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Abstract

This paper is concerned with univariate noncausal autoregressive models and their
potential usefulness in economic applications. In these models, future errors are
predictable, indicating that they can be used to empirically approach rational expec-
tations models with nonfundamental solutions. In the previous theoretical literature,
nonfundamental solutions have typically been represented by noninvertible moving
average models. However, noncausal autoregressive and noninvertible moving aver-
age models closely approximate each other, and therefore,the former provide a viable
and practically convenient alternative. We show how the parameters of a noncausal
autoregressive model can be estimated by the method of maximum likelihood and
derive related test procedures. Because noncausal autoregressive models cannot be
distinguished from conventional causal autoregressive models by second order proper-
ties or Gaussian likelihood, a model selection procedure is proposed. As an empirical
application, we consider modeling the U.S. inflation which, according to our results,
exhibits purely forward-looking dynamics.
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1 Introduction

Univariate autoregressive models are commonly employed in characterizing the dy-

namics of economic time series. Typical empirical applications include forecasting

and the measurement of persistence (Andrews and Chen (1994)), but also in theoret-

ical macroeconomic (see, e.g., Canova (2007)) and financial (see, e.g., Campbell et al.

(1997)) models, the dynamics of the variables is often described by an autoregressive

structure. However, to the best of our knowledge, all economic applications so far

restrict themselves to causal autoregressive models where the current value of the

variable of interest is forced to depend only on its past or on the present and past

values of the errors of the model. The noncausal autoregressive model proposed in

this paper, in contrast, also contains leads in addition to lags, and thus, allows for

dependence on the future. We argue that this is a particularly useful feature in eco-

nomic applications where expectations play a central role. Another interesting feature

of the noncausal autoregressive model is that its errors are pedictable by past values

of the series which may be made use of in improving forecast accuracy if noncausality

is detected. An interpretation of such predictability is that the errors contain effects

of omitted variables that are predictable by the considered series.

In this paper, we concentrate on introducing a new noncausal autoregressive model

formulation and illustrating its potential usefulness in economic applications while

leaving its motivation in terms of economic theory mostly for future research. How-

ever, at least two cases leading to noncausality have already been discussed in the

economics literature. First, a noncausal autoregressive model may arise as a non-

fundamental solution of a rational expectations model, when the agents’information

set is greater than that of the econometrician, who is estimating only a univariate

model (see, e.g., Hansen and Sargent (1991)). The presence of noncausality indicates

that the agents are able to forecast a part of the future values of the economic vari-

able in question by information unknown to the econometrician, and this results in

a noncausal autoregressive representation with predictable errors. Hence, noncausal
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autoregressive models allow for taking the effect of the agents’true information set

into account without explicitly specifying it. In this context, the setup has virtually

always been formulated in such a way that a noninvertible moving average process

arises as a solution instead of a noncausal autoregression, but as pointed out in Sec-

tion 2 below, these models closely approximate each other. Second, besides this kind

of discrepancy of information sets, heterogeneous information has been shown to be

a potential cause of nonfundamental solutions with nonrevealing equilibria (see, e.g.

Kasa et al. (2007)).

Although economic applications of noncausal time series models are virtually

nonexistent, in the statistics literature, noncausal autoregressive and autoregressive

moving average models have been studied, inter alia, by Breidt et al. (1991), Lii

and Rosenblatt (1996), Huang and Pawitan (2000), Rosenblatt (2000), Breidt et al.

(2001), Andrews et al. (2006, 2009), and Wu and Davis (2010). However, this litera-

ture is not voluminous, and typical applications have been confined to natural sciences

and engineering.1In many of these applications it may actually not be reasonable to

think of the employed model as a time series model but rather as a one-dimensional

random field in which the direction of “time” is irrelevant and prediction is not of

interest. In contrast to the models in the previous literature, our formulation achieves

depencence on future errors by explicitly including both leads and lags of the variable

in question. A useful implication of this is that, unlike in the previously introduced

formulations, statistical inference on autoregressive parameters is facilitated, and it

becomes, for example, straightforward to obtain likelihood based diagnostic tests for

1As far as we know, the only empirical examples of noncausal autoregressive (moving average)

models with economic data are provided by Breidt et el. (2001) who demonstrate that a noncausal

first order autoregressive model is appropriate for modeling a daily time series of Microsoft trading

volume, and Andrews et al. (2009) and Wu and Davis (2010) who model the daily Wal-Mart trading

volume. Empirical economic examples of related models with a noninvertible moving average part

are given in Huang and Pawitan (2000) and Breidt et al. (2001). In the former paper a noninvertible

moving average model is applied to U.S. unemployment rate, whereas the latter fits the so-called

all-pass model to New Zealand/U.S. exchange rate.
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the specified number of leads and lags. A further advantage is that the autoregressive

parameters are orthogonal to the parameters in the distribution of the error term so

that inference on these two sets of parameters is asymptotically independent.

Once allowance for noncausality is made, model selection becomes a more com-

plicated empirical issue than in conventional causal autoregressions. In particular, in

addition to the order of the autoregression, the number of leads and lags to include,

must be decided upon. Which model is selected is also of great economic interest, as it

yields information on the extent to which the variable in question depends on the past

and future. Dependence on the future (or equivalently, predictability of future errors)

suggests nonfundamentalness, as discussed above. It is well-known that in noncausal

autoregressions a non-Gaussian error term is required to achieve identification. In

previous economic applications, causal autoregressive processes with Gaussian error

terms have typically been assumed. However, this approach has usually been justified

by quasi maximum likelihood (ML) arguments as significant departures from Gaus-

sianity, especially excess kurtosis, have been detected by diagnostic checks. In this

paper, an error term with a t-distribution is found to provide an adequate fit, but

other leptokurtic distributions could also be considered. Once the distribution of the

error term has been specified, we follow Breidt et al. (1991) and consider a model

selection algorithm based on the maximized log-likelihood function, augmented by

diagnostic tests.

The proposed model is applied to study the U.S. inflation dynamics. A large part

of the related voluminous previous literature based on univariate methods concen-

trates on the finding that inflation seems to be highly persistent which is in contrast

with typical New Keynesian models assuming inflation to be forward-looking such

that it depends on expected future but not past inflation. Previous empirical re-

sults are based on conventional causal autoregressive models where high persistence

indeed necessarily implies backward-looking behavior in the basic New Keynesian

model framework. However, our results suggest that a purely noncausal autoregres-

sive model far better captures the U.S. inflation process, and this finding is recon-
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firmed by the superior forecast accuracy of the peferred specification. Hence, the

persistence previously found with univariate methods does not seem to be caused by

agents’relying on past inflation. Instead, it is caused by predictability inherent in

the noncausal autoregressive nature of the process, which, in turn, may be explained

by nonfundamentalness due to omitting relevant variables in the univariate model. It

should be pointed out that although a large part of the literature on inflation per-

sistence, including this paper, is based on univariate models, typical New Keynesian

models incorporate also other drivers of inflation, such as a measure of marginal costs.

We argue that it is indeed the omission of such variables that makes the univariate

autoregressive model too simple, which shows up as noncausality. However, if lagged

inflation is not a significant predictor of current inflation in the univariate model, it

should not be significant in a fully specified New Keynesian Phillips curve equation

either. These findings indicate that analyses based on univariate conventional autore-

gressions are not useful in this context as they in no way take other relevant variables

into account and may, therefore, yield misleading conclusions.

The rest of the paper is organized as follows. In Section 2, the noncausal au-

toregressive model is introduced and its properties are discussed. Section 3 considers

(approximate) ML estimation and statistical inference in noncausal autoregressive

models. In Section 4, a small-scale simulation study is conducted to examine the

practical relevance of the asymptotic results of Section 3 as well as the aforemen-

tioned model selection procedure. Section 5 presents an empirical application to U.S.

inflation. Finally, Section 6 concludes.

