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Abstract

The variance profile is defined as the power mean of the spectral density function of a

stationary stochastic process. It is a continuous and non-decreasing function of the power

parameter, p, which returns the minimum of the spectrum (p → −∞), the interpolation error

variance (harmonic mean, p = −1), the prediction error variance (geometric mean, p = 0), the

unconditional variance (arithmetic mean, p = 1) and the maximum of the spectrum (p → ∞).

The variance profile provides a useful characterisation of a stochastic processes; we focus in

particular on the class of fractionally integrated processes. Moreover, it enables a direct and

immediate derivation of the Szegö-Kolmogorov formula and the interpolation error variance

formula. The paper proposes a non-parametric estimator of the variance profile based on the

power mean of the smoothed sample spectrum, and proves its consistency and its asymptotic

normality. From the empirical standpoint, we propose and illustrate the use of the variance

profile for estimating the long memory parameter in climatological and financial time series and

for assessing structural change.
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1 Introduction

Essential features of a stationary stochastic process can be defined in terms of averages of the

spectral density. In particular, it is well known (Hannan, 1970, p. 166; Whittle, 1983, p. 68;

Tong, 1979) that the unconditional variance of the process, the prediction error variance and the

interpolation, or cross-validatory, error variance are given respectively by the arithmetic, geometric

and harmonic mean of the spectrum.

This recognition motivates the introduction of the variance profile as a tool for characterising a

stationary stochastic process. The variance profile is defined as the power mean, or Hölder mean,

of the spectral density function of the process. If p denotes the power parameter, the variance

profile is a continuous and non-decreasing function of p. For p = −1 (harmonic mean) it provides

the interpolation error variance, i.e. the variance of the estimation error arising when the process

at time t is predicted from the past and future observations. For p = 0 (geometric mean, which

is the usual Szegö-Kolmogorov formula) it provides the one-step-ahead prediction error variance;

for p = 1 (arithmetic mean) the unconditional variance of the process is obtained. Also, when

p→ ±∞, the variance profile tends to the maximum and the minimum of the spectrum, so that it

provides a a measure of the dynamic range of a stochastic process (see Percival and Walden, 1993).

The main theoretical contributions of this paper are three. Firstly, by defining the variance pro-

file in terms of the unconditional variance of a stochastic process characterised by a fractional power

transformed Wold polynomial, we offer a direct and simple derivation of the Szegö-Kolmogorov for-

mula and the interpolation error variance. Secondly, we propose a non-parametric estimator of

the variance profile based on the power mean of the smoothed sample spectrum, generalising the

Davis and Jones (1968) and Hannan and Nicholls (1977) estimators for the prediction error vari-

ance. We derive its bias and prove the consistency and the asymptotic normality of the estimator,

under mild assumptions on the spectral density function. This enables interval estimation of the

variance profile. For p = −1 the estimator provides a novel estimator of the interpolation error vari-

ance which is an addition to the autoregressive and window estimators proposed by Battaglia and

Bhansali (1987). Thirdly, we illustrate that the variance profile provides a useful characterisation

of fractionally integrated processes.

From the empirical standpoint, we propose and illustrate the use of the variance profile for

estimating the long memory parameter in climatological and financial time series and for assessing

structural change.

The content of the paper can be sketched as follows. The variance profile is defined in section

2. In section 3 the definition is used to provide an alternative proof of the the prediction and

interpolation error variance formulae. Section 4 deals with the estimation of the variance profile

from the time series, proposing a non-parametric estimator and obtaining its asymptotic properties.

We move on to illustrate how the variance profile can be used to characterise stationary processes

belonging to the autoregressive (AR) and moving average (MA) class as well as long-memory

processes (section 5). A strategy for estimating the long memory parameter is considered in section

6. The results are illustrated in section 7 with respect to three case studies dealing with a popular

tree rings series characterised by long memory, the choice of the Box-Cox transformation parameter

for series of absolute returns and the change in the variance profile in macroeconomic time series
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that can be ascribed to the so-called Great Moderation.

