
MPRA
Munich Personal RePEc Archive

The panel conditionally homogenous
vectorautoregressive model

Georgios Georgiadis

Goethe University Frankfurt

2012

Online at http://mpra.ub.uni-muenchen.de/37755/
MPRA Paper No. 37755, posted 30. March 2012 13:12 UTC

http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/37755/


The Panel Conditionally Homogenous

Vectorautoregressive Model∗

Georgios Georgiadis

Goethe University Frankfurt

March 30, 2012

Abstract

In the panel conditionally homogenous vectorautoregressive model, the cross-sectional

units’ dynamics are generally heterogenous, but homogenous if units share the same

structural characteristics. The panel conditionally homogenous vectorautoregressive

model thus allows (i) to account for heterogeneity in dynamic panel data sets, (ii)

to nevertheless exploit the panel nature of the data, and (iii) to analyze the rela-

tionship between the units’ observed heterogeneities and structural characteristics. I

show how standard least squares estimation can be applied, how impulse responses

can be computed, how multivariate conditioning is implemented, and how polynomial

order restrictions can be incorporated. Finally, I present an easy-to-use Matlab routine

which can be used to estimate the panel conditionally homogenous vectorautoregressive

model and produce impulse responses as well as forecast error variance decompositions.
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1 Introduction

Countries, regions and industries typically differ along various dimensions. Those differences are

important because they affect the effectiveness of policies. Standard panel data models mostly

assume cross-sectional homogeneity of the slope parameters which capture the effects of policies and

economic mechanisms more generally. If these economic mechanisms differ across cross-sectional

units, assuming slope homogeneity may seriously limit the potential of this type of models for policy

advice. While it is true that one can control for heterogeneities by including additional regressor

variables, many of the heterogeneities that are likely to affect the effects of policies display only

rather limited or gradual variation over time. Once fixed effects are included in the panel data

model, the role of these heterogeneities for policies cannot be identified separately from the fixed

effects anymore. One could still argue that what one is interested in is only the average policy

effect across a large number of cross-sectional units, and not the effect on a specific unit. While this

might be a reasonable goal in a traditional panel data setting in which the units typically represent

individuals and all units are subject to the same policy measures, there are important settings

in which this does not appear to be the case. In particular, because in cross-country settings

the policies analyzed are mostly country specific, it is of great importance to estimate the policy

effects for a particular country. For example, even if there is evidence that the growth effects of

trade integration are positive on average across a large sample of countries, this is only of limited

help for national policymakers who have to decide whether their country should embrace trade

openness or not. These policymakers need to know under what circumstances the effects of trade

integration are positive, and why they differ across country settings. A natural way to estimate

country-specific policy effects would be to discard the cross-sectional dimension of cross-country

data sets and focus only a one country. However, this might be inefficient if the causes for the

heterogeneities in the effects of policies and economic mechanisms can be modelled. In this case,

the cross-sectional dimension of the data set can be exploited to identify the nature of economic

mechanisms, and by that also to obtain country-specific policy effects. In this note, I generalize an

empirical panel data framework that was originally proposed by Loayza and Raddatz (2007) and in

which units’ observed structural characteristics underly the observed heterogeneities in the units’

dynamic behavior.1 This model can be used to investigate the role of structural characteristics

for policies and economic mechanisms more generally, while at the same time exploiting the panel

structure of the data.

Consider a standard panel vectorautoregressive (VAR) model for cross-sectional units i = 1, 2, . . . , N

with observations t = 0, 1, . . . , T

yit = A · yi,t−1 + uit, uit
i.i.d.∼ (0,Σu), (1)

where yit is a K × 1 vector of endogenous variables and A represents a K ×K coefficient matrix.

In this panel VAR framework, the dynamics of the endogenous variables yit are fully homogenous

1Other paper that use the approach of Loayza and Raddatz (2007) include Abbritti and Weber (2010), Sa,
Towbin and Wieladek (2011) as well as Towbin and Weber (2011).
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across cross-sectional units, an assumption mainly maintained in order to gain degrees of freedom

in estimation by pooling the data of many cross-sectional units, see Assenmacher-Wesche and

Gerlach (2008), Goodhart and Hofmann (2008) and Ciccarelli, Maddaloni and Peydró (2010) for

applications. If one admits that due to differences in various dimensions of the environment the

cross-sectional units are operating in the dynamics of the endogenous variables are heterogeneous,

the panel VAR model in Equation (1) boils down to a familiar cross-section specific VAR model

yit = Ai · yi,t−1, uit
i.i.d.∼ (0,Σu,i), (2)

which has been applied in an uncountable number of areas. Of course, as the environment the

cross-sectional units are operating in need not be time invariant, a natural generalization is to

consider a cross-section specific, time-varying VAR model

yit = Ait · yi,t−1 + uit, uit
i.i.d.∼ (0,Σu,it). (3)

Bayesian techniques for the estimation of VAR models with time-varying parameters as in Equation

(3) are available and have been applied, for example, by Primiceri (2005). Regime-switching VAR

models have been introduced by Hamilton (1990).