2 Model

Let yt (t = 0,±1,±2, ...) be a stochastic process generated by

ϕ
(
B−1

)
φ (B) yt = εt, (1)

where φ (B) = 1− φ1B − · · · − φrBr, ϕ (B−1) = 1−ϕ1B−1− · · · −ϕsB−s, and εt is a

sequence of independent, identically distributed (continuous) random variables with
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mean zero and variance σ2 or, briefly, εt ∼ i.i.d. (0, σ2). Moreover, B is the usual

backward shift operator, that is, Bkyt = yt−k (k = 0,±1, ...), and the polynomials

φ (z) and ϕ (z) have their zeros outside the unit circle so that

φ (z) 6= 0 for |z| ≤ 1 and ϕ (z) 6= 0 for |z| ≤ 1. (2)

If ϕj 6= 0 for some j ∈ {1, .., s}, equation (1) defines a noncausal autoregression

referred to as purely noncausal when φ1 = · · · = φr = 0. The conventional causal

autoregression is obtained when ϕ1 = · · · = ϕs = 0. Then the former condition in (2)

guarantees the stationarity of the model. In the general set up of equation (1) the

same is true for the process ut = ϕ (B−1) yt which has the backward moving average

representation

ut =
∞∑
j=0

αjεt−j, (3)

where α0 = 1 and the coeffi cients αj decay to zero at a geometric rate as j →∞. Sim-

ilarly, the latter condition in (2) guarantees the stationarity of the purely noncausal

process vt = φ (B) yt and the validity of its forward moving average representation

vt =
∞∑
j=0

βjεt+j, (4)

where β0 = 1 and the coeffi cients βj decay to zero at a geometric rate as j → ∞.

The process yt itself has the two-sided moving average representation

yt =
∞∑

j=−∞
ψjεt−j, (5)

where ψj is the coeffi cient of z
j in the Laurent series expansion of φ (z)−1 ϕ (z−1)

−1 def
=

ψ (z). Specifically, by condition (2),

ψ (z) =
∞∑

j=−∞
ψjz

j

exists in some annulus b < |z| < b−1 with b < 1 and reduces to the one-sided special

cases obtained from (3) and (4) when yt is causal and purely noncausal, respectively.
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The representation (5) implies that yt is a stationary and ergodic process with finite

second moments. We use the abbreviation AR(r, s) for the model defined by (1). In

the causal case s = 0, the conventional abbreviation AR(r) is also used.

As already discussed in the Introduction, we can think the autoregressive rep-

resentation of an economic variable as a solution of a rational expectations model.

The solution may be fundamental or nonfundamental, the latter case being character-

ized by the process of the economic variable depending on future (nonfundamental)

shocks. This property is shared by the noncausal autoregressive model (see (4) and

(5)). As Hansen and Sargent (1991), among others, have pointed out, one case where

an estimated model may turn out to be nonfundamental, arises if the econometrician’s

information set is smaller than that of the agents. Therefore, finding noncausality

may be interpreted as the causal univariate autoregressive model being inadequate,

despite the causal and noncausal models having the same autocorrelation function

(see the discussion below). In this case, the noncausal autoregressive model captures

effects of missing variables (the discrepancy between the agents’and the econometri-

cian’s information sets, with the latter consisting only of Ft, the history of the variable

in question up to time point t ), and allows for explicitly modeling the dependence of

realized values on future errors.2

It is easy to see that in the model, the current value of the process, yt, is indeed

affected by expected future errors. Using the definition of the process vt and taking

conditional expectation with respect to Ft on both sides of equation (4) yields

yt = φ1yt−1 + · · ·+ φryt−r +

∞∑
j=0

βjEt(εt+j). (6)

2In the previous literature, including Hansen and Sargent (1991), the nonfundamental solution

has all but been equated with the nonivertible moving average (MA) representation. However, it

is easy to see that the noncausal AR and noninvertible MA representations closely approximate

each other, as in both yt depends on future errors with the difference that in the latter the lead

polynomial is of finite order. To see this, for simplicity, consider the noninvertible first order MA

model yt = (1 − γB)εt, where |γ| > 1. The aforementioned fact is seen by defining γ∗ = 1/γ and

εt = εt−1/γ and observing that we can write yt = (1− γ∗B−1)εt = −
∑∞
j=1 γ

j
∗yt+j + εt.
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In a causal model, βj = 0, j > 0, and the last term is just εt implying that expected

future errors have no effect on yt. However, because, from (5), εt+j (j = 0, 1, ...)

are not independent of Ft, the last term is generally nonzero in a noncausal model,

indicating the potential dependence of yt on (an infinite number of) expected future

errors. This, of course, implies that future errors are predictable by past values of yt.

Note, however, that in noncausal autoregressive models the prediction problem is, in

general, nonlinear (see Rosenblatt (2000, Corollary 5.4.2, and Lanne et al. (2010))

and, therefore, Et(εt+j) cannot be computed in a simple fashion (see Lanne et al.

(2010)). In particular, in a noncausal model Et(εt) 6= εt because εt depends on yt+j

(0 < j ≤ s) (see (1)).

A practical complication of noncausal autoregressive processes that probably un-

derlies their unpopularity in the empirical economic literature, is that they cannot

be identified by second order properties or Gaussian likelihood. This can be seen

as follows. First, conclude from well-known results on linear filters that the spectral

density function of the process yt defined by (1) is given by σ2/2π |φ (e−iω)ϕ (e−iω)|2.

This also applies to the alternative formulation defined by (8) and (9) discussed in

Section 3 below. The same spectral density is obtained from a causal autoregressive

process with lag polynomial ϕ (B)φ (B) having its zeros outside the unit circle. These

observations explain that yt also has the causal representation

ϕ (B)φ (B) yt = ξt, (7)

where the (stationary) innovation sequence ξt is uncorrelated but, in general, not

independent with mean zero and variance σ2 (cf. Brockwell and Davis (1987, p. 124—

125)). Thus, even if yt is noncausal, its spectral density and, hence, autocovariance

function cannot be distinguished from those of a causal autoregressive process. Be-

fore applying a noncausal model it is therefore advisable in practice to first fit an

(adequate) causal autoregression to the observed series by standard least squares or

Gaussian ML and check whether the residuals look non-Gaussian.

Unless otherwise stated, we shall henceforth assume that εt is non-Gaussian and
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that its distribution has a (Lebesgue) density fσ (x;λ) = σ−1f (σ−1x;λ) which de-

pends on the parameter vector λ (d× 1) in addition to the scale parameter σ intro-

duced earlier.

3 Parameter estimation and statistical inference

In this section, we derive the approximate likelihood function of the noncausal au-

toregression (1) and related asymptotic tests. It is useful to start by highlighting the

benefits of our formulation over that used in the previous literature from the view-

point of statistical inference. In the previous literature on noncausal autoregressions,

it has been common to specify the model as

a (B) yt = εt, (8)

where a (B) = 1 − a1B − · · · − apB
p with ap 6= 0 and εt is an i.i.d. sequence with

zero mean and finite variance (see, e.g., Breidt et al. (1991), Rosenblatt (2000) and

the references therein). In this set up the relevant stationarity condition is a (z) 6= 0,

|z| = 1. When it holds, yt has a two-sided moving average representation similar to

that in (5) (see Brockwell and Davis (1987, p. 88)). Moreover, when p = r + s and

the number of zeros of a (z) outside (inside) the unit circle is r (s), one can factor the

polynomial a (z) as

a (z) = ϕ∗ (z)φ (z) , (9)

where φ (z) is as in (1) and ϕ∗ (z) = 1−ϕ∗1z− · · · −ϕ∗szs has its zeros inside the unit

circle, that is, ϕ∗ (z) 6= 0 for |z| ≥ 1. Note that this particularly means that in the

noncausal case s > 0, the condition |ϕ∗s| > 1 holds.

The polynomial ϕ∗ (z) can be expressed as

ϕ∗ (z) = −ϕ∗szs
(

1 +
ϕ∗s−1
ϕ∗s

z−1 + · · ·+ ϕ∗1
ϕ∗s
z1−s − 1

ϕ∗s
z−s
)

= −ϕ∗szsϕ
(
z−1
)
,

where ϕ (z−1) is as in (1) so that ϕ∗s−j/ϕ
∗
s = −ϕj for j = 1, ..., s − 1 and 1/ϕ∗s = ϕs.

