
MPRA
Munich Personal RePEc Archive

A positive theory of cooperative games:
The logit core and its variants

Friedel Bolle and Yves Breitmoser and Philipp E. Otto

EUV Frankfurt (Oder)

19. August 2011

Online at http://mpra.ub.uni-muenchen.de/32918/
MPRA Paper No. 32918, posted 20. August 2011 16:55 UTC

http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/32918/


A positive theory of cooperative games:

The logit core and its variants∗

Friedel Bolle†

EUV Frankfurt (Oder)

Yves Breitmoser

EUV Frankfurt (Oder)

Philipp E. Otto

EUV Frankfurt (Oder)

August 19, 2011

Abstract

This paper proposes two generalization of the core and evaluates them on ex-

perimental data of assignment games (workers and firms negotiate wages and

matching). The generalizations proposed allow for social utility components (e.g.

altruism) and random utility components (e.g. logistic perturbations). These gen-

eralizations are well-established in analyses of non-cooperative games, and they

prove to be both descriptive and predictive in the assignment games analyzed

here. The “logit core” allows us to define a “stochastically more stable” rela-

tion on the outcome set, which has intuitive implications, and it fits better than

alternative approaches such as random behavior cores and regression modeling.
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1 Introduction

In this paper, we consider the assignment problem originally defined by Koopmans

and Beckmann (1957) and Shapley and Shubik (1972). There are sellers and buyers

of indivisible goods (e.g. firms and workers in labor markets) who generate a surplus

when they match. A worker (seller) can match with only one firm (buyer) and vice

versa. Firms and workers can share the surplus they generate however they will, i.e.

utility is transferable within matches. The latter assumption contrasts with other mod-

els of matching markets, e.g. between students and universities or men and women,

where utility is non-transferable (following Gale and Shapley, 1962). The resulting

“assignment game” is the cooperative game based on the assignment problem where

firms and workers negotiate overall matching and individual surplus allocation.

Theoretically, the assignment game is well-understood. The canonical solution

concept is the core and it has many “nice” properties. It is non-empty and character-

ized as the solution set of a linear programming problem (Koopmans and Beckmann,

1957), it is a polytope with the form of a 45◦-lattice (Quint, 1991a), it satisfies the

so-called CoMa property (Hamers et al., 2002), it has been axiomatized (Toda, 2005),

and there exist mechanisms implementing core points (Pérez-Castrillo and Sotomayor,

2002; Halaburda, 2010). Some of these properties do not generalize to m-sided mar-

kets (Quint, 1991b), but they tend to generalize to one-sided matching (Quint, 1996)

and multiple-partners games (Sotomayor, 1999), and overall, the assignment game is

considered a standard model of labor markets (Crawford and Knoer, 1981; Kelso Jr

and Crawford, 1982) and other markets with indivisible goods (Roth, 1985).

Empirically, however, there are various open questions. Most existing experi-

mental research focuses on the efficiencies of mechanisms for matching markets (see

Olson and Porter, 1994; Nalbantian and Schotter, 1995, for mechanisms with transfers,

and Kagel and Roth, 2000; Chen and Sönmez, 2002, 2006; Pais and Pintér, 2008, for

mechanisms without transfers), which is important to evaluate mechanisms and the un-

derlying assumptions. By their very design, however, these experiments cannot inform

us on the empirical relevance of the core in the standard worker-firm problem. The

only experimental analyses of assignment games without mechanisms, where negotia-

tions and rematching are unrestricted, seem to be Tenbrunsel et al. (1999) and Otto and
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Bolle (2011). Their main findings are that the core fits comparably poorly, as many of

the experimental observations are not in the core, and that the fit can be improved by

weakening the assumption of rationality on the side of the players. In a first step of

weakening rationality, the “equal division core” proposed by Selten (1972) fits better

than the core,1 and secondly, the even simpler “equal split solution” (where players are

satisfied if their payoff does not differ too much from the equal split of the productivity

in their current match) improves upon the equal division core. Thus, subjects do not

seem to consider the possibility of alternative matches at all.

These findings relate loosely to the level-k theory of play in non-cooperative

games (Stahl and Wilson, 1995; Camerer et al., 2004; Costa-Gomes et al., 2009).

There, level-1 players believe the opponents are non-strategic, level-2 believe the op-

ponents are level 1, and so on. In assignment games, the equal split solution assumes

that alternative matches are impossible, and the equal division core assumes that the

equal split results in alternative matches. These concepts relate to level 1 and level

2 in non-cooperative games, and their empirical fit raises the question if another con-

cept that proved highly relevant in non-cooperative games, social preferences, would

affect reasoning in cooperative games, too. This seems intuitive, since emotions such

as altruism or inequity aversion are widespread, and the evidence for their existence

in non-cooperative games is overwhelming (for a survey, see e.g. Camerer, 2003), but

for cooperative games, this explanation has not yet been explored. We will explore it

and provide evidence that subjects seem to have interdependent preferences, namely

“spiteful” preferences as a result of which they bargain particularly aggressively.

The main purpose of our paper concerns the analysis of a more fundamental con-

cern, however. Why do subjects deviate from the core and its variants in the first place?

Understanding the sources of deviations is important for various reasons. First, an ex-

planation of deviations is required to predict the overall distribution of outcomes, i.e.

to apply the model empirically. Second, a structurally complete econometric model of

play in cooperative games enables us to apply techniques such as maximum likelihood

1Formal definitions follow below. Briefly, an outcome is in the core if no worker-firm pair can
rematch profitably by allocating their surplus in any way. The equal-division core weakens that matches
be stable with respect to any alternative surplus allocation, by requiring stability only with respect to the
equal division of surpluses in alternative matches. Thus, subjects do not have to be able to evaluate all
alternative allocations.
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estimation to obtain efficient estimates of model parameters (such as level of reason-

ing or altruism coefficients). Third, it allows us to define a gradual measure for the

stability of outcomes, and thus to generalize the binary measure currently used. This

yields a “stochastically more stable” relation between outcomes, which allows us to

investigate if allocations in the interior of the core are more stable than those close to

its boundary, and to define entirely new concepts merging ideas from those discussed

above (as we do below). Finally, the sources of deviations from rationality in choice

under risk and in non-cooperative games have been analyzed in much detail (see e.g.

Wilcox, 2008, 2011, Conte et al., 2011, for choice under risk, and McKelvey and Pal-

frey, 1995, Weizsäcker, 2003, Goeree and Holt, 2004, for non-cooperative games), and

thus a corresponding analysis of cooperative games clarifies if there are fundamen-

tal differences between non-cooperative games and cooperative games at level of say

utility functions and rationality.

Our results can be summarized as follows. We find that the source of deviations

from the core is best modeled as a logistic random utility component (the resulting

logit core relates naturally to the logit equilibrium defined by McKelvey and Palfrey,

1995). The random utility models fit highly significantly better than a random behavior

model, where the outcome is in the core with probability 1− ε and outside of it with

probability ε, and it also fits better than regression modeling. We determine both the

descriptive accuracy and the predictive accuracy, similar to Hey et al. (2010) for choice

under risk, and show that the random utility models fit robustly. Further, we find

that preferences have spiteful components also after accounting for random utility, i.e.

subjects bargaining very competitively. The best fitting concept (both descriptively and

predictively) unifies the equal division core (level 2) and the equal split solution (level

1). These result can be applied readily in further experimental and empirical analyses.

Section 2 defines assignment games and the core, and it describes the experi-

ment. Section 3 reviews the basic experimental results (originally described in Otto

and Bolle, 2011). Section 4 introduces social preferences into the cooperative game

and Section 5 examines their fit. Section 6 introduces random utility into the coopera-

tive game, and Section 7 discusses the model fit and estimates. Section 8 concludes.
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2 Basic definitions and experimental design

Assignment games and the core

Let W be a finite, non-empty set of “workers” and F be a finite, non-empty set of

“firms.” The productivity of the potential matches (w, f )∈W×F between workers and

firms is denoted as C ∈ RW×F
+ , i.e. Cw, f is the value if w and f match. The allocation

of their value Cw, f is to be negotiated between w and f . Players that are unmatched

obtain zero payoff. The outcome of an assignment game is a payoff profile (xi)i∈W∪F .