The polar modeling extremes in Equations (1) and (3) are subject to drawbacks. On the one

hand, the pooled panel VAR model in Equation (1) is designed to gain efficiency by exploiting

common features in the dynamics of the endogenous variables across cross-sectional units. The

model assumes that the dynamics are homogenous across cross-sectional units. While this might

not appear to be a restrictive assumption if one interested in average policy effects, this model is

clearly of limited value if one is interested in country-specific inference and if one admits that the

policy effects may be heterogenous even upon controlling for time-invariant, unit-specific factors in

the form of fixed effects. In addition, to the extent that the dynamics are, in fact, not homogenous,

the panel VAR model entails inconsistency of the parameter estimates and will not be of help even

if one is interested in average policy effects only, see Pesaran and Smith (1995). On the other hand,

the cross-section specific, time-varying parameter VAR model in Equation (3) allows for entirely

heterogenous and time-varying dynamics, but is unable to achieve any efficiency gain by exploiting

common features of the dynamics of the endogenous variables across cross-sectional units. In

fact, allowing for time variation in the parameters requires large amounts of data and/or renders

estimation computationally non-trivial. In addition, it does not allow to learn about the sources

of heterogeneity and time variation.

Approaches to allow for heterogeneity and time variation while at the same time exploiting the

panel nature of the data have been put forward: The mean-group estimator of Pesaran and Smith

(1995), which estimates the cross-sectional averages of the cross-section specific parameters, and

the work on unobserved common factors by Canova and Ciccarelli (2009), which preserve con-

sistency of parameter estimates by shifting heterogeneity and time variation into the unobserved

factors. The mean-group and the unobserved factors approaches share a reduced-form treatment
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of heterogeneity and time variation in the sense of thinking about non-constancy of parameters in

terms of a decomposition of the form

αit = α + ǫi + δt. (4)

While these approaches certainly do have their merits, it appears that their value for policy advice

might be limited. In particular, if policies are cross-section specific, are implemented at a specific

point in time and/or if the cross-sectional dimension in macroeconometric applications is small,

heterogeneity and time variation cannot be viewed as a nuisance, but are, in fact, of primary

importance. Put differently, it is unclear whether knowledge of α in Equation (4) is of practical

relevance for policy advice in country i and period t. It would clearly be desirable to learn about

the sources of heterogeneity and time variation, that is establish links between heterogeneities,

time variation and observed cross-country differences in structural characteristics. In the panel

conditionally homogenous VAR (PCHVAR) units’ structural characteristics shape heterogeneities

in units’ observed dynamic behavior.

The remainder of this note is organized as follows: In Section 2, I introduce the PCHVAR frame-

work. In Section 3, I discuss how standard errors of the PCHVAR estimates can be calculated. In

Section 4, I augment the PCHVAR model by exogenous variables. In Section 5, I describe multi-

variate conditioning. In Section 6 I discuss the calculation of impulse responses in the PCHVAR.

In Section 7, I show how polynomial order restrictions can be incorporated into the PCHVAR. In

Section 8, I present a Matlab routine for the estimation of the PCHVAR model. Finally, Section

9 summarizes.

2 The PCHVAR Model

Consider a standard panel VAR model for cross-sections i = 1, 2, . . . , N with observations t =

−p + 1,−p + 2, . . . , 0, 1, 2, . . . , T .2 The PCHVAR model is a middle ground between the pooled

panel VAR model in Equation (1) and the fully country-specific, time-varying VAR model in

Equation (3), and features systematic parameter variation in the coefficient matrices by specifying

yit = A1(zit) · yi,t−1 + A2(zit) · yi,t−2 + . . . + Ap(zit) · yi,t−p + uit, uit
i.i.d.∼ (0,Σu). (5)

so that the coefficient matrices vary with the realization of a scalar, exogenous conditioning variable

zit that reflects a unit’s structural characteristics.3 The functionals linking the dynamic properties

of the model collected in Aj(·) to the underlying structural characteristics zit are of course un-

known. In order to operationalize the PCHVAR framework, I assume that each scalar coefficient

aj,sm(zit), j = 1, 2, . . . , p, s = 1, 2, . . . , K, m = 1, 2, . . . , K, in Aj(·) can be approximated by a

2For convenience of exposition only, I assume that the time-series dimension is the same across all cross-sections.
3In Section 5 I describe the case of a multivariate conditioning variable.
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scalar polynomial in the conditioning variable zit, that is

aj,sm(zit) ≃ π(zit) · γj,sm, (6)

where π(zit) =
[
π1(zit), π2(zit), . . . , πτ (zit)

]
is a 1 × τ vector with polynomials in zit, πs(zit),

and γj,sm = (γj,sm1, γj,sm2, . . . , γj,smτ )′ is a τ × 1 vector of polynomial coefficients. With this

approximation, observe that Aj(·) can be rewritten as

Aj(zit) =




π(zit) · γj,11 . . . π(zit) · γj,1K

...
. . .