Because the zeros of ϕ∗ (z) lie inside the unit circle, those of ϕ (z) lie outside the unit
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circle, as can be readily checked. Thus, the latter condition in (2) holds and model

(1) can be obtained from (8) by defining εt = −(1/ϕ∗s)εt+s. Similarly, if ϕs 6= 0 is

assumed in (1), the preceding reasoning can be reversed to obtain the specification

(8) with εt = − (1/ϕs) εt−s and the coeffi cients of the polynomial ϕ
∗ (z) in (9) given

by ϕ∗j = −ϕj/ϕs, j = 1, ..., s − 1, and ϕ∗s = 1/ϕs. Thus, when ϕs 6= 0 there is a

one-to-one correspondence between the parameters in (1) and (8).3

The formulation (1) appears more convenient than (8) and (9) when one needs

to specify the (usually) unknown model orders r and s. Indeed, it turns out to be

quite feasible to construct conventional likelihood based tests for hypotheses such

as φr0+1 = · · · = φr = 0 (r0 < r) and ϕs0+1 = · · · = ϕs = 0 (s0 < s). For the

latter hypothesis similar test procedures seem to be more diffi cult to obtain if the

model is formulated as in (8) and (9) because |ϕ∗s| > 1 by assumption and because

the logarithm of |ϕ∗s| appears in the likelihood function (see Breidt et al. (1991)).

A further statistical convenience of the specification (1) is that the autoregressive

parameters φ = (φ1, ..., φr) and ϕ = (ϕ1, ..., ϕs) turn out to be orthogonal to the

parameters σ2 and λ implying asymptotic independence of the corresponding ML

estimators.4

3.1 Approximate likelihood function

ML estimation of the parameters of a noncausal autoregression was studied by Breidt

et al. (1991) by using the formulation based on equation (8). Even in this set up

our model is slightly more general than theirs because we allow the distribution of

the error term to depend on the additional parameter vector λ. This generalization

3This kind of reparameterization of model (8) is mentioned in Lii and Rosenblatt (1996, p. 17)

in the context of a noncausal and noninvertible autoregressive moving average model. However, in

that paper the model is not explicitly written as in (1) and the case ϕs = 0 allowed in (1) is not

discussed.
4We use the notation x = (x1, ..., xn) to introduce the n-dimensional vector x and its components.

The same convention is also used when the components are vectors. In matrix calculations all vectors

are interpreted as column vectors and a prime is used to signify the transpose of a vector or a matrix.
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has been considered by Andrews et al. (2006) in a related context and, following

the arguments used in their paper, it can also be straightforwardly handled in our

case. Thus, we shall assume that the density function f (x;λ) satisfies the regularity

conditions of Andrews et al. (2006) which, among other things, require that f (x;λ)

is twice continuously differentiable with respect to (x, λ), non-Gaussian, and positive

for all x ∈ R and all permissible values of λ. The permissible parameter space of λ,

denoted by Λ, is some subset of Rd whereas the permissible space of the parameters

φ, ϕ and σ is defined by the conditions in (2) and by σ > 0. For convenience, the

regularity conditions of Andrews et al. (2006) are also presented in the appendix and,

unless otherwise stated, they will henceforth be assumed. Densities that satisfy these

conditions include a rescaled t-density and a weighted average of Gaussian densities.

If the model is defined as in (8) and (9), ML estimators of the parameters in (1)

can be derived by a smooth one-to-one transformation from ML estimators of the

parameters in (8), and hence their limiting distribution can also be easily obtained.

However, because this reasoning is not directly applicable if the degree of the poly-

nomial ϕ (z) is overspecified (i.e., ϕs = 0), we shall provide details based directly on

the specification (1). We start by deriving the likelihood function.

Suppose we have an observed time series y1, ..., yT . Using the definitions ut =

ϕ (B−1) yt and vt = φ (B) yt we can write

u1
...

uT−s

vT−s+1
...

vT


=



y1 − ϕ1y2 − · · · − ϕsys+1
...

yT−s − ϕ1yT−s+1 − · · · − ϕsyT
yT−s+1 − φ1yT−s − · · · − φryT−s+1−r

...

yT − φ1yT−1 − · · · − φryT−r


= A



y1
...

yT−s

yT−s+1
...

yT


or briefly

x = Ay.
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Similarly,

u1
...

ur

εr+1
...

εT−s

vT−s+1
...

vT



=



u1
...

ur

ur+1 − φ1ur − · · · − φru1
...

uT−s − φ1uT−s−1 − · · · − φruT−s−r
vT−s+1
...

vT



= C



u1
...

ur

ur+1
...

uT−s

vT−s+1
...

vT


or

z = Cx.

Hence, the vectors z and y are related by

z = CAy.

Note that from (3) and (4) it can be seen that the components of z given by (u1, ..., ur),

(εr+1, ..., εT−s), and (vT−s+1, ..., vT ) are independent. The joint density function of z

under true parameter values can thus be expressed as

hU (u1, ..., ur)

(
T−s∏
t=r+1

fσ (εt;λ)

)
hV (vT−s+1, ..., vT ) ,

where hU and hV signify the joint density functions of (u1, ..., ur) and (vT−s+1, ..., vT ),

respectively. It is easy to see that the (nonstochastic) matrices A and C are non-

singular and the determinant of C is unity so that we can express the joint density

function of the data vector y as

hU
(
ϕ
(
B−1

)
y1, ..., ϕ

(
B−1

)
yr
)( T−s∏

t=r+1

fσ
(
ϕ
(
B−1

)
φ (B) yt;λ

))
× hV (φ (B) yT−s+1, ..., φ (B) yT ) |det (A)| .
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It is also easy to check that the determinant of the (T − s)×(T − s) block in the upper

left hand corner of A is unity and, using the well-known formula for the determinant

of a partitioned matrix, it can furthermore be seen that the determinant of A is

independent of the sample size T . This suggests approximating the joint density of

y by the second factor in the preceding expression, giving rise to the approximate

log-likelihood function

lT (θ) =

T−s∑
t=r+1

gt (θ) , (10)

where θ = (φ, ϕ, σ, λ) and

gt (θ) = log f
(
σ−1 (ut (ϕ)− φ1ut−1 (ϕ)− · · · − φrut−r (ϕ)) ;λ

)
− log σ

= log f
(
σ−1 (vt (φ)− ϕ1vt+1 (φ)− · · · − ϕsvt+s (φ)) ;λ

)
− log σ.

Here ut (ϕ) and vt (φ) signify the series ut and vt treated as functions of the parame-

ters ϕ and φ, respectively. Maximizing lT (θ) over permissible values of θ gives an

approximate ML estimator of θ. Note that here, as well as in the next section, the

orders r and s are assumed known. Procedures to specify these quantities will be

discussed in later sections of the paper.

3.2 Asymptotic properties of the approximate ML estimator

In what follows, it will be convenient to use the notation θ0 for the true value of θ and

similarly for its components. It is assumed that λ0, the true value λ, is an interior

point of Λ.

We shall first consider the score of θ evaluated at true parameter values. Define the

vectors Ut−1 = (ut−1, ..., ut−r) and Vt+1 = (vt+1, ..., vt+s) where ut and vt are defined

in terms of true parameter values so that ut =
∑∞

j=0 α0jεt−j and vt =
∑∞

j=0 β0jεt+j.

By straightforward differentiation (cf. Breidt et al. (1991)) we find from (10) that

∂

∂φ
gt (θ0) = −

f ′
(
σ−10 εt;λ0

)
σ0f

(
σ−10 εt;λ0

)Ut−1 (r × 1)
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and
∂

∂ϕ
gt (θ0) = −

f ′
(
σ−10 εt;λ0

)
σ0f

(
σ−10 εt;λ0

)Vt+1 (s× 1) ,

where f ′ (x, λ) = ∂f (x, λ) /∂x and use has also been made of the fact that φ0 (B)ut =

εt = ϕ0 (B) vt with φ0 (B) and ϕ0 (B) defined in terms of true parameter values (e.g.

φ0 (B) = 1− φ01B − · · · − φ0rBr). Similarly,

∂

∂σ
gt (θ0) = −σ−20

(
f ′
(
σ−10 εt;λ0

)
f
(
σ−10 εt;λ0

) εt + σ0

)

and
∂

∂λ
gt (θ0) =

1

f
(
σ−10 εt;λ0

) ∂
∂λ
f
(
σ−10 εt;λ0

)
(d× 1) .

The following lemma presents the asymptotic distribution of the score vector.