The core contains all outcomes where no subset of players can increase their pay-

offs by rematching. An outcome (xi) ∈ RN
+, N =W ∪F , is in the core if (and only if)

it is feasible and xw + x f ≥Cw, f for all w ∈W, f ∈ F . All core outcomes are socially

efficient, i.e. they maximize the productivity aggregated over all matches. Koopmans

and Beckmann (1957) and Shapley and Shubik (1972) show that the core is gener-

ally non-empty (in assignment games) and that transfers between matches are nei-

ther made nor required to sustain core allocations.2 Solymosi and Raghavan (2001)

provide necessary and sufficient conditions for the core to be stable in the sense of

von Neumann-Morgenstern, and these conditions will be satisfied in our experimental

games. Driessen (1998) shows that the kernel is included in the core of assignment

games, and Núñez and Rafels (2003) derive a similar result for the τ-value.

The treatments

All of the games in our experiment are 2× 2 assignment games, and the productivity

matrices for all the treatments T 1 . . .T 6 are provided in Table 1. In all treatments,

C1,1 ≤ C1,2 ≤ C2,1 < C2,2 applies. There are assignment games that cannot be rear-

ranged (by relabeling workers and firms) to satisfy this constraint.3 In the present

paper we focus on this class of assignment games, as it allows us to distinguish be-

tween players that are relatively strong (W2 and F2) and relatively weak (W1 and F1).

2This is not the case for most alternative solution concepts in assignment games. For example,
nucleolus, Shapley Value, and Stable Sets (the von Neumann-Morgenstern Solution) of the Assignment
Game require the possibility of transfers between matches.

3Alternatively, either C1,2 <C1,1 <C2,1 <C2,2 or C1,1 <C1,2 <C2,2 <C2,1 may apply.
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Table 1: Productivities of matches in the six experimental treatments

T 1 T 2 T 3 T 4 T 5 T 6
C1,1 C1,2
C2,1 C2,2

280 400
400 640

280 280
520 640

280 460
460 640

160 400
520 640

160 460
460 640

280 400
520 640

Note: Cw, f is the productivity of the match (w, f )∈W×F . The pairings in the socially efficient matching
are underlined if unique. In T 3 and T 6, both matchings are efficient.

For, C1,1 <C2,1 and C1,2 <C2,2 implies that W2 always has a better bargaining position

than W1, and similarly C1,1 ≤C1,2 and C2,1 <C2,2 implies that F2 is stronger than F1.

In 2× 2 games, the players can match in either of two ways. The matching

{(W1,F1),(W2,F2)
}

will be called “A-matching,” and {(W1,F2),(W2,F1)}will be called

“B-matching.” In T 1 and T 2, A-matching is efficient, in T 4 and T 5, B-matching is ef-

ficient, and in T 3 and T 6, both matchings are efficient. In the latter case, the core is

degenerate, i.e. it has zero volume in the outcome space. Otherwise, its volume is pos-

itive. For each of these efficiency conditions, we distinguish whether the productivity

matrix is symmetric (C1,2 =C2,1) or asymmetric (C1,2 <C2,1). Thus, we obtain a 3×2

experimental design in aggregate and cover all relevant scenarios.

The symmetry condition C1,2 = C2,1 is important, as it induces symmetry be-

tween W1 and F1 on the one hand and W2 and F2 on the other. Alternatively, if these

firms match, i.e. if {(W1,F1),(W2,F2)
}

, under asymmetry C1,2 < C2,1, then the possi-

ble blocking coalition (W2,F1) has higher productivity than (W1,F2), and thus W1 is

weaker than F1 and F2 is weaker than W2. In this case, unequal splits of the produc-

tivities C1,1 and C2,2 are reasonable. In the corresponding treatment T 2, where both

asymmetry and efficiency of A-matching obtains, the equal split of incomes is not in

the core. Thus, the experiment is designed to distinguish equal splits of incomes and

core allocations.

Logistics

The experiment consists of 28 sessions, and in each session, eight subjects played the

six assignment games defined above in random order. For each game, the subjects

were randomly divided into two groups of 2× 2 subjects each (= two markets). The

subjects then negotiated matching and surplus allocation, for up to ten minutes. Dur-
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ing these ten minutes, preliminary contracts were concluded and superseded by new

preliminary contracts. Two players with a standing contract between them were not

able to renegotiate their contract. New contracts were negotiable only with the other

potential partner. At the end of the game, the standing contracts became binding. The

subjects were paid according to the sum of their earnings in all of their final contracts.

The order of the treatments and the individual allocation to positions was random-

ized over the sessions. Every subject was allocated to a worker position three times

and to a firm position three times. No subject interacted with the same co-participant

in more than three of the six games. Every subject assumed each position W1, W2, F1,

and F2 at least once. No subject participated in more than one experiment. In total, 224

subjects took part in the study. A session lasted about 1.5 hours, in all settings, and

the average payment was e 13.41 in Class, e 11.75 in Lab, and e 11.48 in Lab-info.

Payments were calculated purely from the negotiated contracts and no show-up fee

was paid. The experimental instructions are available as supplementary material.

Finally, to examine whether the negotiation outcomes (and the underlying fair-

ness benchmarks) depend on the circumstances of the negotiations, we varied these

circumstances, i.e. setting (classroom versus laboratory) and the information of the

subjects (private versus complete). If the outcomes depend significantly on these “cir-

cumstances,” then a cooperative solution concept such as the core (which ignores the

circumstances by definition) would be infeasible. The circumstances considered in the

experiment are as follows.

• “Class”: 10 sessions where subjects negotiate face to face with explicit infor-

mation only about the productivities of their own matches.

• “Lab”: 10 sessions where subjects negotiate anonymously via computer termi-

nals with explicit information only about the productivities of their own matches.

• “Lab-info”: 8 sessions where subjects negotiate anonymously via computer ter-

minals with explicit information about the productivities of all possible matches.

In the laboratory, the subjects negotiated via computer terminals by making and

accepting offers from the other players in specific boxes on the screen. In the class-

room setting, the firms were assigned specific tables and workers approached them to
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Table 2: Average wages (w1,w2) in the various treatments

T 1 T 2 T 3 T 4 T 5 T 6
Li A (142,307) (153,348) (140,350) (86,337) (67,362) (133,375)

B (313,360) (118,237) (220,258) (120,297) (143,266) (203,347)
L A (131,340) (133,327) (150,340) (72,326) (85,331) (133,334)

B (188,222) (180,270) (207,263) (201,347) (145,245) (176,293)
C A (160,328) (143,322) (145,318) (80,332) (83,303) (149,329)

B (188,239) (158,319) (199,249) (167,331) (200,299) (160,324)
Legend: Li =̂ Lab-info, L =̂ Lab, C =̂ Class; A =̂ A-matching, B =̂ B-matching

negotiate terms. In Lab-info the whole payoff matrix was provided for each treatment.

In the two other cases (Class and Lab) only the productivities of the matches involving

oneself were shown.

3 Basic results

The average wages negotiated in the various conditions are reported in Table 2 and

Figure 1 plots all outcomes in relation to the core. A descriptive analysis of the ex-

perimental data is provided in Otto and Bolle (2011) and therefore this part is kept

brief here. Otto and Bolle discuss the data in relation to basic bargaining theories such

as the core, ε-core, Nash bargaining, Equal Split, ε-Equal Split, and Selten’s (1972)

Equal Share analysis. Their main finding is that the ε-Equal Split fits better than the

other theories in explaining the results.

