1.734 
(0.034) 
[0.056] 

1.396 
(0.026) 
[0.045] 

1.310 
(0.025) 
[0.050] 

Mean WTP 
(95% C.I.) 
[robust 95% C.I.] 

146.49 
(136.71, 157.15) 
[128.17, 168.47] 

237.77 
(224.62, 251.85) 
[212.58, 267.00] 

420.15 
(396.95, 444.63) 
[369.49, 480.88] 

Mean WTP 
(95% C.I.) 
[robust 95% C.I.] 

48.87 
(45.46, 52.49) 
[43.71, 54.78] 

115.08 
(108.77, 121.63) 
[105.62, 125.61] 

221.40 
(210.31, 232.85) 
[201.24, 244.10] 

Ordered Choice Model 

 Coefficient Std. Error Robust Std. Error 
β  6.542   0.030 0.064 

1µ  0.674   0.023 0.040 

2µ  1.355   0.032 0.089 

3µ  2.078   0.038 0.063 
σ  1.520   0.023 0.046 
Mean WTP 
Interval 

241.28 – 476.82  

Median WTP 
Interval 

102.49 – 202.55 

Mean WTP1  
 (95% C.I) 
[robust 95% C.I.] 

339.19 
(320.87, 358.34) 
[297.80, 388.06] 

Median WTP1 
(95% C.I) 
[robust 95% C.I.] 

144.05 
(136.82, 151.78) 
[126.88, 164.09] 

Notes: Standard errors are in parentheses. All estimated parameters are statistically different from zero 
at the 5% level. The two-parameter Weibull distribution is assumed for parametric models. 1 Welfare 
measures calculated based on symmetry of the fitted WTP interval – see text.   
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Table 5b.  MBDC Interval Data Models, ANGLER Dataset (n=622) 

Welsh-Poe Interval Model 

 Definitely Yes Probably Yes Not Sure 
Parametric Estimates: 
β  4.500  (0.078) 5.224  (0.062) 5.844  (0.059) 
σ  1.807  (0.057) 1.470  (0.046) 1.404  (0.045) 
Mean WTP 
[95% C.I.] 

151.80 
[130.51, 176.85] 

241.74 
[214.49, 272.61] 

429.89 
[382.32, 483.83] 

Median WTP 
[95% C.I.] 

46.40 
[39.26, 54.76] 

108.35 
[94.64, 123.90] 

206.28 
[181.25, 234.48] 

Nonparametric Estimates: 
Mean WTP 
[95% C.I.] 

171.17 
[138.58, 203.90] 

258.88 
[222.87, 295.27] 

549.05 
[468.43, 631.66] 

Median WTP 
[95% C.I.] 

47.09 
[40.30, 56.31] 

100.00 
[90.45, 121.36] 

206.90 
[179.65, 233.67] 

DUDE Model 

 Benchmark Symmetric I Symmetric II 
Parametric Estimates: 
β  5.519  (0.069) 5.620  (0.075) 5.551  (0.062) 
σ   1.635  (0.053) 1.775  (0.059) 1.474  (0.047) 
Mean WTP 
[95% C.I.] 

366.24 
[318.78, 421.15] 

453.15 
[387.62, 530.93] 

336.37 
[297.75, 380.33] 

Median WTP 
[95% C.I.] 

136.94 
[117.77, 158.99] 

143.94 
[122.20, 169.29] 

150.07 
[131.02, 171.67] 

Nonparametric Estimates: 
Mean WTP 
[95% C.I.] 

392.45 
[337.19, 448.73] 

441.93 
[384.33, 500.91] 

383.62 
[328.03, 440.37] 

Median WTP 
[95% C.I.] 

132.30 
[105.97, 157.00] 

137.31 
[108.79, 164.37] 

147.02 
[122.89, 170.60] 

Indifference Interval Model 

 Parametric Nonparametric 
β  5.519  (0.060)  
σ  1.395  (0.046)  
Mean WTP 
[95% C.I.] 

308.78 
[274.20, 348.09] 

269.96 
[240.76, 299.22] 

Median WTP 
[95% C.I.] 

149.57 
[131.23, 170.22] 

154.14 
[136.90, 171.91] 

Notes: Standard errors are in parentheses. All estimated parameters are statistically different from zero 
at the 5% level. The two-parameter Weibull distribution is assumed for parametric models.  
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Given the very large and statistically significant correlation coefficients, models 

estimated under the premise of within-subject response independence are inappropriate. 