For the presentation of this lemma we need some notation. Let ηt ∼ i.i.d. (0, 1)

and define the AR(r) process u∗t by φ0 (B)u∗t = ηt and the AR(s) process v
∗
t by

ϕ0 (B) v∗t = ηt. Note that u
∗
t and v

∗
t are jointly stationary and causal with finite second

moments. Next form the vectors U∗t−1 =
(
u∗t−1, ..., u

∗
t−r
)
and V ∗t−1 =

(
v∗t−1, ..., v

∗
t−s
)

and the associated covariance matrices ΓU∗ = Cov
(
U∗t−1

)
, ΓV ∗ = Cov

(
V ∗t−1

)
, and

ΓU∗V ∗ = Cov
(
U∗t−1, V

∗
t−1
)

= Γ′V ∗U∗. We also define

J =

∫
(f ′ (x;λ0))

2

f (x;λ0)
dx

and set

Σ =

 Σ11 Σ12

Σ21 Σ22

 =

 J ΓU∗ ΓU∗V ∗

ΓV ∗U∗ J ΓV ∗

 .
Note that ΓU∗ = σ−20 Cov (Ut−1), ΓV ∗ = σ−20 Cov (Vt+1), and J > 1 (see condition

(A5) of Andrews et al. (2006)). Finally, define the (d+ 1)× (d+ 1) matrix

Ω =

 ω2σ ωσλ

ωλσ Ωλλ

 , (11)

where

Ωλλ =

∫
1

f (x;λ0)

(
∂

∂λ
f (x;λ0)

)(
∂

∂λ
f (x;λ0)

)′
dx,
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ωλσ = −σ−10
∫
x
f ′ (x;λ0)

f (x;λ0)

∂

∂λ
f (x;λ0) dx = ω′σλ,

and

ω2σ = σ−20

(∫
x2

(f ′ (x;λ0))
2

f (x;λ0)
dx− 1

)
.

Now we can present the limiting distribution of the score vector.5

Lemma 1 If conditions (A1)—(A7) of Andrews et al. (2006) hold, then

(T − p)−1/2
T−s∑
t=r+1

∂

∂θ
gt (θ0)

d→ N (0, diag (Σ,Ω)) .

Moreover, the matrices Σ and Ω are positive definite.

Lemma 1 can be proved in the same way as Propositions 1 and 2 of Breidt et al.

(1991). An outline of the needed arguments is provided in the appendix. Here we

note that the positive definiteness of the matrix Σ follows from the above mentioned

inequality J > 1 which holds when εt is non-Gaussian (see Remark 2 of Andrews et al.

(2006)). The matrix Σ is positive definite even if the model order r or s is overspecified

or both are overspecified. For instance, suppose that r = s and consider the extreme

case where φ = ϕ = 0. Then, Σ11 = Σ22 = J Ir and Σ12 = Ir so that the matrix Σ

is clearly positive definite when J > 1. In the general case of Lemma 1 the positive

definiteness of the matrix Ω must be assumed (cf. condition (A6) of Andrews et al.

(2006)). The block diagonality of the covariance matrix of the limiting distribution

implies that the scores of (φ, ϕ) and (σ, λ) are asymptotically independent. This

property, commonly referred to as orthogonality of the parameters (φ, ϕ) and (σ, λ), is

convenient because it means that statistical inference on the autoregressive parameters

φ and ϕ, which is typically of primary interest, is asymptotically independent of the

estimation of the parameters σ and λ describing the distribution of the error term

εt. It may be noted that similar orthogonality does not hold if the formulation given

by (8) and (9) is used because then the score of the autoregressive parameter ϕ∗s is

5The notation diag (A1, A2) signifies a block diagonal matrix with diagonal blocks A1 and A2.
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asymptotically correlated with the score of the scale parameter of the error term εt

(see Proposition 2 of Breidt et al. (1991)).

Using a conventional Taylor series expansion of the score in conjunction with

Lemma 1 and the assumed regularity conditions one can show the existence of a

consistent and asymptotically normal (local) maximizer of the approximate likelihood

function. Specifically, the following theorem can be established. Its proof makes use

of arguments similar to those in Breidt et al. (1991) and Andrews et al. (2006) and

is outlined in the appendix.

Theorem 2 If conditions (A1)—(A7) of Andrews et al. (2006) hold, there exists a

sequence of (local) maximizers θ̂ = (φ̂, ϕ̂, σ̂, λ̂) of lT (θ) in (10) such that

(T − p)1/2 (θ̂ − θ0)
d→ N

(
0, diag

(
Σ−1,Ω−1

))
.

Due to the block diagonality of the covariance matrix of the limiting distribution,

the (approximate) ML estimators (φ̂, ϕ̂) and (σ̂, λ̂) are asymptotically independent.

This means that if a consistent initial estimator (φ̃, ϕ̃) of (φ, ϕ) is available an es-

timator of (σ, λ) with the same asymptotic distribution as the ML estimator (σ̂, λ̂)

can be obtained by maximizing the function lT (φ̃, ϕ̃, σ, λ). As the initial estimator

(φ̃, ϕ̃) one may consider the least absolute deviation (LAD) estimator based on the

(possibly incorrect) assumption that εt has a Laplace (or double exponential) distri-

bution. In the case of the specification (8) Huang and Pawitan (2000) establish the

consistency of the LAD estimator when, in a certain sense, the true distribution of

εt has tails heavier than the normal distribution. Their result applies to a variety

of known distributions including the rescaled t-distribution and weighted averages of

Gaussian densities. An inspection of the residuals based on a LAD estimation may

also help to specify an appropriate distribution for the error term εt.

3.3 Statistical inference

To be able to compute approximate standard errors for the components of the es-

timator θ̂ and construct confidence intervals and conventional Wald tests we need
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consistent estimators of the covariance matrices Σ and Ω. We use the conventional

estimator based on the Hessian of the approximate log-likelihood function which yields

a consistent estimator, as discussed in the proof of Theorem 2. Specifically, we have

Q̂
def
= − (T − p)−1

T−s∑
t=r+1

∂2

∂θ∂θ′
gt(θ̂)

p→ diag (Σ,Ω) . (12)

Approximate standard errors of the components of θ̂ can be obtained by computing

the square roots of the diagonal elements of the matrix (T − p)−1 Q̂−1. Conventional

Wald tests are also readily obtained. For instance, one can consider testing the null

hypotheses

Hr0,s0 : φ0,r0+1 = · · · = φ0r = 0 and ϕ0,s0+1 = · · · = ϕ0s = 0,

where r0 < r and s0 < s with the case r0 = r or s0 = s obtained in with an obvious

modification. Under this null hypothesis at least one of the model orders can be

reduced. To generalize slightly, consider the null hypothesis H : Rθ0 = 0 where the

(known) m× (r+ s+ d+ 1) matrix R is of full row rank. The conventional Wald test

statistic can be written as

W = (T − p) θ̂′R′(RQ̂−1R′)−1Rθ̂ d→ χm,

where the convergence assumes the null hypothesis and is an immediate consequence

of Theorem 2.

One may also use the likelihood ratio (LR) test. Let θ̃ signify the ML estimator

of the parameter θ constrained by the null hypothesis H so that in the case of the

hypothesis Hr0,s0 the estimator θ̃ is obtained by applying ML in the model with orders

r0 and s0. The LR test statistic is

LR = 2[lT (θ̂)− lT (θ̃)]
d→ χm,

where the null hypothesis is again assumed. The limiting distribution can be justified

by a standard application of the results given in the appendix which can also be
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used to obtain the corresponding score (Lagrange multiplier) test. To the best of our

knowledge, test procedures of this kind have not been explicitly considered in the

previous literature of noncausal autoregressive models where the model is formulated

as in (8) and (9). In this formulation treating the null hypothesis which specifies

s0 < s is hampered by the condition |ϕ∗s| > 1.

4 Simulation study

To study the finite-sample properties of the estimators and tests proposed in Sec-

tion 3, we conducted a small simulation study. Following Breidt et al. (1991), we

concentrate on the second-order process as the data-generating process (DGP) be-

cause it is the simplest model that allows for a versatile analysis of various aspects

of estimation and testing. Throughout, the results are based on 10,000 realizations.