...

π(zit) · γj,K1 . . . π(zit) · γj,KK




=




γ′

j,11 γ′

j,12 . . . γ′

j,1K

...
...

. . .
...

γ ′

j,K1 γ′

j,K2 . . . γ′

j,KK


 · [IK ⊗ π′(zit)]

= Γ · [IK ⊗ π′(zit)] . (7)

The model in Equation (5) can therefore be written as

yit =

p∑

j=1

Γj · [IK ⊗ π′(zit)] yi,t−j + uit

=

p∑

j=1

Γj · xi,t−j + uit = Γj · Xi,t−1 + uit, (8)

with

Xi,t−1 = (x′

i,t−1, x
′

i,t−2, . . . , x
′

i,t−p)
′, Γ = (Γ1,Γ2, . . . ,Γp).

The model in Equation (8) is a standard multiple equations panel time-series model with the same

explanatory variables in every equation. Consequently, standard least squares estimation tech-

niques can be applied. Once the polynomial coefficients γj,sm, j = 1, 2, . . . , p, s, m = 1, 2, . . . , K,

collected in the matrix Γ have been estimated, the reduced form coefficient matrix Aj(·) can be

calculated for different values of the conditioning variables zit.

For the purpose of estimation, it is convenient to rewrite the model in Equation (8) as

Y = Γ · X + U , (9)

where

Y = [y11, . . . , y1T , . . . , yN1, . . . , yNT ](K×NT ) ,

Γ = [Γ1,Γ2, . . . ,Γp](K×pKτ) ,

X = [X10, X11, . . . , X1,T−1, . . . , XN0, XN1, . . . , XNT ](pKτ×NT ) ,
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and

U = [u11, u12, . . . , u1T , . . . , uN1, uN2, . . . , uNT ](K×NT ) .

Vectorization of Equation (9) yields

y = (X ′ ⊗ IK) · γ + u, (10)

where y = vec(Y ), u = vec(U) and γ = vec(Γ). The least squares estimators are given by

Γ̂ = Y X ′(XX ′)−1, (11)

γ̂ =
[
(XX ′)−1X ⊗ IK

]
· y. (12)

Notice that when allowing for cross-sectional heteroskedasticity, uit
i.i.d.∼ (0,Σu,i), generalized least

squares (GLS) estimation yields

γ̂ =
[
(X ⊗ IK)S−1(X ′ ⊗ IK)

]−1
(X ⊗ IK)S−1y, (13)

where

S ≡




IT ⊗ Σu,1 0 · · · 0

0 IT ⊗ Σu,2 0

...
. . .

...

0 0 · · · IT ⊗ Σu,N




. (14)

Notice that GLS estimation requires the inversion of a (T ·K2 ·p)-dimensional square matrix, with

T being the number of polynomials used for the approximation of the scalar functional aj,sm(zit).

This may entail significant numerical inaccuracies in case of multivariate conditioning and/or high

polynomial orders.

3 Asymptotic Properties

Adapting the exposition in Lütkepohl (2006, chpt. 3), if G = plim
(
XX ′/NT

)
exists and is

non-singular (meaning that if Xi,t−1 is stable and if uit is standard white noise so that

1√
NT

N∑

i=1

T∑

t=1

vec(uitX
′

i,t−1) =
1√
NT

vec(UX ′)

=
1√
NT

(X ⊗ IK)u
d−→ N(0, G ⊗ Σu),

then √
NT (γ̂ − γ)

d−→ N(0, G−1 ⊗ Σu). (15)
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Noting that

vec [Aj(zit)] = vec








π(zit) · γj,11 . . . π(zit) · γj,1K

...
. . .

...

π(zit) · γj,K1 . . . π(zit) · γj,KK








=




π(zit) 0 . . . 0

0 π(zit)
...

...
. . .

...

0 . . . . . . π(zit)







γj,11

γj,21

...