However, coefficient estimates from ordered or binary choice models where the 

responses are pooled but the correlation structure is ignored are consistent (Maddala 

1987), and so the concern lies in the estimated standard errors. Tables 3a, 4a, and 5a 

report binary and ordered choice model coefficients and WTP estimates. Two sets of 

coefficient standard errors and corresponding 95% confidence intervals for WTP are 

reported. The first set assumes within-subject independence while the “robust” 

estimates are calculated using the “sandwich” estimator, which takes account of within-

subject response correlation. In all cases, robust standard errors and 95% confidence 

intervals are noticeably larger, implying that inferences based on uncorrected standard 

errors are problematic. For the binary choice models using the CLASSROOM dataset, 

for example, the robust standard errors are approximately twice as large as the 

uncorrected errors.    

 

B. Monte Carlo and Empirical Evidence on Model Performance 

 It is clear that that the independence assumption is inappropriate, although the 

correlation coefficient estimates do not serve in and of themselves as a basis for 

choosing between random effects and interval data models. The correlation coefficients 

are very close to 1, but there is no reliable test of ρ  = 1 (Alberini 1995). Even if there 

were such a test, concerns over distributional and other assumptions imposed in the 

random effects model call into question its usefulness.  

 As an alternative mode of investigation, simple Monte Carlo experiments were 

conducted to gain insight into the relative performance of random effects versus interval 

data models for analyzing MBDC data under the premise of perfect correlation of 

within-respondent decisions. Another feasible alternative is to estimate a binary choice 

model and use the “sandwich” covariance matrix, and so I consider this estimator as 
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well. The experiment is set up as follows. Numbers representing underlying WTP 

amounts for a sample of 100 individuals are randomly drawn from the normal 

distribution. For each individual a set of yes/no indicator variables are constructed by 

comparing the individual’s WTP to a set of payment thresholds. Specifically, the set of 

bids is {0,5,10,15,20,25,30,35,40,45,50,55,60}, there are no response errors, and ρ =  1: 

a yes response is recorded if WTP > bid and otherwise a no response is recorded.7 

There are 13 bids and so this procedure produces 1,300 total observations. These 

observations are used to estimate mean WTP from binary probit and random effects 

probit models. The upper and lower WTP bounds for each individual are created by 

identifying the two consecutive survey bids that bound the individuals’ WTP.8 An 

interval data model estimates mean WTP using the set of WTP bounds for the 100 

individuals.  

 Table 6 presents results from two Monte Carlo experiments. In the first 

experiment, individual WTP values drawn from a normal distribution with a mean of 

$30 and standard deviation of $30. In the second experiment, the mean is $50 with a 

standard deviation of $30. Note that the expected mean WTP in experiment 1 is in the 

center of the bid distribution, while the mean and standard deviation of WTP in 

experiment 2 is such that many respondents have WTP amounts larger than the highest 

bid. This is analogous to a situation of a survey with a poor bid design. There are 500 

replications in each experiment. 

 Several interesting results stem from the experiments. First, the correlation 

coefficients average 0.972 and 0.973, respectively, in the two experiments and the range 

of values across replications is small (0.960 to 0.984). Second, the mean-squared error 

(MSE) is approximately ten times larger for the random effects probit versus the other 

                                                 
7 Other experiments were run where the respondent’s WTP is highly correlated across bids (ρ=0.95). 
There was no real difference in results, except for slightly lower random effect probit estimates of ρ. 
8 As standard in interval models, the lower bound is -∞ if WTP is less than the smallest bid and the upper 
bound is ∞ if WTP exceeds the highest bid. 
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two models. In a Monte Carlo comparison between the interval model and a bivariate 

probit for estimating WTP from double-bounded CV data, Alberini (1995) finds that the 

latter model is inferior in terms of MSE. Third, in Experiment 2, where the bid design is 

relatively poor, WTP from the random effects probit is 6% below the true value on 

average and is off by as much as $13.90 (28%) in individual trials. In contrast, both the 

interval model and binary probit perform well in terms of accurately estimating mean 

WTP, with no evidence of systematic bias. The MSE of the interval model is 

approximately 20% smaller than the binary probit, but this is to be expected. Overall, it 

appears that the interval model is preferred under the premise that within-respondent 

decisions are highly correlated.  
 