2 Definition of the Variance Profile

Let {xt}t∈T be a stationary zero-mean stochastic process indexed by a discrete time set T , with

covariance function γk =
∫ π
−π e

ıωkdF (ω), where F (ω) is the spectral distribution function of the

process. The spectral representation of the process is xt =
∫ π
−π e

ıωtdZ(ω), where {Z(ω)}ω∈[−π,π]

is an orthogonal increment stochastic process and E[dZ(ω)dZ(λ)] = δω,λdF (ω), with δω,λ = 1 for

ω = λ and zero otherwise (see, e.g., Brockwell and Davis, 1991, p. 138-139). We assume that

the spectral density function of the process exists, F (ω) =
∫ ω
−π f(λ)dλ, and that the process is

regular (Doob, p.564), i.e.
∫ π
−π log f(ω) > −∞. We further assume that the powers f(ω)p exist,

are integrable with respect to dω and uniformly bounded for p in (a subset of) the real line.

The variance profile, denoted by vp, is defined as

vp =

{
1

2π

∫ π

−π
[2πf(ω)]pdω

} 1
p

, (1)

or equivalently vp = {E[2πf(ω)]p}
1
p , where the expectation is taken with respect to the random

variable ω, uniformly distributed in [−π, π].
For p = 1, 0,−1, vp gives the arithmetic, geometric and harmonic mean of the spectral density

function, respectively. In these cases vp has a physical interpretation, since it is known (Hannan,

1970, p. 166; Whittle, 1983, p. 68; Tong, 1979) that the arithmetic, geometric and harmonic mean

of the spectral density give the unconditional variance, the one step ahead prediction error variance

and the interpolation error variance of the process xt, respectively.

That the arithmetic mean of the spectral density function is the unconditional variance of the

process is a straightforward consequence of the spectral representation of a stationary process

and its covariance function. On the other hand, the equality between the geometric mean of

2πf(ω) and the one step ahead prediction error variance is the remarkable formula due to Szegö

(1920; see English translation, Szegö and Askey, 1982), in the case of an absolutely continuous

spectrum, and Kolmogorov (1941; see English translation, 1992), in the general case. We refer the

reader to Grenander and Rosenblatt (1957), Hannan (1970), Ash and Gardner (1975), Doob (1953)

and Priestley (1981) for alternative derivations and detailed discussions of the Szegö-Kolmogorov

formula. In section 3, we shall provide a very simple proof of the Szegö-Kolmogorov formula,

based on the variance profile. The equality between the harmonic mean and the interpolation

error variance was also derived by Kolmogorov (1941), and we shall provide a proof based on the

variance profile as well, but we also refer the reader to Wiener (1949, p. 59), for a discussion

on Kolmogorov’s approach, Grenander and Rosenblatt (1957, p. 83), for a formal derivation in

the frequency domain, Battaglia and Bhansali (1987), Pourahmadi (2001, section 8.5), for a time

domain derivation, and Kensahara, Pourahmadi and Inoue (2009) that use a novel approach based

on duals of random vectors.

It is relevant to redefine the variance profile in terms of the conditional variance of an auxiliary

process. Let xt = ψ(B)ξt denote the Wold representation of the process, with ψ(B) = 1 + ψ1B +

3



ψ2B
2 + . . . ,

∑
j |ψj | < ∞, ξt ∼ WN(0, σ2), where B is the lag operator, Bjxt = xt−j , and define

the stochastic process

upt =

{
ψ(B)pξt = ψ(B)pψ(B)−1xt, for p ≥ 0

ψ(B−1)pξt = ψ(B−1)pψ(B)−1xt, for p < 0,
(2)

with spectral density function 2πfu(ω) = [ψ(eıω)]2pσ2, satisfying 2πfu(ω)(σ
2)p−1 = [2πf(ω)]p. It

then holds that

vp =

{
Var(upt)

1

σ2

} 1
p

σ2, (3)

where σ2 is the variance of the innovation process ξt.