γj,KK




= [IK2 ⊗ π(zit)] · γj

= Π(zit) · γj , (16)

and that

A(zit) = [A1(zit), A2(zit), . . . , Ap(zit)]

vec [A(zit)] = α(zit) =
{
vec [A1(zit)]

′ , vec [A2(zit)]
′ , . . . , vec [Ap(zit)]

′
}′

=
[
γ ′

1Π
′(zit), γ

′

2Π
′(zit), . . . , γ

′

pΠ
′(zit)

]
′

= [Ip ⊗ Π(zit)] · γ, (17)

it follows that

√
NT [α̂(zit) − α(zit)]

d−→ N
{
0, [Ip ⊗ Π(zit)]

[
G−1 ⊗ Σu

] [
Ip ⊗ Π

′(zit)
]}

. (18)

4 The PCHVARX Model

Consider the model in Equation (5) augmented by a d×1 vector δi of deterministic terms, such as

fixed effects, cross-section specific time trends or seasonal dummies, the M ×1 vector of exogenous

variables with homogenous effects wt, and the Li × 1 vector of exogenous variables with cross-

section specific effects vit:
4

yit = A1(zit) · yi,t−1 + A2(zit) · yi,t−2 + . . . + Ap(zit) · yi,t−p

+δi + B0 · wt + . . . + Bq · wt−q + F i0 · vit + . . . + F ifi
· vi,t−fi

+ uit. (19)

4Of course, also the exogenous variables can be specified to feature dynamics that vary with the units’ structural
characteristics.
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After replacing the coefficient matrices Aj(zit), j = 1, 2, . . . , p by interactions of the endogenous

variables and the polynomials in the conditioning variables, the model can be rewritten compactly

as

Y = Γ · X + [δ, B, F ] ·




d

W

V


 + U , (20)

where Y ,Γ, X and U are defined as in the previous section, and

δ = [δ1, δ2, . . . , δN ](K×d) ,

d = [d11, d12, . . . , d1,T , . . . , dN1, dN2, . . . , dNT ](d×NT ) ,

B = [B0, B2, . . . , Bq](K×Mq)

W = [w, w, . . . , w](Mq×NT )

w =




w1 w2 . . . wT

w0 w1 . . . wT−1

...
...

...

w−q+1 w−q+2 . . . wT−q




(Mq×T )

F = [F 10, . . . , F 1f1
, . . . , F N0, . . . , F NfN

](K×

∑
i fiLi)

V =




v1 0 . . . 0

0 v2

...
...

. . .
...

0 . . . . . . vN




(
∑

i
fiLi×NT )

vi =




vi1 vi2 . . . viT

vi0 vi1 . . . viT−1

...
...

...

vi−fi+1 vi−fi+2 . . . viT−fi




(Lifi×T )

The deterministic terms and the exogenous variables (as long as the aim of the analysis is not in

investigating dynamic multiplier effects of changes in the exogenous variables) can be concentrated

out by right-multiplying Equation (20) by

M = I − B
′(BB

′)−1
B, B = [d′, W ′, V ′]′, (21)

yielding

Y ∗ = Γ · X∗ + U . (22)

Estimation from this point on proceeds as described in the previous section.
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5 Multivariate Conditioning

In case of multivariate conditioning, one can approximate the unknown functionals in Aj(·) by a

multivariate polynomial π(zit) in the conditioning variable vector zit. To this end, in the bivariate

conditioning case the multivariate polynomial π(zit) can be obtained as the tensor product of two

univariate polynomials in the conditioning variables z1i,t−1 and z2i,t−1, that is

π(zit) · γj,sm = [π1(z1i,t−1) ⊗ π2(z2i,t−1)] · γj,sm, (23)

πj(zji,t−1) = [π
(0)
j (zji,t−1), π

(1)
j (zji,t−1), . . . , π

(τj)
j (zji,t−1)], j = 1, 2. (24)

Alternatively, in order to conserve on degrees of freedom, one can drop the interaction terms

between the conditioning variables and simply use

π̃(zit) · γj,sm = [1, π̃1(z1i,t−1), π̃2(z2i,t−1)] · γj,sm, (25)

π̃j(zji,t−1) = [π
(1)
j (zji,t−1), . . . , π

(τj)
j (zji,t−1)], j = 1, 2. (26)

The order of the polynomials can of course be larger than two, which, however, complicates the

exposition of the results and will in almost all practical cases lead to sparsely populated regions in

the conditioning space, ensuing highly sensitive and imprecise parameter estimates.

6 Impulse Responses

Due to the dependence of the coefficient matrices on the conditioning variable and the dynamic

properties of the model, the impulse responses in the PCHVAR are (i) a function of the conditioning

variable and (ii) history dependent. To see this, rewrite the model in Equation (5) as




yit

yi,t−1

...

yi,t−p+1




=




A1(zit) A2(zit) . . . Ap−1(zit) Ap(zit)

IK 0 . . . 0 0

0 IK

... 0

...
. . . 0

0 . . . . . . IK 0




·




yi,t−1

yi,t−2

...

yi,t−p




+




uit

0

...