If we require stability as underlying the core or related concepts and assume that

the negotiation process efficiently reveals productivities of all matches, then the three

basic treatment designs Class, Lab, and Lab-info should be payoff equivalent. This

hypothesis is confirmed in the sense that equality is not rejected significantly.4 That

is, the aspects of the game that the core neglects by definition (such as information

and implementation) are empirically insignificant, and hence a cooperative approach

4In pairwise t-tests, the only significant difference between the means of wages (at α = .05) can
be found between the wages of W2 in Lab and Class in treatment T 5 under B-matching (245 6= 299 at
α = .05). Only the variances of the wages differ slightly. They are highest in Lab-info (with overall
standard deviation of w1 being σ̂w1 = 72.9), intermediate in Lab (σ̂w1 = 63.6) and lowest in Class
(σ̂w1 = 48.1).
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Figure 1: The experimental data in relation to the core. (Note that if B-matching is
inefficient, then the core predicts A-matching, and vice versa.)
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is applicable indeed.

Overall, incomplete matching has been observed in 12% of the games. Incomplete

matching is not stable unless we allow for highly spiteful preferences. The occasional

incompletions resulted from last-second rematching under the 10-minute time line for

the negotiations. This implies that the incomplete matches are likely not stable on their

own. We will therefore focus on explaining the results of the 88% of the negotiations

that resulted in complete (and stable) matching.

4 The generalized core and its variants

The empirical deviations of the observations from the core seem to be systematic,

as the observations are not symmetric around the core (see Figure 1). Two possible

explanations for such systematic deviations are that subjects have social preferences

and that the stability requirements of the core are too strong or too computationally

complex. We begin with formalizing social preferences.

By our experimental design, the players do not know the payoff allocation be-

tween the players in the other match. They may try to infer their payoffs during ne-

gotiations, but this inference will necessarily be incomplete. The following general-

ization therefore assumes that i’s utility depends on the values that he can explicitly

observe—the own payoff, the partner’s payoff, and the partner’s identity—but further

generalization requires only minor adaption of the notation. To define the utility for-

mally, define the set of players N :=W ∪F , and additionally Ni = F ∪{ /0} if i ∈W as

well as Ni =W ∪{ /0} if i ∈ F . Thus, Ni contains the potential partners of i, where “ /0”

indicates that i remains single. The utility of i ∈ N is Ui(xi,x j, j) : R2
+×Ni→ R. We

limit altruism and spite in Ui as follows.

Assumption 4.1. For all i ∈ N and j ∈ Ni,

(i) ∂Ui/∂xi−∂Ui/∂x j > 0,

(ii) ∂Ui/∂xi +∂Ui/∂x j > 0,

(iii) if j 6= /0, then Ui(Ci, j/2,Ci, j/2, j)>Ui(0,0, /0).
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It implies that (i) all players always prefer to get an additional dollar even if it need

be taken from the partner, (ii) they prefer an additional dollar also if the partner gets an

additional dollar at the same time, (iii) there is at least one way to share the surplus in

any match that both players prefer to staying single (namely to share it equally). That

is, players do not forego money because of excessive altruism or wish to waste money

because of excessive spite. As result, rational players will share the whole surplus

generated within their match and staying single cannot be stable.

The definition of the core for such generalized utilities requires a different formu-

lation than the core for payoff maximizing players, but it remains technically straight-

forward. On the one hand, the stability of any payoff allocation depends on the match-

ing that applies, since utilities depend on the matching. Hence, the definition of “out-

come” need be extended to also include the matching. Define a matching m as a func-

tion m : N→ N ∪{ /0} satisfying, for all i ∈ N, m(i) ∈ Ni and m(i) 6= /0⇒ m(m(i)) = i.

Let M be the set of all these matchings. The set of outcomes can now be defined as

X =
{
(x,m) ∈ RN

+×M | ∀i ∈ N : m(i) = /0⇒ xi = 0 and

∀w ∈W : m(w) 6= /0⇒ xw + xm(w) ≤Cw,m(w)
}
.

On the other hand, when defining stability under generalized utilities, we need to ex-

plicitly take into account that it may be preferable to be single than to share the surplus

generated by a match in a highly asymmetric way. For, Assumption 4.1 only rules out

sharing the surplus equally is preferable to remaining single, but not that every way of

sharing the surplus is. To generalize stability correspondingly, let Cw, /0 =C/0, f = 0 for

all w, f denote the productivity of single players, and let U/0 = 0 denote the utility of

the dummy player “ /0” who represents the partner of an unmatched player.

Definition 4.2 (Core for generalized utility). The GU core is the set of outcomes

(x|m) ∈ X such that, for all i ∈ N, all j ∈ Ni, and all x′ ∈ [0,Ci, j],

Ui(xi,xm(i),m(i))≥Ui(x′,Ci, j− x′, j) or U j(x j,xm( j),m( j))≥U j(Ci, j− x′,x′, i).

The literature (including Otto and Bolle, 2011) have considered two solution con-

cepts that weaken the stability requirements underlying the core. The equal-division
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core (Selten, 1972) relaxes the requirement that if a payoff allocation between two

players exists such that both of them benefit by coalescing, then the players will find it.

Clearly, finding such payoff allocations is trivial if players maximize payoffs, but for

generalized utiltiy, it is not, and hence, weakening the requirement may be reasonable.

Definition 4.3 (Equal-division core). The ED core is the set of outcomes (x|m) ∈ X
such that, for all i ∈ N, all j ∈ Ni, and x′ =Ci, j/2,

Ui(xi,xm(i),m(i))≥Ui(x′,Ci, j− x′, j) or U j(x j,xm( j),m( j))≥U j(Ci, j− x′,x′, i).

An even weaker requirement is the “equal split” solution concept, which Otto and

Bolle (2011) found to be most descriptive in their analysis. The idea is that players may

not try to predict possible payoff allocations in alternative matches at all, arguably due

to the uncertainty underlying the necessary negotiations. These players would evaluate

the current payoff allocation against their utility if the surplus would be split equally,

and they are content if the deviation is not large. We refer to the respective solution set

for social preferences as the equality square.

Definition 4.4 (Equality square). Fix γ > 0. The Eq-square is the set of outcomes

(x|m) ∈ X such that for all i ∈ N, Ui(xi,xm(i),m(i))≥Ui(Ci,m(i)/2,Ci,m(i)/2,m(i))− γ.

Note that both, equal-division core and equality square are defined for the gener-

alized utility function. This allows us, in the next section, to also evaluate the combi-

nation of social preferences and weaker stability requirements.

5 Evaluation of the core and its variants

The core and its variants yield set “predictions” in the sense that the outcome is pre-

dicted to be in a set. For the purpose of actual predictions, this approach is inapplicable,

as there will be observations outside the core unless the core includes all observations.

On the one hand, this motivates the definition of random utility cores further below,

but on the other hand, it implies that we cannot use established approaches such as

maximum likelihood or least squares to evaluate the validity of the core. Maximum

likelihood cannot be used, as the aggregate likelihood of all variants will be zero, and
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least squares between say core area and observations cannot be used, as we often ob-

serve say B-matching where the core predicts A-matching.5 A reasonable measure of

the distance between A-matching and B-matching is not available. An appropriate mea-

sure of the goodness of fit in this context is Selten’s score (for original and axiomatic

definitions, see Selten, 1972, 1991, and for a critical discussion, see Hey, 1998).

Definition 5.1 (Selten’s score). Selten’s score of a solution concept is the difference

between (i) the relative frequency of observations compatible with the concept and (ii)

the share of internally Pareto efficient outcomes compatible with the concept.

Definition 5.2 (Internal Pareto efficiency). An outcome (x,m) ∈X is internally Pareto

efficient if m(i) 6= /0 and xi + xm(i) =Ci,m(i) for all i ∈ N.

The model parameters are estimated by maximizing Selten’s score jointly over

all parameters, using a robust, gradient free algorithm for the initial approach to the

maximum, a Newton method to ensure convergence, and various starting values to

verify globality of the maximum.