Hence, the variance profile can be interpreted as the reverse transformation of the unconditional

variance of a fractional power transformation of the original process multiplied by a power of

the innovation variance. In the next section we shall exploit this interpretation to provide an

alternative derivation of the expressions for the unconditional, prediction error and interpolation

error variances of xt, that result from setting p = 1, 0,−1.

3 Predictability, Interpolability and the Variance Profile

It is evident from (2) and (3) that, for p = 1, upt = xt and

v1 = Var(xt).

When p = 0, equation (2) gives upt = ξt and, consequently, Var(upt) = σ2. It follows that

Var(upt)
1
σ2 = 1 and limp→0

{
Var(upt)

1
σ2

} 1
p σ2 = σ2. Hence, we have proved that

lim
p→0

vp = σ2. (4)

The left-hand-side of equation (4) is the geometric average of the spectral density, limp→0 vp =

exp
{

1
2π

∫ π
−π log 2πf(ω)dω

}
. The right hand side of equation (4) is the variance of the innovation

process in the Wold representation of xt, i.e. the one step ahead prediction error variance

Var(xt|Ft−1) = E [xt − E(xt|Ft−1)]
2 = σ2,

where Ft = S{xs; s ≤ t} is the sigma-algebra generated by the random variables xs, s ≤ t. Hence,

we have proved that

σ2 = exp

{
1

2π

∫ π

−π
log 2πf(ω)dω

}
,

the Szegö-Kolmogorov formula.

We now consider the case p = −1, which uses the concept of inverse autocovariance, defined

by Cleveland (1972) in the frequency domain and then considered by Chatfield (1979) in the time

domain. When p = −1,

upt = ψ(B−1)−1ξt (5)
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and 2πfu(ω) = σ4

2πfi(ω) where fi(ω) = 1
f(ω) , satisfying γik =

∫ π
−π e

ıωkfi(ω)dω, where γik is the

inverse autocovariance function of xt and equivalently the autocovariance function of the inverse

process, upt. It follows that Var(upt) = σ4

4π2 γı0, where γi0 is the inverse variance of xt, and, con-

sequently, v−1 = 4π2

γi0
. We now show that v−1 = σ4

Var(upt)
is the interpolation error variance of

xt,

Var(xt|F\t) = E
[
xt − E(xt|F\t)

]2
where F\t = S{xs; s ̸= t} is the past and future information set excluding the current xt. Let

us denote by u∗pt =
upt

σ2 the inverse process ut divided by σ2, so that fu∗(ω) = f∗i (ω) where

f∗i (ω) =
1

4π2 fi(ω). The key argument of the proof is based on the fact that the stationary process

u∗pt, with autocovariance function γ∗ik =
∫ π
−π e

ıωkf∗i (ω)dω and corresponding autocorrelation ρ∗ik can

be represented as

u∗pt =
1

σ2
ψ(B−1)−1ψ(B)−1xt,

as follows by (5). In fact,

Γ∗
i (B) =

[
σ2ψ(B−1)ψ(B)

]−1

is the autocovariance generating function of upt and therefore we can write

u∗pt =

∞∑
k=−∞

γ∗ikxt−k

from which
u∗pt
γ∗i0

= xt +
∞∑
k=1

ρ∗ik(xt−k + xt+k). (6)

Given that,

E(xt|F\t) = −
∞∑
k=1

ρ∗ik(xt−k + xt+k), (7)

see Masani (1960), Salehi (1979), and Battaglia and Bhansali (1987), it follows from (6) and (7)

that

u∗pt = γ∗i0
[
xt − E(xt|F\t)

]
(8)

Turning to the original coordinate system, based on upt and γi0, and taking the variance of both

sides of equation (8) gives

v−1 = Var(xt|F\t) =
4π2

γı0
.

