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Abstract: During history, an aggressive country seeks to force non-aggressive countries to 
made many concessions based on military force. In our paper we discuss the situation that one 
aggressive country is dissatisfied with its current position and try to obtain more concessions 
from a rival country. To analyze this situation we use a game theory dynamic model in 
complete and incomplete information. We analyze the countries behavior depending 
especially on aggressive or non-aggressive strategies and also on battle power. In this context 
we found conditions to obtain separating and pooling equilibriums for dynamic games in 
incomplete information. Main result shows that countries behavior depends especially on war 
costs and on country military power. There are many applications of these types of models, 
like in Israel - Palestinian war, recent Russian- Georgian conflict or US defense policy.   
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1. INTRODUCTION 
 

Our paper considers a “negotiation game” which combines the features of two-players 
alternating offers bargaining and repeated games. The negotiation game in general admits a 
large number of equilibriums but some of which involve delay and inefficiency. Thus, 
complexity and bargaining in tandem may offer an explanation for cooperation and efficiency 
in repeated games. 

The Folk Theorem of repeated games is a very used result that shows if players are 
enough patience then it is possible to obtain a cooperative equilibrium of the infinite repeated 
game.  A few contributions on folk theorem shows that the result survives more or less intact 
when incomplete (Fudenberg and Maskin, 1986) or imperfect public (Fudenberg, Levine, and 
Maskin, 1994) information is allowed, or when the players have bounded memory 
(Sabourian, 1998). 

These findings are made precise in numerous folk theorems1.
 
Each folk theorem 

considers a class of games and identifies a set of payoff vectors each of which can be 
supported by some equilibrium strategy profile. There are many folk theorems because there 
are many classes of games and different choices of equilibrium concept. For example, games 
may be repeated infinitely or only finitely many times. There are many different 
specifications of the repeated game payoffs. For example, there is the Cesaro limit of the 

                                                
1 The strongest folk theorems are of the following loosely stated form: “Any strictly individually rational and 
feasible payoff vector of the stage game can be supported as a subgame-perfect equilibrium average payoff of 
the repeated game.” These statements often come with qualifications such as “for discount factors sufficiently 
close to 1” or, for finitely repeated games, “if repeated sufficiently many times.” 



 

 
 

means, the Abel limit (Aumann, 1985), the overtaking criterion (Rubinstein, 1979) as well as 
the average discounted payoff, which we have adopted. They may be games of complete 
information or they might be characterized by one of many different specifications of 
incomplete information. Some folk theorems identify sets of payoff vectors which can be 
supported by Nash equilibrium; of course, of more interest are those folk theorems which 
identify payoffs supported by subgame-perfect equilibrium. 
 In the first part of this paper I present the main folk theorems for finite repeated 
games.  

Finally we present a study-case for negotiation on war condition between one 
aggressive country and one non-aggressive country and I determine the main equilibrium 
conditions for static game and for repeated game.       
 
2. LITERATURE 
 

The Folk theorem gives economic theorists little hope of making any predictions in 
repeated interactions. However, as the aforementioned examples suggest, it seems that 
negotiation is often a salient feature of real world repeated interactions, presumably to enforce 
co-operation and efficient outcomes. Can bargaining be used to isolate equilibrium in repeated 
games?  

Busch and Wen (1994) analyze the following game: in each period, two players bargain - 
in Rubinstein’s alternating - offers protocol over the distribution of a fixed and commonly 
known periodic surplus. If an offer is accepted, the game ends and each player get his share of 
the surplus according to the agreement at every period thereafter. After any rejection, but 
before the game moves to the next period, the players engage in a normal form game to 
determine their payoffs for the period. The Pareto frontier of the disagreement game is 
contained in the bargaining frontier. The negotiation game generally admits a large number of 
subgame-perfect equilibrium, as summarized by Busch and Wen in a result that seems to be 
as the Folk theorem in repeated games.  

Considerable effort has gone into introducing considerations that reduce the equilibrium 
set of a repeated game. For instance, depending on the stage game, the set of equilibrium 
payoffs is known to shrink by varying degrees when complexity costs are (lexicographically) 
taken into account (Rubinstein, 1986, Abreu and Rubinstein, 1988, Piccione, 1992, Piccione 
and Rubinstein, 1993), when strategies and beliefs are restricted to be Turing-computable 
(Anderlini and Sabourian, 1995, 2001), or when asynchronous choice is allowed (Lagunff and 
Matsui, 1997).  