Further, as the concepts discussed here are novel, we follow recent analyses of

choice under risk, e.g. Wilcox (2008) and Hey et al. (2010), and determine both their

“descriptive validity” and “predictive validity.” Thus, we can clarify to which degree

possibly superior fit is due to overfitting. Our approach combines cross validation

(Burman, 1989; Zhang, 1993) with non-random holdout samples (Keane and Wolpin,

2007). That is, we fit the model to the observations from four of the six treatments,

evaluate its fit on the observations from the remaining two treatments, and rotate so

that all observations are used in the evaluation stage once. The aggregate Selten score

out-of-sample will be our measure of predictive accuracy.

Table 3 lists the Selten scores for six variants of the core, namely all combinations

of the three core variants (core, ED core, and Eq-square) as defined above and two

utility functions, egoism and linear altruism/spite. The altruistic utility function is

defined as Ui(xi,x j, j) = xi +αx j + βCi j, where α and β are free parameters and Ci j

is the sum of wages (i.e. the productivity) in the other match. In case i is single, i.e.

j = /0, the utility is Ui(0,0, /0) = 0+β ·max{C2,1,C2,2}. Table 3b provides the results of

5Recall that as defined in Section 2, the matching {(W1,F1),(W2,F2)
}

is called “A-matching” and
{(W1,F2),(W2,F1)} is called “B-matching.”
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Table 3: Goodness-of-fit measures of the basic structural models

(a) Selten scores (higher is better), descriptively and predictively

Descriptive validity Predictive validity
Egoism Altruism Egoism Altruism

Eq-Square 0.575 0.612 0.574 0.586
ED Core 0.312 0.512 0.312 0.509
Core 0.122 0.276 0.122 0.253

(b) Non-parametric tests of difference of the Selten scores – out-of-sample

Model 2
Model 1 S-Score Eq-

Square,
Ego

ED-
Core,
Ego

Core,
Ego

Eq-
Square,
Altr

ED-
Core,
Altr

Core,
Altr

Eq-Square, Ego 0.57 >>> >>> = = >>>
ED-Core, Ego 0.31 <<< >>> <<< <<< >
Core, Ego 0.12 <<< <<< <<< <<< <<
Eq-Square, Altr 0.59 = >>> >>> > >>>
ED-Core, Altr 0.51 = >>> >>> < >>>
Core, Altr 0.25 <<< < >> <<< <<<

Note: Table 3b report the results of two-sided tests of “model 1” (the row model) against
“model 2” (the column model), using Wilcoxon matched-pairs tests of the Selten scores for the
28 sessions. The relation signs >>>, >>, > indicate that H0 is rejected at 0.001, 0.02, 0.1
level (respectively), here in favor of model 1, the signs <<<, <<, < indicate rejection of H0
in favor of model 2, and = indicates insignificance.

significance tests on the Selten scores. Further analysis confirmed that other functional

forms of utility, Fehr-Schmidt inequity aversion and CES utilities, do not improve

upon linear altruism in this context (see the supplementary material). The main results

concerning model validity (Tables 3 and 3b) an can be summarized as follows.

Result 5.3. The best fitting models are the equality square and the equal-division core

for altruistic preferences. These models are compatible with approximately 80% of

the observations but only with 25% of the possible outcomes, and they fit significantly

better than all other models (according to Selten’s score, at α = .01).

In addition, Figure 2 shows that the equality square fits the data adequately, and

in particular, in relation to Figure 1 it illustrates the improvement gained on the core.

These results suggest that the subjects do not reason as deeply as assumed by the core

solution concept. They seem to evaluate outcomes without considering all possible

14



Figure 2: Contour plots for the equality square (egoistic preferences)
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allocations of wages in alternative matches. At most, they seem to consider the alter-

native match under the simplifying assumption that wages will be split equally, as in

the equal division core, but the even simpler equality square seems to provide a more

robust explanation at this point (since it works similarly well for both egoistic and

altruistic preferences).

However, all of these concepts are “incomplete” in that none of them is compatible

with all observations made in the experiment. This raises the question of how the

deviations can be explained. Further, the observations compatible with the Eq-square

do not seem to be distributed uniformly on it, and the incompatible ones do not seem to

be uniformly outside it. Rather, the compatible observations tend to be in the center of

the Eq-square, and the incompatible ones tend to be near it. An explanation for both,

the occurence of deviations in the first place and this kind of structure of observations,

is provided by the random utility concept introduced in the next section.

6 Random utility core

Simple bargaining games

Initially, consider a simple bargaining problem. There are two players negotiating

the allocation of a cake valued C > 0. We define the random utility bargaining prob-

lem by adding a random utility component to the outside option. The distribution of

the random component will be logistic in our analysis, i.e. the difference of two i.i.d.

extreme-value distributed random variables, which corresponds closely with the ap-

proach taken in non-cooperative game theory (see e.g. McKelvey and Palfrey, 1995,

Goeree and Holt, 1999, Weizsäcker, 2003, Turocy, 2005). Illustrations follow shortly.

Definition 6.1 (Random utility bargaining game). The set of players is N = {1,2}, the

set of possible outcomes is X= {x∈R2
+ | x1+x2≤C} for some C > 0, and the players’

disagreement payoffs are x1,x2 ∈ [0,C] with x1 + x2 < C. For both i ∈ N, utilities are

ui(x) = xi for all x∈X and ũi(x) = xi+εi for the outside option. The distributions of ε1

and ε2 are continuous, stochastically independent, and characterized by the cumulative

distribution functions F1 and F2, respectively.
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Figure 3: Stochastic stability in bargaining games for varying precisions λ
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Note: The cake size is C = 400 and the outside options are
(
x1,x2

)
= (120,240). The plotted functions

are Pr(x1 ≥ x1 + ε1 and x2 ≥ x2 + ε2), ε1,ε2 being i.i.d. logistic, as functions of x1 with x2 =C− x1.

In the unperturbed game, the core Xc⊆X is the set of individually rational, Pareto

efficient allocations.

XC =
{

x ∈ X | xi ≥ xi ∧ x j ≥ x j ∧ xi + x j =C
}

In this case of zero variance, it is appropriate to say that allocation x ∈ X is stable if it

is in the core. If utilities are random, however, stability is stochastic. The probability

that player i is content with x is Pr(xi ≥ xi + εi). For example, if the utility perturba-

tions εi have logistic distribution with scale parameter s = 1/λ, then i is content with

probability 1/
[
1+ exp(λ(xi− xi))

]
.

Figure 3 plots the probabilities that both players are content with an outcome

(x1,x2), assuming Pareto efficiency (i.e. x2 = C− x1) and logistic perturbations. This

probability will be called the stochastic stability of x,

π(x) = Pr(xi ≥ xi + εi) ·Pr(x j ≥ x j + ε j). (1)
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We say that an outcome x is stochastically more stable than x′ if π(x)> π(x′).

This ordering of outcomes generalizes deterministic stability in an intuitive way.

As the precision λ tends to infinity, stochastic stability converges pointwise to the

stability indicator 1x∈XC of the unperturbed game. The stochastically most stable

allocation is generally in the interior of the core of the unperturbed game, and if

perturbations are identically distributed for the players, the stochastically most sta-

ble outcome is the Nash solution. This is easy to see if perturbations are logistic

Fi(r) = 1/
(
1+ exp(−λir)

)
for all r ∈ R and i ∈ N. In this case, the stochastic sta-

bility π(x) =
(
1+ e−λi(xi−xi)

)−1 ∗
(
1+ e−λ j(1−xi−x j)

)−1 is maximized if

1+ eλi(xi−xi)

1+ eλ j(1−xi−x j)
=

λi

λ j
.

If errors are i.i.d. logistic, then λi = λ j and the most stable outcome is the Nash bargain-

ing solution. The following result establishes equivalence between the Nash solution

and the stochastically most stable outcome for a general class of distributions.