The comparison of the values of vp for p = −1, 0, 1 has given rise two important measures of

predictability and interpolability. Nelson (1976) proposed

P = 1− Var(xt|Ft−1)

Var(xt)
= 1− v0

v1

as a measure of relative predictability. See also Granger and Newbold (1981) and Diebold and

Kilian (2001). The above measure can be interpreted as a coefficient of determination, i.e. as the

proportion of the variance of xt that can be predicted from knowledge of its past realization. In the
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signal processing literature 1− P is a measure of spectral flatness, taking value 1 for a white noise

process. Given that the spectrum is always positive and that the geometric average is no larger

than the the arithmetic average, predictability is always in the range (0,1).

As for interpolability, Battaglia and Bhansali (1987) defined the index of linear determinism:

A = 1−
Var(xt|F\t)

Var(xt)
= 1− v−1

v1
.

A−1 measures the proportion of the variance that cannot be explained from knowledge of the past

and the future realisations of the process.

4 Estimation of the variance profile

The simplest nonparametric estimator of the variance profile is based on the following bias corrected

power mean of the periodogram:

v̂p =

 1

N

N∑
j=1

(2πI(ωj))
p (Γ(p+ 1))−1


1
p

, (9)

where N = [(n− 1)/2], [·] denotes the integer part of the argument, and

I(ωj) =
1

2πn

∣∣∣∣∣
n∑

t=1

xte
−ıωjt

∣∣∣∣∣
2

is the periodogram, evaluated at the Fourier frequencies ωj = 2πj
n ∈ (0, π), 1 < j < [n/2]. Notice

that, for simplicity of exposition, we have ruled out from estimation the frequencies 0 and π. The

latter can be included without substantially modifying the estimator, see the discussion in Hannan

and Nicholls (1977).

The factor (Γ(p+ 1))
− 1

p serves as a bias correction term, that we shall discuss in details later in

this section. The price to be paid by correcting for the bias is that the asymptotic distribution of

(9) exists, and it is normal, only for p > −1
2 , which obviously excludes the relevant case of p = −1,

when vp gives the interpolation error variance. The reason is that the random variables (2πI(ωj))
p,

used to estimate (2πf(ωj))
p, are distributed as independent Weibull (when p is positive) or Frechét

(p negative) random variables with parameters α = 1
p , β = (2πf(ωj))

p, α, β > 0 and the first two

moments of the latter are finite only for p > −1
2 (see the Appendix). This essentially follows from

the properties of the periodogram, that in large samples is equal to a scaled chisquare random

variable (Koopmans, 1974, Chapter 8),

I(ωj) =

{
1
2f(ωj)χ

2
2, 0 < ωj < π

f(ωj)χ
2
1, ωj = 0, π,

where χ2
m denotes a chisquare random variable with m degrees of freedom.
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The case when p → 0 corresponds to the Davis and Jones (1968) estimator for the prediction

error variance

σ̂2 = exp

 1

N

N∑
j=1

log I(ωj) + γ

 , (10)

where the log-additive bias correction term γ is the Euler gamma, i.e. minus the expectation of a

log chi-square random variable. The authors showed that log σ̂2 is asymptotically normal,

log σ̂2 ∼ N

(
log σ2,

2π2

6n

)
and recommended using a lognormal distribution for σ̂2 when n is not too large.

Hannan and Nicholls (1977) proposed replacing the raw periodogram ordinates by the non-

overlapping averages of m consecutive ordinates,

σ̂2(m) = m exp

 1

M

M−1∑
j=0

log

{
1

m

m∑
k=1

2πI(ωjm+k)

}
− ψ(m)

 , (11)

where M = [(n − 1)/(2m)] and ψ(m) is the digamma function. The estimator (9) is obtained in

the case m = 1. The large sample distributions of (11) and its log transform are, respectively,

σ̂2(m) ∼ N

(
σ2,

2σ4mψ′(m)

n

)
, log σ̂2(m) ∼ N

(
log σ2,

2mψ′(m)

n

)
and the estimator results in a smaller mean square estimation error; increasing m reduces the

variance but inflates the bias.