 
Table 6.   Monte Carlo Results: Performance of the Probit, Random Effect Probit, 

and Interval Models 
 

Experiment 1: Mean (β) = $30, ρ = 1 (100 individuals, 500 Replications) 

 Probit Random Effects 
Probit 

Interval Model 

Mean WTP 
     MSE 
     β−β̂max  

30.07 
     0.78 
     3.19 

30.43 
     11.01 
     9.90 

30.07 
     0.65 
     2.55 

ρ 
     Std. dev. 
     Range 

0.000     0.972 
     0.003 
     0.962 – 0.984 

1.000   

Experiment 2: Mean (β)= $50, ρ = 1 (100 individuals, 500 Replications) 

 Probit Random Effects 
Probit 

 

Mean WTP 
     MSE 
     β−β̂max  

50.20 
     2.66 
     5.58   

47.23 
     22.35 
     13.90 

50.22 
     2.05 
     4.66      

ρ 
     Std. dev. 
     Range 

0.000 0.973 
     0.004 
     0.960 – 0.983 

1.000      
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 Results from the Monte Carlo experiments do carry over to actual MBDC WTP 

estimates. Both the average (0.975) and range of coefficient values (0.959 to 0.985) 

estimated with actual MBDC data are strikingly close to the simulated values. While not 

a proof, this suggests that actual within-respondent decisions for the three datasets could 

be perfectly correlated. Quite generally, coefficient and WTP estimates are very similar 

between the binary choice and comparable Welsh-Poe interval models. Random effects 

model estimates are in the ballpark of those from comparable models but differ 

noticeably in instances.  For the POWER dataset, estimated mean and median WTP is 

actually larger in the “probably yes” than in the “not sure” model, where more 

responses are treated as “yes”. Actual estimation results coupled with the relatively 

large MSE observed in Monte Carlo experiments serve to illustrate the routine’s 

apparent difficulty in accurately identifying WTP.   

  

C. Comparison of WTP from Ordered Choice and Indifference Interval Models 

 Both the ordered choice model and the Indifference Interval model can estimate 

WTP without the need to recode or second-guess categorical responses. As discussed in 

Section 2, to estimate WTP from the ordered choice model the analyst must make the 

untestable assumption that the fitted WTP interval corresponding to the “not sure” 

category is symmetric. Such an assumption is not necessary for the Indifference Interval 

model. The key difference between modeling approaches is that the Indifference 

Interval estimator directly models the individual’s “not sure” price interval while the 

ordered choice model attempts to estimate the “not sure” interval from the data. 

Maintaining the hypothesis that a single underlying WTP distribution drives all within-

respondent decisions, the Indifference Interval Model is presumably the preferable 

approach. Therefore, testing for equality of WTP between ordered choice and 

Indifference Interval models sheds light on whether the symmetry assumption is 

appropriate. For reasons given above, the focus of comparisons is between the “robust” 
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version of the ordered choice model and the indifference model. Since I use simulation 

methods to derive the distributions for our WTP point estimates, the method of 

convolutions (Poe, Severance-Lossin, and Welsh 1994) is appropriate for testing 

between two WTP point estimates. Both mean (CLASSROOM: pc  = 0.230; POWER: pp 

= 0.503; ANGLER: pa = 0.250) and median (pc = 0.677; pp = 0.783; pa= 0.336) WTP 

estimates are not statistically different at the 5% level for all datasets. As such, this 

lends qualified support of the “symmetry” restriction needed to identify WTP point 

estimates in the robust ordered model. It is likely that in some applications, the 

individual’s “indifference interval” is not well defined. This can happen when many 

respondents are not willing to pay the first bid amount or otherwise do not choose the 

intermediate categories over the range of prices. In such situations, the robust ordered 

choice model is preferable.   