0




Y it = A(zit) · Y i,t−1 + U it. (27)
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Substituting recursively gives

Y it = A(zit) · Y i,t−1 + U it (28)

= A(zit) · A(zi,t−2) · Y i,t−2 + A(zit) · U i,t−1 + U it

...

=




s∏

j=1

A(zi,t−j)



 · Y i,t−s +

s∑

j=0

[
j∏

k=1

A(zi,t−k)

]
· U i,t−j . (29)

Left-multiplying by

JK = [IK ,0, . . . ,0] (30)

yields

JK · Y it = JK ·




s∏

j=1

A(zi,t−j)



 · Y i,t−s + JK ·
s∑

j=0

[
j∏

k=1

A(zi,t−k)

]
· J ′

K · JK · U i,t−j

yit = Υs · Y i,t−s +

s∑

j=0

Φj(z
(j)
i,t−1) · ui,t−j , (31)

where

z
(j)
i,t−1 = [zit,i,t−2 , . . . , zi,t−j ]. (32)

The impulse responses are therefore obtained from the matrices

Φj(z
(j)
i,t−1) = JK ·

[
j∏

k=1

A(zi,t−k)

]
· J ′

K . (33)

In order to analyze the effects on the impulse responses of the structural characteristics under

investigation, one can consider impulse responses for a grid of values of the conditioning variable.

While this is straightforward for the case of univariate conditioning, it becomes more complicated

once one moves to multivariate conditioning. In principle, even in the case of multivariate con-

ditioning one can still investigate the effects of a specific structural characteristic on the impulse

responses by fixing the remaining structural characteristics included into the model at specific val-

ues, for example the median. In practice, however, it typically turns out that many regions in the

conditioning variable space are only sparsely populated. This means that when varying the values

of one of the conditioning variables while fixing the values of the remaining ones, one is likely to

enter regions in the conditioning variable space which are sparsely populated. In these regions,

impulse responses tend to explode, or at least be estimated extremely imprecisely, simply because

there are no data points available for identification.5

The PCHVAR approach developed so far does not allow to condition the contemporaneous effects

on the structural characteristics. In effect, the PCHVAR model presented so far imposes uncon-

5In Georgiadis (2011) I take a different approach and attempt to replicate the impulse responses estimated from
unit-specific VAR models by the impulse responses implied by the PCHVAR model with trivariate conditioning.
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ditional homogeneity of the contemporaneous effects. As the contemporaneous relationships are

intimately linked to the variance matrix of the reduced-from disturbances, doing so would render

volatility a function of the structural characteristics as well. This may be an interesting direction

for future research.

7 Polynomial Order Restrictions

Recall that up to this point it was assumed that in

aj,sm(zit) = π(zit) · γj,sm,

where γj,sm is a τj,sm × 1 vector of polynomial coefficients, τj,sm = τ for j = 1, 2, . . . , p, s, m =

1, 2, . . . , K. Now suppose that τj,sm generally differs across j = 1, 2, . . . , p, s, m = 1, 2, . . . , K. The

only necessary adjustment is to set τ = max
j,s,m

(τj,sm) and γj,smℓ = 0 for ℓ = τj,sm + 1, . . . , τ . With

this adjustment,

vec(Γ) = R · γ, (34)

where R represents a suitable selection matrix featuring zero rows for all γj,smℓ, ℓ = τj,sm+1, . . . , τ ,

and

y = (X ′ ⊗ IK)R · γ + u. (35)

The least squares and the generalized least squares estimators are given by

γ̂ =
[
R′(XX ′ ⊗ IK)R

]
−1

R′(X ⊗ IK) · y (36)

γ̂GLS =
[
R′(XX ′ ⊗ Σ

−1
u )R

]−1
R′(X ⊗ Σ

−1
u ) · y, (37)

with asymptotic distributions

√
NT (γ̂ − γ)

d−→ N
{
0,

[
R′(G ⊗ IK)R

]
−1

R′(G ⊗ Σu)R
[
R′(G ⊗ IK)R

]
−1

}
, (38)

√
NT (γ̂GLS − γ)

d−→ N
{
0,

[
R′(G ⊗ Σ

−1
u )R

]−1
}

. (39)

Finally, the asymptotic distributions of the reduced form coefficients are given by

√
NT [α̂(zit) − α(zit)]

d−→ N
{
0, [Ip ⊗ Π(zit)] V ar

[√
NT (γ̂ − γ)