We generate each realization in two steps. First, a series from the causal AR(r)

model φ (B) vt = εt (t = r + 1, ..., T ) is generated. Then yt is computed recur-

sively from ϕ (B−1) yt = vt for t = T − s, ..., 1. The r and s initial observations,

respectively, are set to zero, and to eliminate initialization effects, 100 observations

at the beginning and end of each realization are discarded. In all experiments, the

error term εt is assumed to follow the t-distribution with 3 degrees of freedom and

σ is set equal to 0.1. We consider three different combinations of parameter values,

(φ1, ϕ1) = {(0.9, 0.9), (0.9, 0.1), (0.1, 0, 9)}. In the first case, the roots of the lag poly-

nomials are equal and close to the unit circle, in the two other cases the roots of the

“causal”and “noncausal”polynomials are clearly different. Three sample sizes, 100,

200 and 500 are considered.

The mean and standard deviation of the ML estimators of φ1 and ϕ1 are pre-

sented in Table 1. Even with as few as 100 observations the parameters are relatively

accurately estimated in each case, and the biases as well as the standard deviations

clearly diminish as the sample size increases. In the case (φ1, ϕ1) = (0.9, 0.9), φ1 is

more accurately estimated in terms of both criteria, whereas in the other two cases it
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is the parameter taking the smaller value that is estimated with a somewhat smaller

bias. The differences are, however, minor.

The results concerning the Wald and LR tests of hypotheses involving a single

parameter in Table 2 indicate that both tests tend to overreject to some extent, but

the problem is mitigated as the sample size increases. For the Wald test, the case

(φ1, ϕ1) = (0.9, 0.9) seems to be the most diffi cult, while the differences between the

rejection rates of the Wald and LR tests are minor in the other cases. In general,

the LR tests on the parameter with the smaller value have somewhat better size

properties, in accordance with the properties of the ML estimator above. In contrast,

this pattern does not carry over to the Wald test.

As the Wald test tends to overreject in the (φ1, ϕ1) = (0.9, 0.9) case, we only

present simulation results on power for the LR test. Because the size properties do

not differ much between the different DGP’s, only the rejection rates of the LR test

(at the nominal 5% level of significance) for the first DGP ((φ1, ϕ1) = (0.9, 0.9))

are presented in Figure 1. Moreover, we concentrate on tests concerning φ1 because

there is no reason to expect the power properties to greatly depend on the particular

parameter. The values of φ1 in the alternative DGP’s that are used to generate the

data are given by 0.9 − c/
√
T (c = 0.0, 0.2, 0.4, . . . , 2.0), and the null hypothesis in

the test is φ1 = 0.9. The rejection rates for alternatives very close to the null are

moderate for all sample sizes considered (T = 100, 200, 500), but they rapidly increase

with c, especially with the greater sample sizes. Hence, the LR test seems to have

reasonable power. These results, however, suggest that in small samples, one should

not rely on this test alone in model selection.

Breidt et al. (1991) suggested a model selection procedure based on maximizing

the likelihood function. In other words, all purely causal, noncausal and mixed models

of a given order (p) are estimated, and the model yielding the greatest value of the

likelihood function is selected. Their simulation results lend support to this procedure,

and in Table 4, we present similar results when the DGP is the mixed second-order

model. The procedure seems to work relatively well even with 100 observations, and
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the performance greatly improves with the sample size. However, there seem to be

some differences depending on the parameter values. When (φ1, ϕ1) = (0.9, 0.9), the

correct model is selected in 95% of the realizations with 200 observations, and the

corresponding figure is 99.9% with 500 observations. In contrast, in the cases with

different parameter values, the noncausal (causal) model is selected too often when

φ1 is greater (smaller), even with 500 observations. In these cases model selection is

presumably complicated by the fact that the considered processes are rather close to

first-order processes. Although the proposed procedure works fairly well even in these

diffi cult cases, additional simulation experiments involving greater values of the other

parameter (not reported) indicated improvements, with the correct model sometimes

being selected even more frequently than in the (φ1, ϕ1) = (0.9, 0.9) case. Despite

the quite satisfactory performance of this procedure, the results suggest that model

selection should not be based on this criterion alone, but, in addition, diagnostic tests

should be employed.

5 Empirical application

In this section, we apply the models and methods discussed above to modeling U.S.

inflation dynamics. Our focus is on examining the nature of inflation persistence that

has given rise to a voluminous literature in the past few decades. The central ques-

tion in this line of research is whether inflation is a purely forward-looking variable

as required by the basic New Keynesian model. This assumption has been tested by

checking for serial correlation in inflation, and typically measures based on univariate

autoregressive models, such as the cumulative impulse response (CIR) (Andrews and

Chen (1994)), have indicated quite high persistence of inflation in industrialized coun-

tries (for a survey of the recent empirical literature, see Cecchetti and Debelle (2006)).

The presence of high autocorrelation has been interpreted as evidence in favor of the

dependence of inflation on its past values, and, hence, against the forward-looking

inflation expectations assumed in the basic New Keynesian model. This, in turn, has
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led to modifications of existing theory that try to explain the apparently backward-

looking behavior (see, e.g., Gali and Gertler (1999)).

This paper contributes to the large empirical literature that studies inflation per-

sistence in the univariate framework only. This approach excludes potential drivers

of the inflation process included in macroeconomic theories of price determination,

such as the marginal costs and output gap. However, if lagged inflation turns out

not to enter the univariate model, it should not be significant in a model augmented

with any of these additional drivers either. As already discussed, the noncausal AR

model is to some extent able to take these additional variables into account, while

the conventional AR model with potentially predictable errors fails to do so, and,

therefore, may yield misleading conclusions.

To the best of our knowledge, only causal autoregressive models have been enter-

tained in the previous literature on inflation. As a consequence, high persistence has

automatically been interpreted as evidence of the dependence of inflation expectations

on past inflation (see Cecchetti and Debelle (2006), and the references therein). How-

ever, as discussed in Section 2, high autocorrelation and, hence, strong persistence

do not, per se, indicate such dependence. Even if current inflation only depends on

expected future inflation (or equivalently expected future errors to inflation, incorpo-

rating factors that drive inflation), the process may be persistent if autocorrelation

is used as a measure of persistence. The same is true if the CIR based on a causal

autoregressive model is used to measure persistence. Indeed, as seen in Section 2, for

any purely noncausal autoregressive process there is a corresponding causal process

with the same lag polynomial and, hence, the same autocorrelation function and im-

pulse response function. Thus, causality or noncausality and, hence, dependence on

past or expected future errors, cannot be distinguished by examining the autocorrela-

tion function or the impulse response function of a causal autoregressive model fitted

to the series.

In what follows, we will use the procedures proposed earlier in the paper to argue

that the U.S. inflation series is purely noncausal despite its strong persistence. This
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can be interpreted as evidence in favor of inflation being dependent on expectations

of future inflation and not on past inflation. In view of the discussion in Section

2, finding noncausality would suggest the presence of nonfundamentalness in the

univariate inflation process, with the likeliest explanation being that agents have

other information relevant for predicting inflation besides the past and present of the

inflation series alone. Moreover, if pure noncausality is found, past inflation is not

useful in predicting current inflation over and above this other information.

The inflation series that we model, is the annualized quarterly inflation rate com-

puted from the seasonally adjusted U.S. consumer price index (for all urban con-

sumers) published by the Bureau of Labor Statistics. The sample period comprises

155 observations, from 1970:1 to 2008:3. There is positive autocorrelation even at

high lags as shown by the autocorrelation function depicted in Figure 2. The Ljung-

Box test indicates that autocorrelation is also significant at all reasonable significance

levels. However, by visual inspection and unit root tests, the series can be considered

stationary. Further evidence of persistence is provided by the CIR based on the causal

Gaussian AR(3) model that turned out to adequately capture the linear dependence

in the inflation series (see model AR(3,0)-N inTable 5). The CIR of this model equals

6.98 which is comparable to the values obtained by Cecchetti and Debelle (2006) for

the OECD countries, indicating high persistence.