Lemma 6.2. Assume the random utility components of all players are i.i.d. with cumu-

lative density F. If F is symmetric, F(x) = 1−F(−x), and has quasi-concave density,

then the unique maximizer of π(x) is xi = (xi +C− x j)/2 and x j = (x j +C− xi)/2.

Proof. The first-order condition for maxxi F(xi− xi)∗F(C− xi− x j) yields

f (xi− xi)/ f (C− xi− x j) = F(xi− xi)/F(C− xi− x j).

The claimed solution implies xi−xi =C−xi−x j =: x′ and hence satisfies the condition.

Next, xi+x j <C implies x′ = (C−xi−x j)/2 > 0. The second-order condition (for the

claimed solution to be a maximum) is 2 f ′(x′)F(x′) < 2 f (x′) f (x′). By symmetry and

quasi-concavity, x′ > 0 implies f ′(x′)≤ 0; since all other terms are positive, the condi-

tion holds. Finally, consider the case xi−xi 6= x′, and without loss, assume xi−xi > x′.

Hence, C−xi−x j < x′. By symmetry and quasi-concavity, f (xi−xi)≤ f (C−xi−x j),

and by monotonicity, F(xi− xi) > F(C− xi− x j); hence, the first-order condition is

violated, which proves uniqueness.

Further, outcomes close to the Nash solution are stochastically more stable than
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distant outcomes, outcomes in the core are stochastically more stable than outcomes

outside of it, and outcomes close to the core are stochastically more stable than out-

comes distant to the core. As these are exactly the characteristics of the data described

above that we wish to capture, we will now define a solution concept where the proba-

bility that outcome x results is proportional to its stochastic stability. Specifically, the

random utility core is the probability density fC ∈ ∆
(
PF(X)

)
on the Pareto frontier that

is proportional to the above measure of stochastic stability.

fC(x) = π(x)/
∫

PF(X)
π
(
x̃
)
dx̃ (2)

As stated, the integration is along the Pareto frontier defined as

PF(X) = {x ∈ X | x≥ x′ ∀x′ ∈ X}. (3)

Obviously, Pareto efficiency could be relaxed as well, similar to the way individual

rationality has been relaxed. We have not done so here, because allocating the whole

cake does not seem to be an issue in bargaining. The subjects in our experiment manage

to solve this computationally simple task in almost all cases. The deviations from the

core are therefore due to some other form of noise, arguably due to randomness of

utility as defined above. The following establishes a simple axiomatic foundation of

the random utility core.

Proposition 6.3. For bargaining games (Def. 6.1), the following statements are equiv-

alent.

1. fC satisfies Eq. (2) for π(x) = F1(x1− x1)∗F2(x2− x2).

2. fC satisfies the following conditions.

A1 Continuity and Pareto efficiency: fC is the density of a continuous distribu-

tion on PF(X).

A2 Proportional stability: fC(x) is proportional to the probability that all play-

ers prefer x to their outside option, i.e. to Pr
(
ui(x)≥ ũi(x) ∀i

)
.

Proof. 2.⇒ 1.: By the definition of the game, ε1 and ε2 are independent, and thus

Pr
(
ui(x) ≥ ũi(x) ∀i

)
= Pr

(
u1(x) ≥ ũ1(x)

)
· Pr
(
u2(x) ≥ ũ2(x)

)
=: π(x). A2 implies
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fC(x) = a ·π(x) for some a > 0. Finally, since fC is a density with support only on the

Pareto frontier (A1), a = 1/
∫

PF(X)π(x)dx. 1.⇒ 2. can be verified easily.

Note that A2 implies independence of irrelevant alternatives (IIA), i.e. fC(x′|X′) ·
fC(x|X′′) = fC(x′|X′′) · fC(x|X′) for all x,x′ ∈X′ and all measurable X′⊆X′′⊆ PF(X).

Assignment games

Assignment games generalize bargaining games by endogenizing the outside options.

For every player, each partner other than his current one represents an outside option,

while the values of these outside options depend on the payoff allocations negotiated

in their matches. The more my prospective partners in their current matches make,

the less the outside options are worth to me (for further discussion, see e.g. Otto and

Bolle, 2011). Aside from taking these changes into account, the above definition of the

random utility core generalizes immediately. In particular, we maintain the assumption

that the utilities of the outside options are random (e.g. logistic in the logit core). The

notation on assignment games introduced in Section 4 is maintained.

Definition 6.4 (Random utility assignment game). For each outcome (x,m) ∈ X, the

utility of i ∈ N is ui(x,m) = Ui(xi,xm(i),m(i)). The utility of the blocking coalition

(i, j) with wages (xi,x j) ∈ R2
+ is ũi(xi, j) = Ui(xi,x j, j) + εi, j, and the utility of the

outside option is ui(xi, /0) = Ui(0,0, /0)+ εi, /0. The distributions of εi, j are continuouos

and stochastically independent over all i ∈ N and j ∈ Ni.

As before, we define stochastic stability as the probability that the allocation is sta-

ble, i.e. that no pair of players can rematch profitably. In the random utility assignment

game, the stochastic stability of outcome (x,m) therefore is

π(x,m) = Pr
(
∀i ∈ N,∀ j ∈ Ni,∀x′ ∈ [0,Ci, j] :

ui(x,m)≥ ũi(x′, j) or u j(x,m)≥ ũ j(Ci, j− x′, i)
)
, (4)
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and exploiting all independence assumptions in Def. 6.4, it simplifies to

π(x,m) = ∏
i∈N

∏
j∈Ni

∫
R

∫
R

fi, j(εi, j) f j,i(ε j,i) 1
{
∀x′ ∈ [0,Ci, j] :

Ui(xi,xm(i),m(i))≥Ui(x′,Ci, j− x′, j)+ εi, j or

Ui(x j,xm( j),m( j))≥U j(Ci, j− x′,x′, i)+ ε j,i
}

dεi, jdε j,i. (5)

Intuitively, at the beginning of the assignment game, the utility perturbations (εi, j) are

drawn. One may think of εi, j as a measure of the “chemistry” between i and j (in the

eyes of i). The players then play the assignment game and evaluate possible allocations

by comparing them to the outside options plus the utility perturbations. The stochastic

stability is the ex-ante probability that a given allocation will be stable.

The random utility core is again defined as the density of continuous distribution

on the Pareto frontier. In general, we assume that players will be able match completely

and to allocate the whole productivity of their respective match,6 i.e. that outcomes

satisfy internal Pareto efficiency as defined in Def. 5.2.

Define IPF(X′) as the set of internally Pareto efficient allocations in X′ ⊆ X, and

M∗ ⊂M as the set of complete matchings. Thus, using Xm = {x ∈ Rn | (x,m) ∈ X},
the random utility core is defined as

fC(x,m) = π(x,m)/ ∑
m∈M∗

∫
IPF(Xm)

π
(
x̃,m

)
dx̃. (6)

Clearly, this definition implies that the random utility core converges pointwise to the

uniform distribution on the core if the utility variances approach zero. The assumption

that stochastic stability and outcome density are proportional is particularly simple

and it turns out to fit our data well (see below). Alternative assumptions may prove

appropriate in alternative classes of games.

Proposition 6.5. For any assignment game, the following statements are equivalent.

1. fC is the random utility core defined in Eqs. (4) and (6).

6These assumptions can be relaxed, of course, but they reflect the observations made in Section 3.
In turn, we do not assume external Pareto efficiency, which would be akin to the assumption of social
efficiency and seems too strong in light of the above observations.
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2. fC satisfies the following conditions.

A1 Continuity and internal Pareto efficiency: fC is the density of a continuous

distribution on the set outcomes satisfying internal Pareto efficiency.

A2 Proportional stability: fC(x,m) is proportional to the stochastic stability

π(x,m).

Proof. The proof is very similar to that of Prop. 6.3 and therefore skipped.