Obara (2009) proves a folk theorem with private monitoring and communication 
extending the idea of delayed communication in Compte (1998) to the case where private 
signals are not correlated. 

Olson (1965) was among the first to formally pose the puzzle of group formation and 
cooperation, and this has provoked a large literature seeking to understand group behavior. 
Thorsten and Lim (2009) introduce two incentive mechanisms to sustain intra-group 
cooperation with prisoner's dilemma payoffs. They examine three-agent groups where 
relations may either be triadic one person interacting with two others/or tripartite, where all 
agents interact. Due to shirking incentives, sustained group cooperation requires a system of 
endogenous enforcement, based on punishments and reward structure and they found that 
both can ensure cooperation. 

Fudenberg and Levine (2007) proves a Nash-threat folk theorem when players’ private 
signals are highly correlated. Ashkenazi-Golan (2004) assumes that deviations are perfectly 
observable by at least one player with positive probability and proves a Nash-threat folk 
theorem. These results, as well as the result of this note, apply to repeated games with two or 



 

 
 

more players. Finally, McLean, Obara and Postlewaite (2005) prove a folk theorem when 
private signals are correlated and can be treated like a public signal once aggregated. But this 
result requires at least three players. 

Also, there is an existing literature that seeks to model institutions and social networks 
in terms of endogenous enforcement. The use of incentive slackness in triadic relations to tie 
strategies across two party games or  domains, has been studied by Aoki (2001); Bernheim & 
Whinston (1990) while exogenous superior information or enforcement capability among 
group members compared to non- group members is used in (Fearon & Laitin 1996; Ghatak 
& Guinnane 1999). Moreover, such an institutional arrangement may itself be endogenous 
(Okada 1993).    

Fong and Surti (2008) study also the infinitely repeated Prisoners’ Dilemma with side 
payments and they found that Pareto dominant equilibrium payoffs are implemented by 
partial cooperation supported by repeated payments. That seems to confirm folk theorems for 
infinitely repeated games.  

Benoit and Krishna (1985, 1993) analyze particular folk theorems for finite repeated 
games. They show that under such hypothesis it is possible to reinforce collusive equilibrium 
that not require any binding agreements to ensure that players conform. An important 
example given by Benoit and Krishna show that for constant cost Cournot duopoly with linear 
demand it is possible to obtain enterprises cooperation if finite repeated game contains enough 
stages and discount factor is close to 1.  

 
3. THE MODEL 

 
A (one-shot) game, G, in normal or strategic form, consists of a set of n players, the 

strategy sets of the players, and their payoff functions.  
Thus, we define G = (S1, S2,…, Sn; U1, U2 . . . , Un), where Si is player i's strategy space and 

RSU i :  is i's payoff function, where S = S1 x S2 x ... x Sn. The strategy space is 
represented by player’s offers in negotiation process.  

We may also write n
i RSU : as the function whose i-th component is Ui. We will 

assume that the strategy spaces are compact sets and that the payoff functions are continuous. 
G(T) denotes the game that results when G is successively played T times (T is a positive 
integer). Let i  (0, 1) be the i’th player discount factor ant T enough large (eventually ). 

For t = 1, 2,.. ., T if Ssi   denotes the outcome of the game G( T) at time t, player i's 

average payoff in G(T) is given by 

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A strategy for player i in the game G(T) is a function si which selects, for any history 
of play, an element of Si.  A Nash equilibrium of G(T) is an n-tuple of strategies s*, such that 
for all i, and any strategy or for player i: 








T

t

t
i

t
iT

i

i
i susu

0

*
1

* )(
1
1)( 



Saau
T

t

t
i

t
iT

i

i 



 


 )()(
1
1

0
1 


 . 

Let N(T) denote the set of Nash equilibrium outcome paths of G(T). We will assume 
that N(1) is not empty.  

 Let iu  denote player i's minmax payoff and let mi  Si denote a corresponding strategy 
combination. A payoff vector u  is said to  be  individually rational  if  for  all i: ui > vi. Again, 
for the game G, consider the set of all payoff vectors which may result from players' choices 
(the range of the function U). The convex hull of this set, denoted by F, will be called the 
feasible region of payoffs. Note that in both G and G( T), we are restricting attention to pure 



 

 
 

strategies only. The effect of this restriction is that minmax payoffs, which will play a 
significant role in what follows, may be higher than those attainable using mixed strategies.  