] [
Ip ⊗ Π

′(zit)
]}

, (40)

and

√
NT [α̂GLS(zit) − α(zit)]

d−→ N
{
0, [Ip ⊗ Π(zit)] V ar

[√
NT (γ̂GLS − γ)

] [
Ip ⊗ Π

′(zit)
]}

. (41)
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8 A Matlab Code for Estimation of the PCHVAR

While estimation of the PCHVAR model is conceptually straightforward, it is not readily available

in standard econometrics software packages. I therefore set up a Matlab code that carries out

estimation of the PCHVAR model as well as impulse response analysis.6 The routine is easy to

use, written in a such a way that the user has to modify only one m-file in which she enters the

name of the data set, the model specification, details of model estimation and impulse response

analysis. In addition, the routine returns the impulse responses, confidence bands, forecast error

variance decompositions in the form of matrices, so that the user can present the results in the

way that suits her best. In this section, I illustrate how to use this Matlab code using the example

of a three-variable (output, prices and a short-term interest rate) PCHVAR model estimated on

data for 20 industrialized countries. The impulse responses in this example are specified to vary

with (that is, to be conditioned on) countries’ industry mix (the share of output accounted for

by durable goods manufacturing) and degree of labor market rigidities (strictness of employment

protection indicator).

First, the user has to add some utilities to her Matlab library

addpath(’D:\Research Projects\PCHVAR MATLAB DISTRIBUTION\pchvar_libararies’)

Second, in the m-file PCHVARsettings.m the user has to specify the path, the name and the file

type (Excel .xls or Stata .dta) of the data set to be used7

crit.filepath = ’D:\Research Projects\PCHVAR MATLAB DISTRIBUTION\’;

crit.filename = ’pchvardataset’;

crit.filetype = ’dta’; % type ’xls’ for Excel and ’dta’ for Stata data set

Then, she has to specify the unit and time-series identifiers (it is best to use three-letter unit

identifiers, for example country codes) as well as the data frequency

crit.csvar = ’Countrykey’;

crit.tvar = ’year’;

crit.frequency = ’m’; % ’m’: monthly data; ’q’: quarterly data; ’a’: annual data;

% This is just to label the axis in the data plots, so leave empty ’[]’ if data

% are other frequency.

Then, the user specifies the sample she would like to investigate. She can select a subset of cross-

sectional units from the full sample, restrict the sample period for the entire set of cross-sectional

units, or restrict the sample period for individual cross-sectional units.

6The codes are available at www.jorgo-georgiadis.de.
7Notice that results may differ slightly depending on whether a Stata or Excel data set are used because of

different treatments of floating number precision.
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crit.useunit = []; % ’[]’: Use all cross-sections in the data set

% {’AUS’,’AUT’}: use only Australia and Austria

crit.useperiod = []; % ’[]’: Use all available periods. If not all

% time periods shall be used, you need to

% specify ’crit.useperiod = [startdate,enddate]’.

% Notice that in this case, you can only select

% years; For example, if you have monthly data running

% from 1995 to 2009, you can only select to use all

% months from 1996 to 2008, but not to use data from

% 1996:7 to 2008:10.

crit.usecountryperiod = []; % You can specify to use only specific periods for

% specific cross-sectional units; for example, if you

% want to use only data for 1997 to 2008 for CAN, then

% specify ’crit.usecountryperiod.can = [1997,2008].

% You must specify the start and end period, and you

% can only select full years, see above. If you do not

% want to use this option, just specify

% ’crit.usecountryperiod = []’. Notice also that the

% general sample selection period above has priority

% over the cross section-specific sample period

% selection.

After that, the user enters the model specification including

• the endogenous variables (as a 1 × K cell array):

crit.yvar = {’logy’,’logp’,’r’};

• the conditioning variables (as a 1 × Kz cell array):

crit.zvar = {’soep’,’manufshare’};

• the common exogenous variables (as a 1 × M cell array):

crit.exogxvar = {’lpcomm’};

• the exogenous variables variables specific to each cross section (as a 1 × Li cell array each,

as a structure field for each cross section where the field name is the countrykey):

crit.exogxvar_i.can = {’fx’};

crit.exogxvar_i.gbr = {’fx’};
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• the lag order of the endogenous variables:

crit.p = 3;

• the lag orders of the common and the cross section-specific exogenous variables:

crit.exogxvar_q = 0;

crit.exogxvar_qi.can = 0;

crit.exogxvar_qi.gbr = 0;