In Table 5, we present the estimation results of a number of autoregressive models

for the demeaned inflation, along with some diagnostic tests.6 Of Gaussian autore-

gressive models up to order 4, the AR(3) model (AR(3,0)-N ) was selected by both

the Akaike (AIC) and Bayesian (BIC) information criteria. However, the diagnostic

tests suggest that this model is misspecified. Although the Ljung-Box test does not

indicate the presence of unmodeled autocorrelation, there is evidence of conditional

heteroskedasticity, as the p-value of the McLeod-Li test is only 0.003.7 Moreover, the

6Estimation is done using the BHHH algorithm in the GAUSS CMLMT library.
7Note that, when the orders of the model are misspecified, the Ljung-Box and McLeod-Li tests

are not exactly valid as they do not take estimation errors correctly into account. The reason is that
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quantile-quantile plot of the residuals in the upper panel of Figure 3 indicates that the

normal distribution fails to capture the tails of the error distribution. Also, normality

of the residuals of the AR(3,0)-N model is rejected by the Jarque-Bera test at the 5%

level (p-value is 0.031). These findings suggest that a more leptokurtic distribution,

such as the t-distribution with a relatively small degrees-of-freedom parameter might

provide a more satisfactory fit.

Because a Gaussian AR(3) model is deemed adequate in describing the autocorre-

lation structure of the inflation series, we proceed by estimating all alternative causal

and noncausal AR(r, s) models with r + s = 3, following the procedure proposed

in Section 4. The error term is assumed to have a t-distribution with λ degrees of

freedom.8 Of the four models, the purely noncausal model (AR(0,3)-t) maximizes

the log-likelihood function by a clear margin to the other specifications. With the

exception of the AR(2,1)-t model, all specifications with t-distributed errors exhibit

little evidence of remaining autocorrelation or conditional heteroskedasticity. The

adequacy of the AR(0,3)-t model was also checked by testing it against higher-order

specifications, and the coeffi cients of the additional terms turned out to be insignif-

icant in the LR test. The p-values of the extra parameter in the AR(1,3)-t and

AR(0,4)-t models, are 0.339 and 0.395, respectively. Hence, the results attest to

purely noncausal inflation dynamics, indicating that it is the expectations of future

errors that drive the inflation process (see (6)).

a misspecification of the model orders makes the errors dependent, as pointed out in the case of the

causal specification (7). Nevertheless, p-values of these tests can be seen as convenient summary

measures of the autocorrelation remaining in residuals and their squares.
8The log-likelihood function equals

lT (θ) =

T−s∑
t=r+1

gt (θ) ,

where

gt (θ) = log

{
Γ [(λ+ 1) /2]

π1/2Γ (λ/2)
(λ− 2)

−1/2
[
1 +

σ−2ε2t
λ− 2

]−(λ+1)/2}
− log σ,

and Γ (·) is the gamma function.
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In all cases, the degrees-of-feedom parameter λ is estimated small, indicating

fat-tailed error distributions. This is not surprising given the bad fit of the Gaussian

AR(3) model. The quantile-quantile plot of the AR(0,3)-t model depicted in the lower

panel of Figure 3 lends support to the adequacy of the t-distribution. As a matter of

fact, all models with t-distributed errors generated a similar quantile-quantile plot,

indicating that great improvements in fit are brought about by merely appropriately

selecting the error distribution.

Further evidence in favor of the selected purely noncausal specification is pro-

vided by the pseudo out-of-sample forecast comparisons in Table 6. The forecasts are

computed by the simulation-based method introduced in Lanne et al. (2010). The

out-of-sample period starts in 1982:1, and thus comprises 107 quarters. The forecasts

are based on an expansive estimation window, with the first estimates based on the

first 48 observations. At all forecast horizons considered, employing the t-distribution

brings about slight improvements in the root mean square error (RMSE) compared

to the Gaussian AR model. The noncausal AR(0,3)-t model, in general, leads to fur-

ther diminution of the RMSE, which is also statistically significant at the three- and

four-quarter horizons compared to the AR(3,0)-N model at the 1% level according to

the test of Diebold and Mariano (1995) and West (1996).

In summary, the results strongly indicate purely noncausal inflation dynamics.

Hence, the apparent persistence in inflation observed in univariate analyses does not

seem to be caused by dependence on past inflation but by the predictability of nonfun-

damental shocks to inflation. These findings lend little support to the hybrid Phillips

curve specification incorporating lagged inflation (see, e.g., Gali and Gertler (1999)).

6 Conclusion

In this paper, we have considered univariate noncausal autoregressive models that, to

the best of our knowledge, have so far not attracted attention in the economics and

finance literatures. Their economic motivation is mostly left for future research, but
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generally they can be seen as representations of nonfundamental solutions to rational

expectations models. In the previous theoretical literature, economic models have

virtually invariably been formulated in such a way that these solutions have a non-

invertible moving average instead of a noncausal autoregressive representation. How-

ever, these two representations are close approximations of each other, and, therefore,

the noncausal AR model provides a viable and useful alternative to the noninvertible

moving average model. In particular, the outlined model selection procedure facili-

tates distinguishing between fundamental and nonfundamental representations, and

if noncausality (or equivalently nonfundamentalness) is detected, estimating the re-

sulting noncausal AR model. Corresponding results for noninvertible moving average

models appear less straightforward.

We discuss ML estimation and develop related tests for noncausal autoregressive

models. Furthermore, based on a number of simulation experiments and our expe-

rience with actual economic data, we propose a three-step procedure for specifying

a potentially noncausal autoregressive model. The first step is to fit a conventional

causal autoregressive model by least squares or Gaussian ML and determine its or-

der by using conventional procedures such as diagnostic checks and model selection

criteria. Once an adequate causal model is found, its error term should be tested for

Gaussianity. Because identification requires the error term to be non-Gaussian, we

can proceed only if deviations from Gaussianity are detected. A variety of error distri-

butions can be considered; in our empirical application we successfully employed the

t-distribution. With the chosen error distribution, all causal and noncausal autore-

gressive models of the selected order are then estimated and the model maximizing

the log-likelihood function is selected. Finally, through diagnostic tests the adequacy

of this model is confirmed. These diagnostic checks should give information on direc-

tions in which the model potentially fails.

The model is applied to U.S. inflation dynamics that are shown to be purely

noncausal. In the previous macroeconomic literature, the strong autocorrelation in

inflation series has been seen as evidence in favor of the dependence of current on past
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inflation, invalidating the basic New Keynesian model. Within the purely noncausal

autoregression suggested by our results, the persistence can instead be interpreted as

arising from the predictability of future errors to inflation that does not contradict

the basic model. This predictability, in turn, indicates the nonfundamentalness of the

simple univariate model without additional driving variables. However, since lagged

inflation does not enter the selected univariate model for inflation, it should not enter

a (fundamental) model augmented with additional variables.

In future work, we plan to look at extensions of the univariate model considered

in this paper. Being able to handle multiple times series would be of interest in most

economic applications, and a first attempt in this direction was recently put forth

by Lanne and Saikkonen (2010). Using noncausal autoregressions to model financial

returns is another obvious field of application. To be able to adequately capture the

erratic behavior of these time series probably calls for extensions of the basic model

proposed in this paper. In particular, allowing for noncausality is, per se, hardly

suffi cient to model the conditional heteroskedasticity prevalent in financial returns.

Finally, examining the connections of noncausal time series models and economic

theory, in particular finding theoretical economic models giving rise to noncausal

solutions would be of great interest.
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Mathematical appendix

We shall first present the regularity conditions (A1)—(A7) of Andrews et al. (2006).

We use Λ0 ⊂ Λ to signify some neighborhood of λ0.

(A1) For all x ∈ R and all λ ∈ Λ, f (x;λ) > 0 and f (x;λ) is twice continuously

differentiable with respect to (x, λ).

(A2) For all λ ∈ Λ0,
∫
xf ′ (x;λ) dx = xf (x;λ) |∞−∞ −

∫
f (x;λ) dx = −1.

(A3)
∫
f ′′ (x;λ0) dx = f ′ (x;λ0) |∞−∞ = 0.

(A4)
∫
x2f ′′ (x;λ0) dx = x2f ′ (x;λ0) |∞−∞ − 2

∫
xf ′ (x;λ0) dx = 2.

(A5) 1 <
∫

(f ′ (x;λ0))
2 /f (x;λ0) dx.

(A6) The matrix Ω defined in (11) is positive definite.

(A7) For j, k = 1, ..., d and all λ ∈ Λ0,

• f (x;λ) is dominated by a function f1 (x) such that
∫
x2f1 (x) dx <∞, and

• x2 (f ′ (x;λ))2

f (x;λ)2
, x2

∣∣∣∣f ′′ (x;λ)

f (x;λ)

∣∣∣∣, |x| ∣∣∣∣∂f ′ (x;λ) /∂λj
f (x;λ)

∣∣∣∣, (∂f ′ (x;λ) /∂λj)
2

f 2 (x;λ)
, and

|∂2f (x;λ) /∂λj∂λk|
f (x;λ)

are dominated by a1 + a2 |x|c1 , where a1, a2, and c1 are

nonnegative constants and
∫
|x|c1 f1 (x) dx <∞.