Finally, we provide the stochastic stabilities of the core variants discussed before.

The equal-division core for random utility induce the stochastic stability

π(x,m) = Pr
(
∀i ∈ N,∀ j ∈ Ni,x′ =Ci, j/2 :

ũi(x′, j)≤ ui(x,m) or ũ j(Ci, j− x′, j)≤ u j(x,m)
)
, (7)

in conjunction with Eq. (4). The equality square obtains if the stability is defined as

π(x,m) = Pr
(
∀i ∈ N : ui(x,m)> ũi(Ci,m(i)/2,m(i))

)
. (8)

7 Evaluation of the random utility core

The section describes and discusses the estimation results for the random utility cores

with logistic errors, i.e. for the logit core and its (logit) variants. We contrast the logit

cores with two similarly intuitive but technically simpler econometric models of the

negotiated matches and wages. These will be regression models, which explain the

distribution of matches and wages without explicit references to utility functions, and

random behavior models, which explain deviations from the core as the result of trem-

bles. The maximization procedure is similar to above, i.e. the likelihood is maximized

jointly over all parameters by first gradient-free and second Newton methods, and a

variety of starting values is used to verify globability of the maximum. As before,

we determine both descriptive accuracy and predictive accuracy, in order to verify the

validity of the best-fitting models. Table 4 lists absolute values of the log-likelihoods
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for all models, Table 5 describes the results of likelihood-ratio tests (nested and non-

nested Vuong tests), and Figure 4 provides the contour plots of the best-fitting model.

All parameter estimates are provided as supplementary material.

Descriptive and predictive accuracy

Initially, we focus on the goodness-of-fit of the random utility cores, see Tables 4a and

5a. The main results can be summarized as follows.

Result 7.1. As for the random utility concepts, the equality square for egoistic prefer-

ences and the equal-division core for altruistic preferences do not differ significantly

(p > 0.1) and the ED-core fits significantly better than all other concepts (p < 0.1).

Further, the difference between descriptive and predictive accuracy is insignificant for

these concepts.

That is, the core concept is rejected. Subjects do not consider the whole range of

payoffs from alternative matches when they evaluate their current situation. Based on

the above results, we cannot conclusively discriminate between two forms of weaking

the core concept, however. The equality square and the equal division core for altruistic

preferences seem to fit the data similarly well. At first glance, this is surprising, as the

experiment had been explicitly designed to distinguish between these possibilities. The

main design principle was that the players can always be segragated into “strong” and

“weak” players based on payoffs from the outside option (the alternative match). This

principle implies that if the alternative match is strategically relevant, then the equality

square cannot fit well. In turn, if wage equality actually is important, then the payoffs

from the alternative matches cannot be found to be strategically relevant. The fact

that both classes of models are of similar econometric validity therefore indicates that

indeed both kinds of motives affect “stability” of outcomes.

This hypothesis is analyzed next, by considering a generalized model nesting both

of these alternatives. We refer to this generalized concept as the Eq-ED core. Its sta-

bility is the weighted mean of the stochastic stabilities πEq in the Eq-core for altruistic

preferences and πED in the ED-core for egoistic preferences (which are the best-fitting
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Table 4: Goodness of fit: Overview of all models

(a) Goodness-of-fit |LL| of the random utility models

Descriptive validity Predictive validity
Egoism Altruism Egoism Altruism

Eq-Logit 3003.89 2987.35 3007.54 3013.29
ED-Logit 3156.63 2979.29 3157.7 2992.64
Logit 3157.26 2998.09 3160.67 3013.57
Eq-ED-Logit 2982.87 2945.37 2986.07 2956.98

(b) Parameter estimates of the Eq-ED-logit model with altruism

λED α β λEq µ LL
32.8933
(3.6258)

−0.489
(0.053)

−0.2537
(0.0537)

13.5567
(1.4161)

0.0294
(0.0084)

−2945.37

Note: λED and λEq are the precision parameters of the ED and Eq components (resp.), α,β
are the altruism coefficients, and µ is the mixture weight as defined in Eq. (9)

(c) Goodness-of-fit |LL| of the random behavior models

Descriptive validity Predictive validity
Egoism Altruism Egoism Altruism

Eq-RBehav 3085.07 3057.39 3085.70 3068.21
ED-RBehav 3225.18 3106.25 3225.79 3330.29
RBehav 3253.32 3191.34 3255.17 3208.04

(d) Goodness-of-fit of the regression models

Descriptive |LL| Predictive |LL|
Regression on treatment parameters
AtheorRegr 2971.60 3052.92
AtheorRegr2 2964.04 3038.54
Regression on theoretically relevant parameters
RedForm 3006.40 3015.56
RedForm2 2979.82 3120.54
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concepts out of sample), with weights µ ∈ [0,1].

πEq−ED(x,m) = µ ·πED(x,m)+(1−µ) ·πEq(x,m) (9)

The equal-division core obtains for µ = 1, the equality square obtains for µ = 0, and

other values of µ yield mixtures of these concepts. Note that such models merging

notions of stability cannot be defined for the unperturbed core, as stability is binary

there, and a mixed stability of say 0.3 is meaningless in this context. Such mixtures

can be analyzed only using concepts based on the notion of stochastic stability such

as the one defined in Eq. (6). The parameter estimates are provided in Table 4b, the

log-likelihoods both descriptively and predictively are provided in Table 4a, and the

results of the corresponding likelihood-ratio tests are provided in Table 5.

The estimated mixture weight is µ = 0.029, which is close to but significantly

different (p < .01) from zero. Figure 4 shows how the secondary influence of equal

division in alternative matches affects predictions in the estimated model. It broadens

the predicted range of outcomes into the direction predicted by the core (i.e. equal-

division core). As a result, the log-likelihood improves highly significantly (in both

nested and non-nested likelihood-ratio tests) while overfitting of the generalized model

is insignificant (in non-nested likelihood ratio tests). Therefore, the following result.

Result 7.2. The subjects’ main criterion for stability is equality of incomes within

matches. The potential payoff from the alternative match is of secondary, but signifi-

cant relevance. The respective model, the Eq-ED core fits significantly better than all

other models and it does not overfit significantly.

To conclude this part of the analysis, let us note that the estimated utility parame-

ters are α =−0.489 and β =−0.2537 (see Table 4b). The degree of altruism actually

is negative, which implies competitive and aggressive bargaining in 2× 2 assignment

games. We consider this to be reasonable in the present context, even though altruism

seems to be positive in other contexts such as dictator games.
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Table 5: Results of likelihood ratio tests

(a) Comparison of the basic structural models with egoism and altruism – out-of-sample

Model 2
Model 1 LL Eq-

Logit,
Ego

ED-
Logit,
Ego

Logit,
Ego

RBehav,
Ego

Eq-ED-
Logit,
Ego

Eq-
Logit,
Altr

ED-
Logit,
Altr

Logit,
Altr

RBehav,
Altr

Eq-ED-
Logit,
Altr

Eq-Logit, Ego −3007.54 >>> >>> >>> < = = = >>> <<<
ED-Logit, Ego −3157.7 <<< = >>> <<< <<< <<< <<< >> <<<
Logit, Ego −3160.67 <<< = >>> <<< <<< <<< <<< > <<<
RBehav, Ego −3255.17 <<< <<< <<< <<< <<< <<< <<< < <<<
Eq-ED-Logit, Ego −2986.07 > >>> >>> >>> >> = >> >>> <<
Eq-Logit, Altr −3013.29 = >>> >>> >>> << < = >>> <<<
ED-Logit, Altr −2992.64 = >>> >>> >>> = > > >>> <<<
Logit, Altr −3013.57 = >>> >>> >>> << = < >>> <<<
RBehav, Altr −3208.04 <<< << < > <<< <<< <<< <<< <<<
Eq-ED-Logit, Altr −2956.98 >>> >>> >>> >>> >> >>> >>> >>> >>>