• the deterministic specification:

crit.determin = 1; % 0: neither intercept nor trend

% 1: fixed effects

% 2: fixed effects and heterogeneous time trends

• augmentation of common factors along the lines of Pesaran (2006):

crit.ccea = 0; % 0: no augmentation

% 1: augmentation with cross-sectional averages

Then, still in the m-file PCHVARsettings.m, the user specifies several options for model estimation

such as

• whether to use GLS estimation

crit.pchvargls = 0; % 1: cross-section specific variance matrices

• whether to use the tensor product or just individual polynomials in case of multivariate

conditioning

crit.polyntype = 2; % 1: tensor product between polynomials;

% 2: no interactions between individual z_j’s

• the polynomial orders for the approximation of each autoregressive coefficient

crit.tao = 2;

crit.Aorder = repmat(ones(max(size(crit.yvar)))*crit.tao,[1,crit.p,max(size(crit.zvar))]);

% row of Aorder: equation for endogenous variable;

% column of Aorder: lag;

% 3-rd dimension of Aorder: conditioning variable;

Finally, she chooses some options for impulse response analysis such as
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• the number of grids over which to draw impulse responses for alternative values of the con-

ditioning variables

crit.gridnum = 60;

• the impulse response horizon

crit.irhor = 48;

• whether to compute (asymptotic) confidence bands

crit.confbands = 0; % 0: do not obtain confidence bands

% 1: get them

• the identification scheme

crit.irtype = 1; % 0: naive ir’s

% 1: orthogonalized ir’s

% 2: generalized ir’s

• the shock size

crit.shocksize = 1; % 0: one standard deviation shock

% 1: unit shocks

• the horizons over which to compute forecast error variance decompositions

crit.fevdhor = [1,6,12,18,24,30,36,42,48]; % must be a 1 by X vector,

% leave ’[]’ if do not want to investigate FEVD

In order to obtain estimation results and impulse responses, the user has to run

crit = PCHVARsettings;

[IR,PCHVARres] = PCHVAR(crit);

Upon execution, the user is first asked whether she would like to plot the data. This is an important

first step in the analysis to ensure that the data set has been set up properly. After estimation,

a figure displaying the largest eigenvalue of the PCHVAR model at all possible combinations of

the conditioning variables is produced, see Figure 1. In case there are two conditioning variables

(in our example we have industry mix and labor market rigidities), the surface in Figure 1 depicts

the magnitude of the largest eigenvalue of the companion matrix in the PCHVAR model for

different values of the first conditioning variable on the left-hand side horizontal axis and the

second conditioning variable on the right-hand side horizontal axis. Each dot at the bottom of

Figure 1 represents an actual observation on a conditioning variable pair in the data set.

The user is also provided with two structures containing the following fields with results:
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Figure 1: The Largest Eigenvalue of the Companion Matrix in the PCHVAR Model at Different
Combinations of the Conditioning Variables
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PCHVARres =

Ghat: [3x27 double]

Ghattvals: [3x27 double]

Sigmahat: [1x1 struct]

crit: [1x1 struct]

z: [2x3412 double]

K: 3

IR =

zgrid: [60x2 double]

point: [4-D double]

accum: [4-D double]

fevd: [5-D double]

upper: [4-D double]

lower: [4-D double]

upper_accum: [4-D double]

lower_accum: [4-D double]

PCHVARres.Ghat is the estimate of the matrix Γ in Equation (9) and PCHVARres.Ghattvals con-

tains the corresponding t-values. PCHVARres.Sigmahat contains the estimated variance-covariance

matrices of the matrix Γ̂ (PCHVARres.Sigmahat.Ghat), the reduced-form errors ut (PCHVARres.Sigmahat.u)
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and its maximum likelihood version (PCHVARres.Sigmahat.uml), the estimates of the unit-specific

variance-covariance matrices of the reduced-form errors (PCHVARres.Sigmahat.Sigmahathetero),

the variance-covariance matrix of the estimate of the variance-covariance matrix of the reduced-

form errors (PCHVARres.Sigmahat.sigma). PCHVARres.z contains the data on the conditioning

variables and PCHVARres.K is the number of endogenous variables K. IR.zgrid is a crit.gridnum×
Kz matrix containing the grid of the conditioning variables over which the impulse responses in

IR.point are computed with Kz being the number of conditioning variables considered. IR.point

contains the point estimates of the impulse responses over the grid IR.zgrid and IR.upper the cor-

responding upper confidence band. IR.point is of dimension K2×crit.irhor×crit.gridnum×
crit.gridnum. So for example, in a three-dimensional system the impulse response over all hori-

zons of the first variable to a shock in the third variable arising at the value of the first (second)

conditioning variable assumed at the fifth (ninth) grid point in IR.zgrid is accessed by typing

IR.point(7,:,5,9). IR.accum contains the accumulated impulse responses. Finally, IR.fevd is

a X × K × K × crit.gridnum× crit.gridnum matrix of forecast error variance decompositions,

where X is the number of horizons over which the decompositions shall be calculated as specified

in crit.fevdhor. For example, the contribution of the second endogenous variable to the vari-

ance of the forecast error variance of the first endogenous variable at the third horizon specified in

crit.fevdhor arising at the value of the first (second) conditioning variable assumed at the fifth

(ninth) grid point in IR.zgrid is accessed by typing IR.fevd(3,2,1,5,9).