This suggests the following estimator, that for m > 1 can be computed for any p > −m
2 , thereby

overcoming the drawback of the estimator (9),

v̂p(m) = m

 1

M

M−1∑
j=0

(
1

m

m∑
k=1

2πI(ωjm+k)

)p
Γ(m)

Γ(m+ p)

 1
p

. (12)

The multiplicative bias correction term is determined based on the properties of a power transform

of a gamma random variable (Johnson and Kotz, 1972; see also the Appendix) and on its scaling

properties. Note that, if p→ 0, then

lim
p→0

(
Γ(m+ p)

Γ(m)

) 1
p

= exp

{
−

m−1∑
k=1

1

k
+ γ

}
= exp{−ψ(m)} (13)

and the estimator (12) tends to (11) (to (10) when further m = 1).

The asymptotic properties of the estimator (12) along with the relations with estimators (11)

and (10) are stated in the following theorem.

Theorem Let xt be generated by a stationary Gaussian process with absolutely continuous

spectral density function f(ω), whose powers f(ω)p are integrable and uniformly bounded. Then,

for p > −m
2 ,
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(i) v̂p(m) is consistent for vp,

(ii)
√
n{v̂p(m)− vp} →d N(0,Vp), where Vp = 2m

(
vp
p

)2 (v2p
vp

)2p (
Γ(m+2p)Γ(m)

Γ2(m+p)
− 1
)
, and

(iii) V0 = 2mσ4ψ′(m).

The proof, provided in the Appendix, is based on the properties of power transforms of basic

Gamma random variables (Johnson and Kotz, 1972) and uses a central limit theorem for lin-

ear combinations of independent and identically distributed random variables by Gleser (1965),

which relates to Eicker (1963) and Kolmogorov and Gnedenko (1954) and essentially establishes a

Lindeberg-Feller type condition that is easy to check.

The third statement deals with case when p→ 0, when the asymptotic variance of the variance

profile estimator is equal to the asymptotic variance of the prediction error variance estimator (11).

Indeed, the Appendix provides, as a side product, an alternative proof of the asymptotic normality

of the Hannan and Nicholls (1977) estimator, which was based on the asymptotic equivalence of

moments.

5 The variance profile of AR, MA and long memory processes

In this section we illustrate the characterisation of certain classes of stationary processes via the

variance profile.

5.1 Variance profile for AR and MA processes

The variance profile for a linear process in the autoregressive (AR) moving average (MA) form is

straightforward to obtain, as a polynomial function of the process parameters.

ϕ(B)xt = θ(B)ξt, ξt ∼ WN(0, σ2)

vp = σ2
{

1

2π

∫ π

−π

|θ(e−ıω)|2p

|ϕ(e−ıω)|2p
dω

} 1
p

Analytical formulae are easy to obtain in the case of AR(1) and MA(1) processes. Consider, for

instance, the MA(1) process

xt = (1− θB)ξt, ξt ∼ WN(0, σ2),

for which we define the associated fractional power transformed process

upt = (1− θB)pξt =
r∑

k=0

(
p

k

)
(−θB)kξt,

where
(
p
k

)
= Γ(p+1)/(Γ(p−k+1)Γ(k+1)), and r = p, if p is a positive integer, r = ∞, otherwise,

provided that the process is invertible, in that the weaker (with respect to invertibility) condition
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|θ| ≤ 1 is required for the Binomial expansion to exist in the case of a generic exponent. The

variance profile is

vp =

{
r∑

k=0

(
p

k

)2

θ2k

} 1
p

σ2.