 

D. Replication of Evans, Flores, and Boyle 

 Evans, Flores, and Boyle (2003) find that welfare estimates are insensitive to the 

different probability assignments of the Benchmark, Probably, and Definitely DUDE 

models. Using the method of convolutions, I conduct pair-wise tests of equality between 

mean or median WTP estimates from the different parametric specifications. Using the 

method of convolutions, I find that Probably DUDE and Definitely DUDE mean WTP 

estimates are statistically different at the 5% significance level for all datasets (pc = 

0.050; pp = 0.026; pa = 0.004). However, median WTP is never statistically different 

between these same models. In all possible cases, mean and median WTP estimates 

from the Benchmark DUDE model are not statistically different than estimates from the 

Probably and Definitely DUDE models. Overall, median WTP estimates are insensitive 

to alternative “probably yes” and “probably no” DUDE model probability assignments. 

However, when the goal is to estimate mean WTP, these same probability assignments 

indeed matter. 
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6. Comparing MBDC with the PC 

 The MBDC elicitation mechanism can be regarded as a PC with payment 

certainty as an added dimension. In this section, I examine how respondents behave in 

the absence of the payment certainty categories.9 This exploration is deliberately 

comprehensive as I consider a multitude of different MBDC models – each with 

differing behavioral assumptions, compare both WTP point estimates and estimated 

WTP functions, and employ both parametric and nonparametric approaches.  

To limit the scope of comparisons, the focus is on the various interval data 

models as well as the robust ordered choice model. Note that binary choice models 

mimic the Welsh-Poe models. The (parametric) random effects models are ignored for 

obvious reasons. PC data are analyzed using the parametric and nonparametric versions 

of the interval data model.10 Comparisons are made between estimated nonparametric 

and various parametric distributions for the PC data, analogous to those described for 

MBDC data in Section 4. Again, I find that the Weibull distribution serves as a 

reasonable approximation for the underlying WTP distribution.   

 Table 7 presents estimated Weibull and nonparametric PC interval models. I 

first test for equality between PC and various MBDC parametric WTP functions, using 

the likelihood ratio test: 

 

 LR = [ ])ln(lnln2 2121 LLL +−− =  ~ χ2 (r)                                                            [7] 

 

where lnL1 and lnL2 are values of the log-likelihood at solution for the independent PC 

and MBDC models, lnL1=2is the value of the log-likelihood for a model that pools both 

datasets and estimates a common parameter vector ( σβ, ), and r is the number of 

restrictions. Since the sample sizes differ between corresponding PC and MBDC 

                                                 
9 Despite several requests, our efforts to acquire the PC data from the ANGLER study were unsuccessful.  
10 Estimated PC robust binary choice models are very similar to interval models.  
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samples in the POWER dataset, I use sampling weights such that each sample, rather 

than each observation, receives equal weight. The relative error variances are allowed to 

differ by data type, as any difference in error variance between data type would distort 

estimated parameters of a pooled model. When pooling the ordered choice and PC data, 

no symmetry restriction is needed as the PC data allow us to identify all four ordered 

thresholds (i.e., the normalization 0µ  = 0 is not imposed; see Cameron 2002).  

  
Table 7.  Payment Card Models 

Parametric Models 
 CLASSROOM Data POWER Data 

β  3.635  (0.096) 0.938  (0.098) 
σ  1.241  (0.074) 1.548  (0.082) 
Mean WTP 
[95% C.I.] 

42.71 
[35.52, 51.54] 

3.51 
[2.92, 4.24] 

Median WTP 
[95% C.I.] 

24.05 
[19.46, 29.66] 

1.45 
[1.16, 1.81] 

Nonparametric Models 
 CLASSROOM Data POWER Data 
Mean WTP 
[95% C.I.] 

43.84 
[35.65, 52.01] 

3.57 
[2.87, 4.27] 

Median WTP 
[95% C.I.] 

21.58 
[17.53, 28.35] 

1.36 
[1.22, 1.94] 

   
n 188 292 

Notes: Standard errors are in parentheses. All estimated parameters are statistically different from zero 
at the 5% level. The two-parameter Weibull distribution is assumed for parametric models.  
 
 

 Employing a 5% significance level, I fail to reject the hypothesis of equal WTP 

functions only when comparing PC and “probably yes” Welsh-Poe interval models 

[CLASSROOM: χc
2(2)=0.205, pc =  0.902; POWER: χp

2(2) = 0.060, pc = 0.970]. While 

comparisons of welfare estimates are not as clean, I fail to reject both equal mean and 

median WTP between PC and “probably yes” models only [means: pc = 0.599, pp = 

0.423; medians: pc = 0.713, pp  = 0.519]. For the POWER dataset, there are several 

instances where MBDC medians are not different from the PC median. However, given 
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the results of LR tests and mean WTP tests, this result is merely coincidental as 

underlying response functions fundamentally differ. 