The impulse responses for our example with output,prices and a short-term interest rate as en-

dogenous variables and industry mix as well as labor market rigidities as conditioning variables are

shown in Figures 2 to 38. Since in this example the impulse responses vary both with a country’s

degree of labor market rigidity and industry mix, one of the two conditioning variables has to be

fixed in order to draw the impulse responses over a grid of the other conditioning variable. Figure 2

shows the impulse responses for different degrees of labor market rigidity (right-hand side horizontal

axis) while fixing industry mix at the 10% (50%, 90%) percentile. Conversely, Figure 3 shows the

impulse responses for different values of industry mix (right-hand side horizontal axis) while fixing

the degree of labor market rigidity at the 10% (50%, 90%) percentile. Finally, Figure 4 displays

the impulse response of output to a contractionary monetary policy shock arising at the value of

the first (second) conditioning variable assumed at the fifth (ninth) grid point in IR.zgrid, that is

IR.point(7,:,5,9), together with 95% confidence bands. The confidence bands are rather tight

because of the large number of observations available for estimation in this example with T = 180

and N = 20.

The results indicate that the output and the price level responses to a monetary policy shock are

stronger the more rigid a country’s labor markets. Moreover, the results also suggest that output

responds faster to a monetary policy shock the more important durable goods manufacturing.

These results reveal that there is a large amount of heterogeneity that would invalidate the use of

8Notice that Figures 2 to 3 are not returned in this form from the PCHVAR routine. The figures pro-
duced by the PCHVAR routine are, however, very similar. The code for producing Figures 2 to 3 is given in
MAIN PCHVAR SAMPLE FILE.m
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a traditional fixed effects panel VAR model, which would imply identical impulse responses for all

the countries included, see Figure 5. The fixed effects panel data model can be estimated simply

by running

crit = PCHVARsettings;

crit.tao = 1; % interactions with polynomials of order zero

crit.Aorder = repmat(ones(max(size(crit.yvar)))*crit.tao,[1,crit.p]);

crit.zvar = {’’};

[IR,PCHVARres] = PCHVAR(crit);

One can also inspect the forecast error variance decompositions in Figure 6. For the sake of brevity,

I only present the forecast error variance decompositions varying along the degree of labor market

rigidities at the mean of the share of durable goods manufacturing and vice versa.

The code can easily be adjusted to work with other data sets. Only three important restrictions

apply:

1. The data set must be a Stata .dta9 or an Excel .xls data set. The data set in Stata need not

be xtset.

2. The data set must be balanced, that is, the first and the last entry in the Stata/Excel

spreadsheet must be for the same date for all countries. However, notice that this does not

imply that there must be an observation in this entry; rather, it can be a missing observation.

Therefore, unbalanced panels can be investigated.

3. Within a country data must not feature breaks at which data are unavailable.

9 Summary

This note lays out the PCHVAR model framework in which the dynamics of the cross-sectional units

are generally heterogenous, but homogenous if units share the same structural characteristics. The

PCHVAR model thus allows (i) to account for heterogeneity, (ii) to nevertheless exploit the panel

nature of the data, and (iii) to analyze the relationship between the units’ observed heterogeneities

and structural characteristics. These features appear to be all the more important as empirical

cross-country applications typically focus on a relatively small number of countries, and analyze

policies that are country specific. In such settings, it is important to be able to foresee under which

circumstances and why policy effects potentially differ across units. I also present an easy-to-use

Matlab routine that can be used to estimate the PCHVAR model and produce impulse responses

as well as forecast error variance decompositions for the endogenous variables.

9I am indebted to Daniel Schneider for making available to me his routine for inputting Stata data sets into
Matlab.
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Figure 2: Impulse Responses of the Output/Prices/Interest Rate PCHVAR Model - Varying Labor
Market Rigidities...

at the 10% Percentile of Industry Mix
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Figure 3: Impulse Responses of the Output/Prices/Interest Rate PCHVAR Model - Varying In-
dustry Mix...

at the 10% Percentile of Labor Market Rigidities
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Figure 4: Impulse Response of Output to a Contractionary Monetary Policy Shock at low Levels
of Industry Mix and Labor Market Rigidities
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Figure 5: Impulse Responses of the Output/Prices/Interest Rate Fixed Effects Panel VAR Model
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Figure 6: Forecast Error Variance Decompositions
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