For the stationary AR(1) process,

(1− ϕB)xt = ξt, ξt ∼ WN(0, σ2),

with |ϕ| < 1, the associated fractional power transformed process is

upt = (1− ϕB)−pξt =
r∑

k=0

(
−p
k

)
(ϕB)kξt,

where r is defined as before. The summation is convergent since we have assumed that the process

is stationary, i.e. |ϕ| < 1 (it would be convergent also if the process had a unit root). The variance

profile is then given by

vp =

{
r∑

k=0

(
−p
k

)2

ϕ2k

} 1
p

σ2. (14)

For AR(1) and MA(1) processes, the variance profile does not depend on the sign of the pa-

rameter ϕ or θ and tends to an horizontal straight line when |ϕ|, |θ| → 0. On the other hand, for

absolute values of ϕ and θ increasing towards unity, the curves described by vp for an AR and a MA

process become different. Specifically, the plot of vp for MA(1) processes has an inflexion point in

p = 0, where the variance profile curve changes its concavity. This does not happen to the variance

profile graph of an AR(1) process which shows the same concavity for all the values of p ∈ [−1, 1].

Indeed, the variance profile of an AR(1) process shows an inflexion point in p = 1 (see section 5.2).

Figure 1 evidences the difference between the variance profile of an autoregressive and a moving

average process.

An interesting feature is that p [ln vp − ln v0] for an AR(1) process with parameter ϕ is the same

as p [ln v−p − ln v0] for an MA(1) with parameter θ = ϕ.

5.2 Cycle models

A popular cyclical model is the circular model proposed by Harvey (1989) and West and Harrison

(1989, 1997), see also Luati and Proietti (2010), which is an ARMA(2,1) process with complex

conjugates AR roots and pseudo-cyclical behavior.

In the sequel we shall refer to the representation provided by Haywood and Tunnicliffe-Wilson

(2000):

(1− 2ρ cosϖB + ρ2B2)yt =

√
G

2
(1 +B)κt +

√
H

2
(1−B)κ∗t (15)

where ϖ ∈ [0, π] is the cycle frequency, ρ is a damping factor, taking values in [0, 1), κt and κ
∗
t are

two uncorrelated white noise disturbances with variance σ2κ, and

G = sin2
(ϖ
2

)
(1 + ρ)2 + cos2

(ϖ
2

)
(1− ρ)2,H = sin2

(ϖ
2

)
(1− ρ)2 + cos2

(ϖ
2

)
(1 + ρ)2,

9



Figure 1: Variance profiles for MA(1) and AR(1) processes with unit p.e.v.
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When ϖ = 0, yt is the AR(1) process (1− ρB)yt = ξt ∼ WN(0, σ2κ); when ϖ = π, (1 + ρB)yt = ξt.

Finally, for ϖ = π/2, (1 + ρ2B2)yt =
√

1 + ρ2ξt.

By integrating the Fourier transform of both sides of (15) we obtain

Var(yt) =
σ2κ

1− ρ2

independently of the cycle frequency. Thus, the cycle models that differ only for the cycle frequency

are characterised by the same variance; however, the prediction error variance and the other vp
values, p ̸= 1 will vary with ϖ. Figure 2 illustrates this fact with reference to the case when ρ = 0.8

and σ2κ = 1 − ρ2, so that Var(yt) = 1. The variance profiles have an inflection point at p = 1 and

for p→ ∞ converge to the maximum of the spectrum.

A seasonal component is modelled by summing trigonometric cycles defined at the fundamental

frequency and at the harmonic frequencies using the same scale parameter σ2κ and the same ρ (e.g.

ρ→ 1 in nonstationary seasonal models, see Hannan, Terrell and Tuckwell, 1970, and Harvey, 1989).

In this case the individual cycles will be characterised by different predictability and interpolability;

moreover, the maximum of the spectrum also varies.

To obtain cycle processes defined at different frequencies ϖ, but characterised by the same vp,

ρ and σ2 have to vary according to the expression

dρ

ρ
= −1

2
(1− ρ2)

dσ2κ
σ2κ
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Figure 2: Variance profiles for cyclical models with ρ = 0.8 and σ2κ = (1− ρ2)
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For instance, the process (1 + 0.912)yt = (1 + ρ2)0.5κt has the same vp as (1± 0.8)yt = κt.