The notion of a subgame perfect equilibrium is made precise as follows:  
 

Definition: The  strategy profile a is a (subgame) perfect equilibrium of G(T) if (i) it is 
a Nash equilibrium of G(T), and (ii) for all T’ < T and all T’ period histories h (T’), the 
restriction of s to  h(T’) is also a Nash equilibrium of G(T –T’).  

 
We suppose there exist in our negotiation game three different types of solutions: 

minmax equilibrium, corresponding to a punishment situation, a cooperation solution and a 
deviation situation.  The relationships between the payoffs of these three strategies are: 
deviation payoff is greater than cooperation payoff that is greater than minmax payoff.  

First case: the three phases of the game are: 
 Cooperation phase (T’ periods) from t = 0 to t = T’ – 1, with cooperation payoffs; 
 Deviation phase – one period – for t = T’: with deviation payoff for the player that 

deviate; 
 Punishment phase starts from T’ + 1 phase and continue all the game for the player 

that deviate from cooperative strategy 
The variables: 

 vi – cooperative payoff; 
 D

iv – deviation payoff; 
 iu – minmax payoff/punishment payoff ; 

 Relationships: ii
D
i uvv  ;  

      - minimum discount factor to cooperate; 
 δi  - player i discount factor. 

  a parameter 
ii

i
D
i

uv
vuA




 that shows the relative gap between deviation from 

cooperation payoff and punishment payoff.  
 T is the number of game stages and T’ is the stage where player i deviates from 

cooperative phase.    
 
Infinitely repeated games 

First we consider the situation of infinitely repeated game (T =  ). Game solution of 
infinitely repeated game result from next theorem: 
 
Theorem 1. Folk Theorem  

Let G be a static, finite game of complete information and G(∞) the infinitely repeated 
game. Let iu the minmax payoff of G for any player i, so for any payoff vector   v so 

that iuv ii )(,  , there exists a minimum level of discount factor 1 , such that 
)1,()(    there exists a subgame perfect Nash Equilibrium that achieves v as average 

payoff. (see proof in Appendix) 
  

This theorem show as also some interesting findings related to player’s behavior: 
The minimum level of discount factor such that the cooperation strategy depend on 

relative gain from deviation related on punishment possible to be implemented. Starting on 
these hypotheses we proof the following results: 



 

 
 

 If deviation payoff is close to cooperation payoff then players cooperates in every 
period of the game;  

 If cooperation payoff is close to punishment (minmax) payoff, then cooperative 
situation is not possible; 

 If deviation payoff is very large, then player’s cooperation is not possible for any 
period of the game. 

Corollary 1. If there exist a minimum level for discount factor   , then 
i
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i
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This corollary shows the discount factor depends on deviation payoff, cooperation 
payoff and punishment payoff.   
 
Corollary 2.  If deviation payoff is close to cooperation payoff ( C

i
D
i uu  ) then 0  and 

players cooperates in every period of the game. 
 
Corollary 3.  If cooperation payoff is close to punishment payoff ( P

i
C
i uu  ), then 1  

and cooperative situation is not possible. 
 
Corollary 4.  If deviation payoff is very large, ( D

iu ), then 1  and players 
cooperation is not possible for any period of the game. 
 
4. STUDY-CASE: A BARGAINING APPROACH OF WAR  
 

Economics game models involving goods or money allow assumptions about 
continuity, risk aversion, or conservation of the total after a division. More theorists have 
often used 2 x 2 matrices and looked at only the ordinal proprieties of the payoffs to avoid 
having to justify specific values. Rapaport and Guyer’s taxonomy (1966) of 78 ordinal games 
without tied payoffs has been used repeatedly. The most known study is by Synder and 
Diesing (1977) who set up 2 x 2 matrices for sixteen historical situations. Other examples are 
Maoz (1990) on Hitler’s expansion and Syria/Israel interactions. One extensive form example 
on the Falkland War is made by Sexton and Young (1985) who add the interesting analysis of 
the consequences of misperception. Another example of moving beyond 2 x 2 matrices is 
Zagare’s 3 x 3 x 3 game on Vietnam War negotiation.   