 To explore the robustness of the findings, the Smirnov Test is used to compare 

estimated nonparametric distribution functions.11 Paralleling results for the LR tests, I 

fail to reject the hypothesis of equal WTP distributions between PC and “probably yes” 

models only and this result holds across datasets. The maximum distances between 

these WTP distributions are 6.6% and 8.4%, respectively, for the CLASSROOM and 

POWER datasets. Tests of WTP point estimates likewise coincide with the results from 

parametric tests, as I only fail to reject equality between PC and “probably yes” MBDC 

models for both point estimates. 

 Overall the evidence is clear – in the absence of the certainty response 

categories, otherwise “definitely yes” and “probably yes” respondents will vote yes, 

while “not sure”, “probably no”, and “definitely no” respondents will vote no. While 

presumption may be that some “not sure” respondents would vote yes and others vote 

no, neither the Indifference Interval, ordered choice model, nor any of the DUDE 

models match PC response functions or both mean and median WTP estimates.  

 So, what are the implications of this finding? It does suggest that, when not 

given the option, “not sure” respondents tend to vote “no”. This coincides closely with 

findings from CV survey comparisons with actual voting behavior (Carson, Hanemann, 

and Mitchell 1986; Champ and Brown 1997; Vossler et al. 2003a) and evidence from 

pre-election polls (Magelby 1989), where voters who are undecided before an election 

overwhelmingly vote “no” on Election Day. If we may extrapolate from these findings, 

it may be the case that “not sure” responses are an indication that the respondent would 

                                                 
11 Since maximum likelihood estimates the discrete points of the nonparametric cdfs, we could use a 
likelihood ratio test of the hypothesis that the discrete points are equal across models. However, the large 
number of restrictions (one for each point) gives rise to concern over the power of such a test. 
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not actually pay the corresponding amount if faced with an analogous real purchase 

situation.  

 In the lone MBDC field validity test (Vossler et al. 2003b), from which the 

POWER data comes from, MBDC responses correspond with actual purchase decisions 

only when the vast majority of “definitely yes” and “probably yes” responses are treated 

as yes, and other responses are treated as no. Consistent with our findings, PC decisions 

match actual purchase behavior. If this finding is consistent in future validity studies, 

this suggests that virtually nothing is gained by inclusion of the payment certainty 

categories. Similarly, PCs are preferred as they reduce the cognitive burden of 

respondents as well as data analysts. Clearly, the issue of whether “not sure” responses 

reflect actual or fictional uncertainty introduced by the inclusion of such a response 

option in a contingent market survey warrants further research.   

 

7. Concluding Remarks 

 In multiple bounded discrete choice (MBDC) surveys, respondents face multiple 

payment amounts for a nonmarket good and indicate their level of payment certainty for 

each amount. As it stands, this elicitation mechanism attempts to gather much more 

information on the respondent’s WTP than standard DC questions. Making use of three 

existing datasets, I explore the issue of data analysis and compare MBDC with the 

payment card (PC), which presents the respondent with multiple payment amounts but 

does not collect information on payment certainty. 

 Given the nature of the data, two important issues to consider when analyzing 

MBDC responses are how to treat the multiple responses from the same individual and 

how payment certainty levels correspond with real behavioral intentions. Contrary to 

past research, there is compelling evidence in favor of treating the within-respondent 

decisions as perfectly correlated, thus driven by a single underlying WTP distribution. 

Namely, the estimated correlation of within-respondent decisions is in the range of 
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0.959 to 0.985 using random effects models. Further, empirical WTP estimates and 

evidence from Monte Carlo experiments provide support for favoring interval models, 

which assume perfect correlation, over random effects models in terms of their ability to 

estimate WTP accurately. Thus, overall this study provides strong guidance for model 

selection. The set of existing analytic approaches is expanded by introducing 

nonparametric interval model estimators, an Indifference Interval model which serves 

as a alternative to the ordered choice model used in past research, and a procedure for 

correcting the covariance matrix from models that assume within-subject response 

independence, so that valid inferences may be drawn from such models. 