(b) Comparison with the alternative models – out-of-sample

Model 2
Model 1 LL Eq-

Logit,
Altr

ED-
Logit,
Altr

Logit,
Altr

Atheor
Regr

Atheor
Regr2

Reduced
Form

Reduced
Form2

Eq-
RBehav,
Altr

RBehav,
Altr

Eq-ED-
Logit,
Altr

Eq-Logit, Altr −3013.29 < = > = = >>> >> >>> <<<
ED-Logit, Altr −2992.64 > > >>> >> > >>> >>> >>> <<<
Logit, Altr −3013.57 = < > = = >>> >>> >>> <<<
Atheor Regr −3052.92 < <<< < << << >> = >>> <<<
Atheor Regr2 −3038.54 = << = >> < >>> = >>> <<<
Reduced Form −3015.56 = < = >> > >>> > >>> <<
Reduced Form2 −3120.54 <<< <<< <<< << <<< <<< < >> <<<
Eq-RBehav, Altr −3068.21 << <<< <<< = = < > >>> <<<
RBehav, Altr −3208.04 <<< <<< <<< <<< <<< <<< << <<< <<<
Eq-ED-Logit, Altr −2956.98 >>> >>> >>> >>> >>> >> >>> >>> >>>

Note: The notation is the same as in Table 3. The results are obtained by non-parametric (i.e. distribution-free) implementations of the Vuong (1989)
test for nested/non-nested models (as appropriate). That is, with ( fs)

28
s=1 and (gs)

28
s=1 denoting the log-likelihoods of two competing models in the 28

independent sessions, we evaluate the null hypothesis H0 : ln( fi/gi) = 0 using Wilcoxon signed-rank tests.
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Figure 4: Contour plots of the relative stochastic stabilities for the Eq-ED logit core with altruistic preferences. The iso-lines
connect outcomes with the same stochastic stability and hence the same predicted density. Outcomes along the the outmost line
(at “0.1”) have 10% of the stochastic stability (and density) of the stochastically most stable outcome in the respective game.

Wage Worker 1

W
ag

e 
W

or
ke

r 
2

 0.1 

 0.2 

 0.3 

 0
.4

  0.5 

0 100 200

0
10

0
20

0
30

0
40

0
50

0
60

0

A−matching in Treatment 1

Wage Worker 1
W

ag
e 

W
or

ke
r 

2

 0.1 

 0.2 

 0.3 

 0.
4 

 0.5 

 0.6 

0 100 200 300

0
10

0
20

0
30

0

B−matching in Treatment 1

Wage Worker 1

W
ag

e 
W

or
ke

r 
2  0.1 

 0.2 

 0.3 

 0
.4

  0.5 

0 100 200

0
10

0
20

0
30

0
40

0
50

0
60

0

A−matching in Treatment 2

Wage Worker 1

W
ag

e 
W

or
ke

r 
2

 0.1 

 0.2 

 0.3 

 0
.4

  0.5 

0 100 200

0
10

0
20

0
30

0
40

0
50

0

B−matching in Treatment 2

Wage Worker 1

W
ag

e 
W

or
ke

r 
2

 0.1 

 0.2 

 0.3 

 0
.4

  0.5 

0 100 200

0
10

0
20

0
30

0
40

0
50

0
60

0

A−matching in Treatment 3

Wage Worker 1

W
ag

e 
W

or
ke

r 
2

 0.1 

 0.2 

 0.3 

 0
.4

 

 0
.5

 

0 100 200 300 400

0
10

0
20

0
30

0
40

0
B−matching in Treatment 3

Wage Worker 1

W
ag

e 
W

or
ke

r 
2

 0.1 

 0.2 

 0.3 

 0
.4

  0
.5

 

0 100

0
10

0
20

0
30

0
40

0
50

0
60

0

A−matching in Treatment 4

Wage Worker 1

W
ag

e 
W

or
ke

r 
2

 0.1 

 0.2 

 0.3 

 0
.4

  0.5 

0 100 200 300

0
10

0
20

0
30

0
40

0
50

0

B−matching in Treatment 4

Wage Worker 1

W
ag

e 
W

or
ke

r 
2

 0.1 

 0.2 

 0.3 

 0
.4

  0.5 

0 100

0
10

0
20

0
30

0
40

0
50

0
60

0

A−matching in Treatment 5

Wage Worker 1

W
ag

e 
W

or
ke

r 
2

 0.1 

 0.2 

 0.3 

 0
.4

 

 0
.5

 

0 100 200 300 400

0
10

0
20

0
30

0
40

0

B−matching in Treatment 5

Wage Worker 1

W
ag

e 
W

or
ke

r 
2

 0.1 

 0.2 

 0.3 

 0.4 

 0
.5

 

0 100 200

0
10

0
20

0
30

0
40

0
50

0
60

0

A−matching in Treatment 6

Wage Worker 1

W
ag

e 
W

or
ke

r 
2

 0.1  0.2 

 0.3 

 0
.4

  0.5 

0 100 200 300

0
10

0
20

0
30

0
40

0
50

0

B−matching in Treatment 6

27



Comparison with alternative models

Next, we compare the random utility cores with alternative approaches of modeling

wages and matches in 2×2 assignment games. The purpose is to examine the degree

to which random utility cores improve upon alternative, possibly simpler concepts. The

first alternative is the random behavior core, which is based on the idea that deviations

occur with positive probability but are not further structured (i.e. they are uniform).

Definition 7.3 (Random behavior core). Let π∗ : X→{0,1} be a binary stability indi-

cator on the set of outcomes (such as those implied by the GU core, Def. 4.2, or ED

core, Def. 4.3). The random behavior core is the density of a continuous distribution

on the set outcomes satisfying internal Pareto efficiency satisfying, for some ε > 0,

fC(x,m) =

{
1/(1+ ε), if π∗(x,m) = 1,

ε/(1+ ε), if π∗(x,m) = 0.
(10)

As ε tends to zero, the random behavior core converges uniformly to the uniform

distribution on the core represented by the underlying stability indicator. The technical

difference to the random utility core are that the density is an affine transformation of

the unperturbed stability, and hence it is constant inside the core, on the one hand,

and constant outside of it, on the other. According to the random utility core, on

the contrary, outcomes in the center of the core are “more stable” than those on its

boundary, and outcomes close to the core are more stable than distant ones. Notions of

random behavior and in particular of trembles are popular in analyses of choice under

risk, see e.g. Conte et al. (2011). More general discussions can be found in Hey (2005)

and Loomes (2005). Comparative analyses of random behavior and random utility

in non-cooperative games (e.g. McKelvey and Palfrey, 1995, and Weizsäcker, 2003)

suggest that utility is random, not behavior.

We examine the random behavior models of the core in all of its six variants

considered before. Table 4c provides the goodness-of-fit measures, Table 5b provides

the results of the corresponding likelihood-ratio tests, and the parameter estimates are

provided as supplementary material. The main result is that random behavior fits worse

than random utility in the 2×2 assignment games.
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Result 7.4. All random behavior models fit significantly worse (p < .01) than their

random utility counterparts, both descriptively and predictively.

Thus, the notion that utility is random, which explains both structure of obser-

vations inside the core and deviations from the core, is more accurate than modeling

deviations from the core as random trembles.

In order to further underline that random utility modeling is indeed appropriate

in this context, let us finally consider the best known alternative: regression modeling.

Clearly, regression analyses feature highly in experimental economics, seemingly be-

cause they are computationally less intricate than structural analyses. However, Keane

(2010) and Rust (2010), amongst others, argue that econometric models that do not

capture the strategic aspects of the interaction in question risk overfitting and hence

lack robustness. We investigate this hypothesis on four regression models.

In all cases, the dependent variables are the binomial variable matching M ∈
{A,B} and the worker wages w1,w2. Models AtheorRegr and AtheorRegr2 are atheo-

retical models regressing the observations (M,w1,w2) on the treatment variables C1,1,

C1,2, C2,1 (recall that C2,2 is held constant in all treatments). Matching is modeled

by logistic regression, and wages are modeled as continuous variables with truncated

normal errors (since the support of the wages is truncated).