5.3 Variance profile for long memory processes

Let us consider the fractionally integrated noise (FN) process

xt = (1−B)−dξt, ξt ∼ WN(0, σ2), (16)

which is stationary for d < 1/2 and invertible for d > −1 (see Palma, 2007, Theorem 3.4 and

Remark 3.1). In this range, xt has Wold representation

xt =

∞∑
j=0

Γ(j + d)

Γ(j + 1)Γ(d)
ξt−j ,

autocovariance function

γ(h) = σ2
Γ(1− 2d)

Γ(1− d)Γ(d)

Γ(h+ d)

Γ(1 + h− d)

and spectrum f(ω) = (2π)−1σ2 [2 sin(λ/2)]−2d.

The variance profile is

vp =


[
Γ(1−2pd)
Γ2(1−pd)

]1/p
σ2, dp < 0.5

∞ dp ≥ 0.5, d, p > 0,

0 dp ≥ 0.5, d, p < 0,

(17)
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Figure 3: Variance profiles for fractional noise process with memory parameter d.
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When d ≤ −0.5 and p = −1 we obtain the result discussed in Walden (1994), which specialises

Grenander and Rosenblatt (1957, p. 84), i.e. the interpolation error variance of a non-invertible FN

process is zero. For instance, let d = −1 in (16), so that xt = ξt − ξt−1. It follows immediately that

xt =
∑∞

j=1(xt+j − xt−j), so that xt can be perfectly interpolated from the infinite past and future.

In this case, analogous to the case of a deterministic process which occur when
∫
log 2πf(ω) = −∞,

the integral of [2πf(ω)]−1 does not exist.

Figure 3 displays the variance profiles for a FN process with varying d values. For d ∈ (−0.5, 0.5)

and p ∈ (−1, 1), vp exists and it is different from zero. It ought to be noticed that for negative

values of d the variance profile is negatively convex, whereas for d > 0 the convexity is positive.

When d > 0, the distinctive feature of the variance profile, as compared to a short memory

process with high persistence (e.g. an AR(1) with ϕ = 0.9) is that vp → ∞ as p→ (2−d), whereas
for the latter is converges to the finite maximum of the spectral density.

6 Estimation of the long memory parameter based on the variance

profile

Amethod of moments estimator of the long–memory parameter d of a fractionally integrated process

based on the variance profile can be constructed as the minimiser of the weighted Euclidean distance

12



Table 1: Estimation of the long memory parameter: true value is d = 0.4
n = 500

Minimum distance estimator G-PH estimator

m = 3 m = 7 m = 11 m = 15 R = [n/16] R = [n/8] R = [n/4] R = n

Bias -0.0601 -0.0550 -0.0560 -0.0562 0.0071 0.0060 0.0057 0.0033

Std. err. 0.0481 0.0421 0.0463 0.0467 0.1373 0.0912 0.0624 0.0472

MSE 0.0059 0.0048 0.0053 0.0053 0.0189 0.0083 0.0040 0.0022

n = 1000

Minimum distance estimator G-PH estimator

m = 3 m = 7 m = 11 m = 15 R = [n/16] R = [n/8] R = [n/4] n

Bias -0.0431 -0.0408 -0.0418 -0.0417 0.0053 0.0038 0.0028 0.0020

Std. err. 0.0266 0.0270 0.0295 0.0319 0.0947 0.0671 0.0457 0.0339

MSE 0.0026 0.0024 0.0026 0.0027 0.0090 0.0045 0.0021 0.0012

between the sample and the theoretical variance profile in (17):∫ b

a
k(p)(v̂p(m)− vp)

2dp.