 Comparisons between PC and various MBDC models, which differ largely in 

terms of how payment certainty responses are treated, reveal a strong compatibility 

between PC and MBDC models that treat “definitely yes” and “probably yes” responses 

as yes and all other responses as no. In fact, this finding is consistent across datasets and 

holds for both parametric and nonparametric response functions as well as mean and 

median WTP estimates. For all other MBDC models, both parametric and 

nonparametric response functions are statistically different from corresponding PC 

functions. In the lone field validity test of MBDC surveys (Vossler et al. 2003b), this 

same recoding of certainty responses into yes/no decisions is needed for correspondence 

between survey responses and revealed behavior. Evidence from CV survey responses 

and actual voting behavior, as well as pre-election polls suggests likewise that the 

majority of “undecided” pre-election respondents vote no in actual elections. Evidence 

from field research, coupled with comparisons between PC and MBDC responses, 

suggests that all relevant information from the respondent is attainable through PC 

surveys. That is to say, the inclusion of the payment certainty categories may be 

unnecessary and simply serve to add complication for the respondent as well as the data 

analyst. 
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Appendix A: Log-Likelihood Functions for MBDC Models 
 
A. Interval Models: within-subject responses are driven by a single underlying WTP 

distribution  

Welsh-Poe Interval Model 

 Welsh and Poe (1998) analyze MBDC data using an interval model that is 

analogous to the models commonly used for PC (see Cameron and Huppert 1989) and 

multiple DC (see Carson and Mitchell 1987) data. Responses in a given certainty 

category are systematically recoded into simple yes/no answers. In the “definitely yes” 

model, “definitely yes” responses are recoded as yes and all other responses as no. In 

the “probably yes” model, both “definitely yes” and “probably yes” responses are 

treated as yes, and other responses as no. Based on the yes responses an interval is 

constructed that bounds the respondent’s WTP. The respondent’s WTP is bounded from 

above by the lowest bid they are not willing to pay, denoted tU, and from below by the 

highest bid they are willing to pay, denoted tL. It follows that Pr(yes) = Pr[tL ≤ WTP ≤ 

tU) = F[f (tL)/σ-Xβ/σ] – F[f (tU)/σ-Xβ/σ)]. If the respondent answers yes to all prices: 

Pr(yes) = F[f (tL)/σ-Xβ/σ)], where tL is the highest offered bid. When the respondent 

answers “no” to all prices: 1 – F[f (tU)/σ-Xβ/σ)], where tU is equal to the lowest bid . The 

parameters of the WTP function are estimated by maximizing the following log-

likelihood function: 

 

 





















σ

β−
−+























σ

β−
−








σ

β−
+








σ

β−
= ∑

=

i
U
i

i

i
U
ii

L
i

i
i

L
i

i

n

i

X)t(fFlnI

X)t(fFX)t(fFlnIX)t(fFlnILln

13

21
1

   [A1] 



 

 41 

where I1i = 1 if the respondent answers yes to all bids, =0 otherwise; I2i = 1 if the 

respondent’s WTP lies between two offered bids, =0 otherwise; and I3i = 1 if the 

respondent answers no to all bids, =0 otherwise. 

 

Dual Uncertainty Decision Estimator (DUDE) Model 

 Motivated by research in psychology that suggests verbal probability statements 

convey subjective probabilities, Evans, Flores, and Boyle (2003) assign probability 

weights to the response categories. For instance, rather than recoding all “not sure” 

responses as either yes or no, a “not sure” response to t can be interpreted to mean that 

there is a 50% chance the individual would actually pay t. Assuming that the responses 

to the K bids are all driven by a single WTP distribution, a discrete cdf is constructed 

for the individual using a set of researcher-assigned probabilities for each response 

category. The name for the model, the Dual Uncertainty Decision Estimator (DUDE) 

reflects the notion that there are two sources of uncertainty: uncertainty surrounding the 

assignment of subjective probabilities and uncertainty regarding the log-likelihood 

contribution for each respondent given the probabilities. Using the optimal decision rule 

based on a quadratic loss function, the log-likelihood function is: 
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    [A2] 

where Pi(WTP > tk) is the subjective probability that the respondent’s WTP is greater 

than bid tk.  
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B. Binary and Ordered Choice Models 

Binary Choice Model 

 After recoding categorical responses into yes/no decisions, as in the Welsh-Poe 

framework, standard techniques for analyzing DC data can be applied. That is, the K 

responses from the same individual are treated as separate observations, such that our 

sample size is nK, rather than n. The log-likelihood function is: 
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Estimated parameters are consistent, even if within-subject responses are correlated. 