Pr(A) = 1/
(
1+ exp(−I0− p0,C1,1C1,1− p0,C1,2C1,2− p0,C2,1C2,1)

)
(11)

f (w1) = Pr(A) · f (w1|A)+(1−Pr(A)) · f (w1|B) (12)

f (w2) = Pr(A) · f (w2|A)+(1−Pr(A)) · f (w2|B) (13)

with

wi|M ∼N
(
Ii|M + pi|M,C1,1 C1,1 + pi|M,C1,2 C1,2 + pi|M,C2,1 C2,1,σ

2
i|M
)

with support
[
0,wi|M

]
for all i ∈ {1,2} and M ∈ {A,B}, using (w1|A,w2|A,w1|B,w2|B) = (C1,1,C2,2,C1,2,C2,1).

In the model AtheorRegr, the wage coefficients are independent of the resulting match,

i.e. p1|A = p1|B and p2|A = p2|B, which yields 14 parameters overall. In the model

AtheorRegr2, this restriction is lifted, which yields 24 parameters overall. As before,

parameters are estimated by maximizing the likelihood jointly over all parameters.
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Table 4d presents the results. The difference between descriptive and predictive

log-likelihood exceeds 50 points for both models. Although regression on treatment

parameters is commonly practiced in the literature, this discrepancy renders the ap-

proach inappropriate in our case.

Alternatively, we consider two regression models representing the best fitting

model from above, Eq-ED core, in reduced form. These models are labeled RedForm

and RedForm2, and in relation to the Eq-ED logit core, they assume normal rather

than logistic errors and egoistic preferences (introducing the notion altruism requires

a structural approach). The wages are modeled as above, Eqs. (12) and (13), but now

wi|M has the equal split as the intercept and the difference in the partners’ outside op-

tions as secondary influence. The matching probabilities are functions of the relative

social efficiencies of the matches and of the asymmetry indicator C1,2 = C2,1 (as dis-

cussed in the experimental design). Formally, the models are defined as follows.

Pr(A) = 1/
(
1+ exp(−I0− p0,Eff (C1,1 +C2,2−C1,2−C2,1)− p0,Diff IC1,2=C2,1

)
with f (w1) and f (w1) as in Eqs. (12) and (13), now using

w1|A ∼N
(
C1,1/2+ p1|A (C2,1−C1,2)/2,σ2

1|A
)

with support [0,C1,1]

w2|A ∼N
(
C2,2/2+ p2|A (C1,2−C2,1)/2,σ2

2|A
)

with support [0,C2,2]

w1|B ∼N
(
C1,2/2+ p1|B (C2,2−C1,1)/2,σ2

1|B
)

with support [0,C1,2]

w2|B ∼N
(
C2,1/2+ p2|B (C1,1−C2,2)/2,σ2

2|B
)

with support [0,C2,1].

Model RedForm invokes p1|A = p1|B =: p1 and p2|A = p2|B =: p2, which yields seven

parameters, while RedForm2 allows for asymmetry between A and B matches and has

eleven parameters. The goodness-of-fit measures for all models are listed in Table 4d.

Most interestingly, the descriptive validities of RedForm and RedForm2 are comparable

to those of the Eq logit square and the Eq-ED logit square, respectively, for egoistic

preferences—i.e. they capture the theoretical intuition they were supposed to represent

in reduced form. However, they do not capture it explicitly, and as can be seen from

their poorer predictive fit (in particular of RedForm2), they do so less robustly. We

conclude that both kinds of regression models are less appropriate than the core.
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Result 7.5. Three of the four regression models improve upon the logit equality square

in-sample, but all of them overfit drastically and their predictive accuracies are compa-

rably poor (they are significantly worse than those of all random utility models allow-

ing for altruistic preferences). The fourth regression model largely prevents overfitting,

but both its desriptive and its predictive accuracy are significantly worse than that of

the Eq-ED core.

Absolute fit of random utility cores

The last issue to be analyzed is the absolute level of the goodness of fit. Does the (Eq-

ED) logit core capture the data quantitatively? The short answer is: Yes, it does. First,

consider the Cox-Snell pseudo-R2 measure of the goodness of fit,

R̃2 = 1−
(

L(Baseline)
L(Model)

)2/N

,

with L being the likelihood function. The Baseline model is the model predicting

uniform randomization in our case, which has the log-likelihood −3276.27, and the

number of observations is N = 257. The resulting value for the Eq-ED model (with

altruism) is R̃2 = 0.9239, which indicates a good absolute fit.

This can be tested for directly using chi-square and G tests of goodness of fit. To

this end, we measure the distance of observations from the equal split, and then test

if the observed relative frequencies are as predicted for all classes of distances. This

allows us to test if there are systematic biases for some or all ranges of distance. Let O

denote the set of observations, and for all o∈O, let d(o) denote the Euclidean distance

of the negotiated wages to the equal split under the respective matching. To apply chi-

square and G tests, the distances have to be classified, using class widths such that most

classes are well populated. In our context, an appropriate number of classes is six with

a class width of 23. That is, observation o is in the class c(o) = 1 if d(o)≤ 23, c(o) = 2

if 23 < d(o)≤ 46, and so on, truncated above at six. The class width was chosen such

that focal distances such as 50 or 100 are not integral multiples of it. We verified that

the test results are robust to varying both class width and number of classes (subject to

the feasibility constraints of chi-square tests). The main result is as follows.
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Result 7.6. The best fitting random utility model (Eq-ED core for altruism) does not

differ significantly from the observations based on chi-square and G tests of goodness

of fit (the p-values are .055 and .064, respectively). All other models are rejected highly

significantly (p < .01).

To summarize, the random utility model Eq-ED core is an appropriate explanation

of the data, as it actually fits (Result 7.6), it is a robust, not overfitted explanation, as

its predictive accuracy does not differ significantly from its predictive accuracy (Result

7.2), and it fits significantly better than all other models (Results 7.4 and 7.5).

8 Conclusion

This paper has introduced the random utility core as a positive solution concept for

cooperative games and evaluated its validity based on experimental data from 2× 2

assignment games. We have seen that the random utility core fits significantly bet-

ter than random behavior models and regression models. Since it also fits absolutely

well, Figure 4 and Result 7.6, we conclude that the notion of random utility, which

is well-established in experimental analyses on decision theory and non-cooperative

game theory, is applicable to cooperative games, as well.

The best fitting model is a simplified variant of the core. It reduces the compu-

tational burden imposed on the subjects, which relates to the validity of level-k mod-

els found in analyses of non-cooperative games (Stahl and Wilson, 1995; Ho et al.,

1998; Bosch-Domenech et al., 2002; Costa-Gomes and Crawford, 2006). Thus, we

have shown that much of the recent advances in positive modeling of non-cooperative

games—besides random utility and level-k theory, we also modeled social preferences—

are equally helpful to obtain predictive models for games in the realm of cooperative

theory. Thus, structure of preferences and level of reasoning in cooperative games

seems to be rather similar to that in non-cooperative games, although the solution con-

cepts employed are fundamentally different.

Since random utility is a novel approach in modeling cooperative games, there

is ample opportunity for further research. In addition to analyses of the random util-

ity core in bargaining games, further research may also define values of games with
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random utility, and it may explore the link between stochastic stability and outcome

density both empirically and theoretically (possibly deriving such links from non-

cooperative implementations). Perhaps most interestingly, further research may evalu-

ate the validities of predictions obtained from cooperative and non-cooperative models

in comparative studies, in order to map out their respective fields of application and

to define new concepts modeling the key insights from both branches. This seems to

be promising, as many real-world negotiations are less structured than non-cooperative

bargaining games, and hence may be modeled more accurately using cooperative games.
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