 
The model 
In our model, one country, which we refer to as the aggressive country ( player A), is 

dissatisfied with the status quo and seeks concessions from its rival, which we refer to as the 
non-aggressive country (player NA). In every period, the aggressive country can either 
forcibly extract these concessions via war, or it can let the non-aggressive country peacefully 
make the concessions on its own. While peaceful concession-making is clearly less 
destructive than war, there are two limitations on the extent to which peaceful bargaining is 
possible. First, there is limited commitment. Specifically, the non-aggressive country cannot 
commit to making a concession once it sees that the threat of war has subsided. Moreover, the 
aggressive country cannot commit to peace in the future in order to reward concession-
making by the non-aggressive country today. 

Also, we include a steady state situation (SSS) such that the aggressive county is 
forced by international regulations to not attack the non-aggressive country. In this care both 
payoffs will be zero.   



 

 
 

First, we define the strategies for each country as follows: for country aggressive it can 
attack (W strategy) the non-aggressive country or let peacefully the player B (NW strategy). 
For non-aggressive country, in can fight back (FB strategy) or it may surrender (S Strategy).    

Starting on these strategies we define the payoffs for each country as follows: 
 GR represents the gain of aggressive country from keeping his reputation if 

attack the non aggressive country; 
 GW represents  the gain of aggressive country from non aggressive country 

after the war (that is a cost for non-aggressive country); 
 CWA represents the financial cost of war for aggressive country; 
 LWA represents the cost for aggressive country due on life loss during the war 

if the non-aggressive country fight back; 
 GC represents the gain of aggressive country if the non-aggressive country 

surrender with no war and make initial concessions (that is a cost for non-
aggressive country); 

 CWNA represents the costs of fighting back for non-aggressive country; 
 LWNA represents the cost for non- aggressive country due on life loss during 

the war if the non-aggressive country fight back; 
 All these variables are positives; 
 We suppose also that in the case of the war, the aggressive country win; 
 The gain for aggressive country in the case of war (GW) is greater like its gain 

in the case of non aggressive concessions, GC. 
The payoff matrix of this game is depicted in figure 1. 
 

                                                                       Country NA 
 FB S 

 
W 

 
GR+GW-CWA-LWA, -CWNA-LWNA-GW 

 
GR+GC-CWA, -GC 

 
 
 
 
Country A 

 
NW 

 
0, -CWNA 

 
GC, - GC 

Figure 1.  
 
Case 1. The static game 
 
The possible equilibrium for this game are described as follows: 
 
Corollary 1. If the reputation gain for aggressive country is smaller like aggressive 

country cost of war (GR < CWA) and the concession loss for non aggressive country is 
smaller like the cost of war for non-aggressive country (GC < CWNA), then the equilibrium 
is (NW,S), respectively the aggressive country do not attack and the non-aggressive country 
surrender. 

Corollary 2. If the reputation gain for aggressive country is greater like aggressive 
country cost of war (GR > CWA) and the concession loss for non aggressive country is 
smaller like the cost of war for non-aggressive country (GC < CWNA), then the equilibrium 
is (W,S), respectively the aggressive country attack and the non-aggressive country surrender. 

Corollary 3. If the reputation gain for aggressive country is smaller like aggressive 
country cost of war (GR < CWA), the concession loss for non aggressive country is greater 
like the cost of war for non-aggressive country (GC > CWNA), and GR+GW-CWA-LWA < 0 



 

 
 

then the equilibrium is (NW,FB), respectively the aggressive country do not attack and the 
non-aggressive country prepare to fight back. 

Corollary 4. If the reputation gain for aggressive country is greater like aggressive 
country cost of war (GR > CWA), the concession loss for non aggressive country is greater 
like the cost of war for non-aggressive country (GC > CWNA), and GR+GW-CWA-LWA > 0 
then the equilibrium is (W,S), respectively the aggressive country attack and the non-
aggressive country surrender. 

Corollary 5. If the reputation gain for aggressive country is smaller like aggressive 
country cost of war (GR < CWA), the concession loss for non aggressive country is greater 
like the cost of war for non-aggressive country (GC > CWNA), and GR+GW-CWA-LWA > 0 
then the equilibrium only in mixed strategies ((p1,p2), (q1,q2), where: 

)
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Comment 1. If the gain of war increase, then we the attack probability for aggressive 

country is closer to 1 and also the surrender probability   for non-aggressive country is closer 
to 0. 