Proof of Lemma 1. First consider the covariance matrix of the score. For sim-

plicity, denote et = f ′
(
σ−10 εt;λ0

)
/
[
f
(
σ−10 εt;λ0

)
σ0
]

= f ′σ0
(
σ−10 εt;λ0

)
/fσ0

(
σ−10 εt;λ0

)
and notice that

E(e2t ) = E
[(
f ′σ0 (εt;λ0) /fσ0 (εt;λ0)

)2]
= σ−20

∫ (
f ′ (x;λ0)

2 /f (x;λ0)
)
dx

= σ−20 J ,
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where the second equality is based on the fact that fσ0 (x;λ0) = σ−10 f
(
σ−10 x;λ0

)
is

the density function of εt (cf. equation (2.13) of Breidt et al. (1991)). Thus, because

et and Ut−1 are independent and ΓU∗ = σ−20 Cov (Ut−1),

Cov

(
∂

∂φ
gt (θ0)

)
= Cov (−Ut−1et)

= E(e2t )Cov (Ut−1)

= J ΓU∗ .

Because the sequence Ut−1et is uncorrelated we have

lim
T→∞

(T − p)−1Cov
(

T−s∑
t=r+1

∂

∂φ
gt (θ0) ,

T−s∑
t=r+1

∂

∂φ
gt (θ0)

)
= J ΓU∗ .

Similarly, the independence of et and Vt+1 and the equality ΓV ∗ = σ−20 Cov (Vt+1) give

Cov

(
∂

∂ϕ
gt (θ0)

)
= J ΓV ∗

and, by the uncorrelatedness of the sequence Vt+1et,

lim
T→∞

(T − p)−1Cov
(

T−s∑
t=r+1

∂

∂ϕ
gt (θ0) ,

T−s∑
t=r+1

∂

∂ϕ
gt (θ0)

)
= J ΓV ∗ .

As for the covariance matrix between ∂gt (θ0) /∂φ and ∂gt (θ0) /∂ϕ, first consider

Cov (−ut−iet,−vk+jek) =
∞∑
a=0

∞∑
b=0

α0aβ0bCov
(
εt−i−aet, εk+j+bek

)
=

 α0,t−k−iβ0,t−k−j, t > k, 1 ≤ i ≤ r, 1 ≤ j ≤ s

0, t ≤ k, 1 ≤ i ≤ r, 1 ≤ j ≤ s
,

where the first equality follows from (3) and (4) and the second one is based on con-

dition (A2) (see also Breidt et al. (1991, p. 181)). Hence, as in Breidt et al. (1991, p.

182), the element in position (i, j) of the matrix (T − p)−1Cov (∂lT (θ0) /∂φ, ∂lT (θ0) /∂ϕ)

is

(T − p)−1
T−s−1∑
k=r+1

T−s∑
t=k+1

α0,t−k−iβ0,t−k−j = (T − p)−1
T−s−1∑
k=r+1

T−s−k−i∑
t=0

α0tβ0,t+i−j

→
∞∑
k=0

α0kβ0,k+i−j,

28



where β0l = 0 for l < 0. Note that the limit equals ψ0,j−i, as can be easily checked.

Next recall that u∗t =
∑∞

k=0 α0kηt−k and v
∗
t =

∑∞
l=0 β0lηt−l with ηt ∼ i.i.d. (0, 1) .

Thus,

Cov
(
u∗t−i, v

∗
t−j
)

=
∞∑
k=0

α0k

∞∑
l=0

β0lE(ηt−i−kηt−j−l)

=
∞∑
k=0

α0kβ0,k+i−j,

and we can conclude that

lim
T→∞

(T − p)−1Cov
(

T−s∑
t=r+1

∂

∂φ
gt (θ0) ,

T−s∑
t=r+1

∂

∂ϕ
gt (θ0)

)
= ΓU∗V ∗ .

We have thus shown that the covariance matrix of the score of (φ, ϕ) evaluated at the

true parameter value and divided by (T − p) converges to Σ.

The score of (σ, λ) is i.i.d. and, by condition (A7), has zero mean and finite second

moments. The definitions show that its covariance matrix equals that of the score of

the parameter (αp+1, θ) in Andrews et al. (2006). Thus, if θ2 = (σ, λ)

(T − p)−1Cov
(

T−s∑
t=r+1

∂

∂θ2
gt (θ0) ,

T−s∑
t=r+1

∂

∂θ2
gt (θ0)

)
= Ω.

Using the definitions it is also straightforward to check that, at true parameter values,

the scores of (φ, ϕ) and (σ, λ) are uncorrelated so that we can conclude that

lim
T→∞

(T − p)−1Cov
(

T−s∑
t=r+1

∂

∂θ
gt (θ0) ,

T−s∑
t=r+1

∂

∂θ
gt (θ0)

)
= diag(Σ,Ω).

The matrix Ω is positive definite by the assumed condition (A6). Because J > 1 (see

condition (A5)) the positive definiteness of Σ can be established in the same way as

Proposition 1 of Breidt et al. (1991).

The asymptotic normality can be proved in the same way as Proposition 2 of

Breidt et al. (1991) by approximating the processes Ut−1 and Vt+1 by long moving

averages and using a standard central limit theorem for finitely dependent stationary

processes.
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Proof of Theorem 2. We shall first present the second partial derivatives of

the function gt (θ). To simplify notation, we write ũt = ut (ϕ) and ṽt = vt (φ) and,

furthermore, Ũt−1 = (ũt−1, ..., ũt−r) and Ṽt+1 = (ṽt+1, ..., ṽt+s). Similarly, ε̃t = ũt −

φ1ũt−1 − · · · − φrũt−r = ṽt − ϕ1ṽt+1 − · · · − ϕsṽt+s will signify εt evaluated at an

arbitrary point in the permissible parameter space, not the true parameter value. We

also set h (x;λ) = f ′ (x;λ) /f (x;λ), so that

h′ (x;λ) =
f ′′ (x;λ)

f (x;λ)
−
(
f ′ (x;λ)

f (x;λ)

)2
,

and let Yt stand for the r × s matrix with elements yt−i+j (i = 1, ..., r, j = 1, ..., s).

By straightforward differentiation (cf. Breidt et al. (1991), p. 187),

∂2gt (θ) /∂φ∂φ′ = σ−2h′
(
σ−1ε̃t;λ

)
Ũt−1Ũ

′
t−1

∂2gt (θ) /∂ϕ∂ϕ′ = σ−2h′
(
σ−1ε̃t;λ

)
Ṽt+1Ṽ

′
t+1

∂2gt (θ) /∂σ2 = 2σ−3h
(
σ−1ε̃t;λ

)
ε̃t + σ−4h′

(
σ−1ε̃t;λ

)
ε̃2t + σ−2

∂2gt (θ) /∂λ∂λ′ =
1

f (σ−1ε̃t;λ)
∂2f

(
σ−1ε̃t;λ

)
/∂λ∂λ′

− 1

f 2 (σ−1ε̃t;λ)

(
∂f
(
σ−1ε̃t;λ

)
/∂λ

) (
∂f
(
σ−1ε̃t;λ

)
/∂λ

)′
∂2gt (θ) /∂φ∂ϕ′ = σ−2h′

(
σ−1ε̃t;λ

)
Ũt−1Ṽ

′
t+1 + σ−1h

(
σ−1ε̃t;λ

)
Yt

∂2gt (θ) /∂φ∂σ = σ−3h′
(
σ−1ε̃t;λ

)
ε̃tŨt−1 + σ−2h

(
σ−1ε̃t;λ

)
Ũt−1

∂2gt (θ) /∂φ∂λ′ = −σ−1Ũt−1∂h
(
σ−1ε̃t;λ

)
/∂λ′

∂2gt (θ) /∂ϕ∂σ = σ−3h′
(
σ−1ε̃t;λ

)
ε̃tṼt+1 + σ−2h

(
σ−1ε̃t;λ

)
Ṽt+1

∂2gt (θ) /∂ϕ∂λ′ = −σ−1Ṽt+1∂h
(
σ−1ε̃t;λ

)
/∂λ′

∂2gt (θ) /∂σ∂λ′ = −σ−2ε̃t∂h
(
σ−1ε̃t;λ

)
/∂λ′.