The sandwich estimator in Section 3 corrects the covariance matrix in the presence of 

within-subject response correlation. 

 

Ordered Choice Model  

 In order to avoid recoding uncertain responses into yes/no decisions or assigning 

probability weights, Alberini, Boyle, and Welsh (2003) estimate an ordered probit 

model and Cameron et al. (2002) estimate an ordered logit model. Each response option 

is retained as a separate category and, from the data, thresholds are estimated that imply 

bounds on WTP for responses within each category. The log-likelihood of the ordered 

probability model is: 
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where Iik
j = 1 if respondent i chose category j (j =DY = “definitely yes”, etc.) for bid k, 

and equals 0 otherwise; and the µ’s are threshold parameters to be estimated. The 

threshold parameters give us information on where respondents switch between two 

consecutive categories. Without assuming that the switch from yes to no occurs 

between two categories, a minimal restriction for estimating WTP is to make the two 

center thresholds (or all thresholds) symmetric around zero by forcing µ2 equal to - µ3 

and then using the standard formula for calculating WTP applies. The sandwich 

estimator in Section 3 corrects the covariance matrix in the presence of within-subject 

response correlation. 

 

C. Binary and Ordered Choice Random Effects Models 

 Alberini, Boyle, and Welsh (2003) use a panel data approach to estimate the 

parameters of a WTP function. For each of the n respondents, each of the K decisions 

are recoded into “yes” and “no” responses. Pooling the nK responses, a random effects 

model can be estimated that allows the within-respondent decisions to be freely 

correlated. That is, it is assumed that each within-subject response comes from separate 

WTP distribution but there is an unobserved heterogeneity with respect to the 

individual. The WTP function is assumed to have the form: 
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 K,...,k;N,...,i;uvwhere,vX)WTP(f ikiikikikik 11 ==ε+=+β=        [A5] 

 

where ui is the unobserved heterogeneity specific to individual i, is mean zero, and is 

uncorrelated with X and ε. Another key assumption is that the within-subject error 

correlation [Corr(ε ij, ε is)], denoted by ρ, is the same between any two bids. To simplify 

estimation, Alberini, Boyle, and Welsh (2003) specify [A5] in terms of a conventional 

binary choice model with random effects: 

 

 K,...,k;N,...,i,u)t(fXY ikitikik
*

ik 11 ==ε++γ+γ=                        [A6] 

 

where Yik
*=1 for a “yes” response and equals 0 for a “no” response, and f (t) is now 

included along with the regressors of the WTP function. Although any distribution can 

be assumed for ui, it is most common to assume ui is distributed normal and then apply 

the estimation procedure of Butler and Moffit (1982). Estimation is fairly complicated 

and involves using Gauss-Hermite quadrature to maximize the following log-likelihood 

function:  
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where )](,[~
ikikik tfXX = , ],[~

tγγγ = , 2uσθ = , ri = ui/θ, and, as before, F(∙) is the 

distribution of ε and can be freely chosen. Alberini, Boyle, and Welsh (2003) assume 

F(ε ) is normal. The model can be readily extended to the ordered choice framework by 

substituting the following for the {.} term in [A7]: 
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A parameter of key interest is the correlation coefficient, ρ, which is equal to 
2
uσ /(1+ 

2
uσ ).   
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Appendix B. Parameter Estimates for “Probably Yes” Random Effects Probit 
Models, ANGLER Dataset     

 
 Probit,  

with covariates 
Probit 

Constant -0.238 (0.123) 9.713 (0.227) 
Bid -0.016 (0.000) -0.031 (0.001) 
ICEFISH -0.155 (0.059)  
MARINEF -1.024 (0.073)  
Age 0.065 (0.003)  
Male 1.212 (0.080)  
Income in  
thou. $ 

-0.002 (0.001)  

Price per trip 0.002 (0.000)  
ρ  0.947 (0.003) 0.985 (0.001) 

Notes: See Table II of Alberini, Boyle, and Welsh (2003) for description of covariates. Standard errors 
are in parentheses. 
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