Comment 2. In any mixed strategy solution the concession gain (GC) does not appear.  
Comment 3. If the cost for aggressive country due on life loss during the war (LWA) 

is large, then the probability fight back for non-aggressive country is close to 0.  
Comment 4. Only in the case described in Corollary 3 it is possible to impose the 

steady state solution. For any different situation the aggressive country will threat the non 
aggressive country.  

   
Case 2. The repeated game 
We consider now the previous game, depicted in figure 1, where our players repeat 

this game finitely of infinitely. 
For the cases described in Corollary 1,2,4 and 5 it is not possible to implement a 

cooperative equilibrium (the steady state solution), respectively the players will play each 
stage of the game the equilibriums depicted previously. 

So, we consider only the case of Corollary 3, which the conditions: the reputation gain 
for aggressive country is smaller like aggressive country cost of war (GR < CWA), the 
concession loss for non aggressive country is greater like the cost of war for non-aggressive 
country (GC > CWNA), and GR+GW-CWA-LWA < 0. The equilibrium of stage game is 
(NW,FB), with the payoffs (0, -CWNA) 

  
For this case we determine the discount factor for aggressive country to not attack the 

non aggressive country.  
The cooperative solution for non-aggressive country is  (NW,FB), with the payoffs (0, 

- CWNA). The punishment solution of the game is (NW, S), with the payoffs (GC, -GC). The 
deviation solution is for non-aggressive country to implement the steady state solution, with 
the payoffs (0,0).  

In terms of the first part of the paper, we have: 
 the deviation payoff: 0D

iu ; 
 the cooperative payoff: iv = -CWNA; 
 the punishment payoff: GCu i  . 
 



 

 
 

The discount factor such that the non-aggressive country accepts the cooperative 
solution is: 

GC
CWNA

GC
CWNA
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Comment: If the cost of defense for non-aggressive country is small (close to 0) then it 

is possible to implement the cooperative solution. If the cost of preparing war is closer to the 
cost of concession, then it is very difficult to achieve the cooperative solution and the non-
aggressive country will choose the deviation solution, respectively to implement the steady 
state equilibrium.   
 
5. CONCLUSIONS 
 

In this paper I present a theoretical study that analyzes the behavior of aggressive and non 
aggressive countries in conflict situations. The model solutions indicate that the aggressive 
country prefers in 2 cases from 5 to attack and in other two cases to let peaceful the non 
aggressive country. In one case I obtained a equilibrium in mixed strategies    

For the nonaggressive country the preferred solution is to surrender (three cases from 
five), in one case to fight back and in another case a equilibrium in mixed strategies.  

Also, based on folk theorem I found the conditions for cooperation between countries if 
the game is infinitely repeated. In this case if the cost of defense for non-aggressive country is 
relatively small, then it is possible to obtain a cooperative behavior.   
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APPENDIX. 

Proof of Theorem 1 (Folk Theorem).  
Suppose that there exists a pure strategy such that vau )(  (with uv  ) and every 

player will play next strategy: „ I will play ai at stage 0 and I will continue to play  ai such 
time previous period all players played a. Anywhere I’ll play  minmax strategies for the rest 
of the game.” How it is this possible for player i to improve his payoff playing this strategy? 

We suppose also there exists a deviation payoff, )(max auv ia

D
i  > vi.  So 

ii
D
i uvv  . 

Player i will play ai for t periods with vi payoff, then deviate, and his payoff will be 
)(max auv ia

D
i  , and for the rest of the game all other players will punish player i and he will 

receive minmax payoff iu . 
So average deviation payoff at t stage is:  

i
tD

i
t

i
t
iD uvuu 1)1()1(    

This payoff is greater like vi as long as discount factor δi is smaller like a minimum 
level of discount factor i , given by relationship: 

iii
D
ii vuv   )1(  

So 
i

D
i

i
D
i

i uv
vv




 .  

Let ii
 max . So there exists a minimum level of discount factor 1 , such that 

)1,()(    there exists a subgame perfect Nash Equilibrium that achieves v as average 
payoff.           q.e.d. 

 