Using conditions (A2)—(A4) and calculations similar to those in Breidt et al. (1991,

p. 181) it is not diffi cult to check that E [∂2gt (θ0) /∂θ∂θ
′] = −diag (Σ,Ω).
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As in Andrews et al. (2006), we now use the Taylor series expansion

T−s∑
t=r+1

[
gt
(
θ0 + T−1/2c

)
− gt (θ0)

]
= T−1/2

T−s∑
t=r+1

c′
∂gt (θ0)

∂θ
+

1

2
T−1

T−s∑
t=r+1

c′
∂2gt (θ0)

∂θ∂θ′
c

+
1

2
T−1

T−s∑
t=r+1

c′
(
∂2gt (θ∗T (c))

∂θ∂θ′
− ∂2gt (θ0)

∂θ∂θ′

)
c,

where c ∈ Rr+s+1+d and the argument θ∗T (c) in the matrix of second partial derivatives

means that each row is evaluated at an intermediate point lying between θ0 and

T−1/2c. Thus, if ‖·‖ signifies the Euclidean norm we have supc∈K ‖θ∗T (c)− θ0‖ → 0

for any compact set K ⊂ Rr+s+1+d. Moreover, using the dominance conditions in

(A7) and arguments similar to those in Breidt et al. (1991, p. 186-190) it can be

shown that a uniform law of large numbers for stationary ergodic processes applies to

∂2gt(θ)/∂θ∂θ
′ over any small enough compact neighborhood θ0 (see Theorem A.2.2

in White (1994)). Thus, we can conclude that

T−1
T−s∑
t=r+1

c′
(
∂2gt (θ∗T (c))

∂θ∂θ′
− ∂2gt (θ0)

∂θ∂θ′

)
c

p→ 0

for c belonging to any compact subset of Rr+s+1+d. The proof can now be completed

in the same way as the proof of Theorem 1 of Andrews et al. (2006).

Finally, note that the convergence (12) is an immediate consequence of the consis-

tency of the estimator θ̂ obtained from Theorem 2 and the aforementioned fact that

∂2gt(θ)/∂θ∂θ
′ obeys a uniform law of large numbers.
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Figure 1: Rejection rates of the 5%-level LR test of H0 : φ1 = 0.9 for T = 100 (solid

line), T = 200 (long dashes) and T = 500 (dashes). The data are generated from a

model with φ1 = 0.9− c/
√
T .
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Figure 2: Autocorrelation function of the U.S. inflation. The dashed line depicts the

upper bound of the two standard deviation band.
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Figure 3: Quantile-quantile plots of the residuals of the AR(3,0)-N and AR(0,3)-t

models for the U.S. inflation.
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Table 1: Finite-sample properties of the ML estimator.
DGP

φ1= 0.9, ϕ1= 0.9 φ1= 0.9, ϕ1= 0.1 φ1= 0.1, ϕ1= 0.9
T Parameter Mean St.dev. Mean St.dev. Mean St.dev.
100 φ1 0.882 0.048 0.871 0.063 0.108 0.097

ϕ1 0.874 0.051 0.107 0.095 0.869 0.064
200 φ1 0.892 0.032 0.888 0.030 0.101 0.058

ϕ1 0.888 0.033 0.102 0.058 0.888 0.029
500 φ1 0.897 0.019 0.896 0.016 0.100 0.035

ϕ1 0.896 0.019 0.100 0.035 0.896 0.016

The DGP is the AR(1,1) model where the error term follows the t-distribution with
3 degrees of freedom and σ = 0.1. The results are based on 10,000 realizations.

Table 2: Rejection rates of the Wald and likelihood ratio (LR) tests.
DGP

φ1= 0.9, ϕ1= 0.9 φ1= 0.9, ϕ1= 0.1 φ1= 0.1, ϕ1= 0.9
T Parameter Wald test LR test Wald test LR test Wald test LR test
100 φ1 0.081 0.059 0.060 0.075 0.066 0.061

ϕ1 0.091 0.075 0.061 0.055 0.067 0.083
200 φ1 0.074 0.056 0.059 0.062 0.060 0.054

ϕ1 0.075 0.061 0.057 0.052 0.057 0.062
500 φ1 0.063 0.055 0.054 0.055 0.056 0.051

ϕ1 0.064 0.058 0.057 0.053 0.055 0.056

See notes to Table 1. The figures are rejection rates of Wald and LR tests of the null
hypothesis that the parameter equals the true value. The nominal size of the tests is 5%.
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Table 3: Simulation results on model selection by maximizing the likelihood function.

DGP
T φ1= 0.9, ϕ1= 0.9 φ1= 0.9, ϕ1= 0.1 φ1= 0.1, ϕ1= 0.9

AR(2,0) AR(1,1) AR(0,2) AR(2,0) AR(1,1) AR(0,2) AR(2,0) AR(1,1) AR(0,2)
100 1158 8077 765 3684 5472 844 990 5402 3608
200 332 9463 205 2975 6806 219 267 6699 3034
500 4 9991 5 1495 8501 4 4 8538 1458

See notes to Table 1. Each figure indicates the number of times the model in question maximizes the
likelihood function out of 10,000 realizations.

Table 4: Simulation results on model selection by maximizing the likelihood function.

DGP
T φ1= 0.9, ϕ1= 0.9 φ1= 0.9, ϕ1= 0.1 φ1= 0.1, ϕ1= 0.9

AR(2,0) AR(1,1) AR(0,2) AR(2,0) AR(1,1) AR(0,2) AR(2,0) AR(1,1) AR(0,2)
100 765 8077 1158 844 5472 3684 3608 5402 990
200 205 9463 332 219 6806 2975 3034 6699 267
500 5 9991 4 4 8501 1495 1458 8538 4

See notes to Table 1. Each figure indicates the number of times the model in question maximizes the
likelihood function out of 10,000 realizations.
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Table 5: Estimation results of the autoregressive models for the demeaned U.S. infla-
tion.

Model
AR(3,0)-N AR(3,0)-t AR(2,1)-t AR(1,2)-t AR(0,3)-t

φ1 0.270 0.294 0.674 0.947
(0.077) (0.076) (0.116) (0.033)

φ2 0.240 0.272 0.204
(0.079) (0.076) (0.104)

φ3 0.347 0.329
(0.080) (0.070)

ϕ1 —0.321 —0.643 0.259
(0.109) (0.076) (0.081)

ϕ2 —0.321 0.291
(0.068) (0.066)

ϕ3 0.282
(0.066)

σ 2.235 2.301 2.192 2.301
(0.259) (0.252) (0.243) (0.390)

λ 4.472 4.679 4.605 3.451
(1.923) (2.056) (1.962) (1.162)

Log-likelihood —332.075 —328.431 —333.888 —326.208 —323.075

Ljung-Box (4) 0.243 0.342 < 0.001 0.195 0.073
McLeod-Li (4) 0.003 0.056 0.019 0.476 0.246

AR(r, s) denotes the autoregressive model with the rth and sth order polynomials φ(B)
and ϕ(B−1), respectively. N and t refer to Gaussian and t-distributed errors, respectively. The
figures in parentheses are standard errors. Marginal significance levels of the Ljung-Box and
McLeod-Li tests with 4 lags are reported.

Table 6: Root mean square errors of AR(3,0)-N , AR(3,0)-t and AR(0,3)-t models for
the U.S. inflation.

Forecast horizon (quarters)
Model h = 1 h = 2 h = 3 h = 4

AR(3,0)-N 2.121 1.978 2.093 2.270
AR(3,0)-t 2.108 (0.17) 1.973 (0.39) 2.088 (0.52) 2.263 (0.50)
AR(0,3)-t 2.052 (0.24) 1.979 (0.98) 2.042 (0.01) 2.183 (0.01)

The figures are based on an expansive estimation window. The first forecasts
are based on the estimation period ending in 1981:4. The figures in parentheses are
p-values of the Diebodl-Mariano test of equal predictive accuracy compared to the
AR(3,0)-N model.
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