In practice, in the persistent case (d > 0), we evaluate both (12) and (17) on a regular grid of p

values from a > −m/2 to b = 1. As vp depends also on σ2, we replace the latter by σ̂2(m) = v̂0(m);

this yields the theoretical profile for an FN process characterised by the same p.e.v. estimated on

the time series. The weights k(p) may be uniform or inversely related to the asymptotic variance

Vp.

A Monte Carlo experiment using 5000 replications has been performed to assess the properties

of the proposed estimator (k(p) = 1), when the true memory parameter is d = 0.4. For comparison

of the bias, standard error and the mean square error we also report the same quantities for the

widely applied Geweke and Porter-Hudak (1983) estimator

d̃ =

∑R
j=1 [ln I(ωj)(wj − w̄)]∑R

j=1(wj − w̄)2
,

based on the least squares regression of ln I(ωj) on a constant and wj = −2 ln(2 sin(ωj/2)), j =

1, . . . , R, where w̄ = R−1
∑R

j=1wj .

The simulation evidence, presented in table 1, shows that for n = 500 and n = 1000 our proposed

estimator performs as efficiently as the GPH using n/8 periodogram ordinates. The value of m

that optimises the performance, among the four considered, is m = 7.

13



Figure 4: Mount Campito tree rings data: series (top left panel); sample autocorrelation function

(top right), estimate of the variance profile using m = 23 (bottom left) and estimation criterion

(v̂p(m)−vp)′(v̂p(m)−vp), where the variance profile is evaluated in an equally spaced grid of values

in the range (-6, 1).
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7 Empirical Illustrations

7.1 Mount Campito tree rings data

The Mount Campito data is a popular time series consisting of 5405 annual values of bristlecone

pine tree ring widths, spanning the period from the year 3426 BC to 1969 AD. The series is plotted

in the upper left panel of figure 4; the sample autocorrelations are persistently positive and decay

very slowly (see upper right panel).

The estimated variance profile is that of a long memory process with high d. It is displayed

in the bottom left panel along with the 95% interval estimates, computed as v̂p(m)± 1.96
√

V̂p/n

using m = 23. The long memory parameter is estimated equal to 0.448, a value in accordance with

the literature see e.g. Baillie (1996, page 45). The estimation criterion function is plotted in the

last panel.

7.2 Power transformation of absolute returns

Let rt denote an asset return. Ding, Granger and Engle (1993) addressed the issue of determining

the value of the Box-Cox (1964) power transformation parameter, λ, for which the autocorrelation

14



property of the transformed series

xt(λ) = |rt|λ

is strongest. Focusing on the Standard & Poor stock market daily closing price index over the

period 3/1/1928-30/8/1991, they argued that the long memory property is strongest when λ = 1.

The analysis of two time series of returns according to the variance profile provides a broad

confirmation of these findings. We focus on the daily returns computed on the Nasdaq and Standard

& Poor stock market daily closing price index, available for the sample period 3/1/1989 - 7/3/2011

(n = 10110). As we may record zero returns we adopt the shifted-mean power transformation (see

Atkinson, 1985)

xt(λ) = (|rt|+ c)λ,

where c = 0.001 (the choice of c turns out to be unimportant).

An issue arises as to whether normalised Box-Cox transform or the standardised one should

be considered. The former is obtained by dividing xt(λ) by n
√
J , where J =

∏
t

∣∣∣∂xt(λ)
∂xt

∣∣∣ is the

Jacobian of the transformation, (Atkinson, 1985). We prefer the second solution, as we would like

to determine the transformation for which the series has the smallest normalised variance profile.

In other words, we will constraint v1 = 1 for all the λ values.

Setting m = 17 we estimate the variance profile for the standardised transformed series for

values of λ in the interval (−0.5, 2.3). The results for the SP500 series are presented in figure 6.

The variance profile of the standardised xt(λ) can be used to determine the value of the trans-

formation parameter for which the long memory property is strongest. Figure 5 plots the value of

the value of d, estimated according to section 4, against λ. It turns out that for both series the

maximum d is achieved for λ around 1.25. However, the variance profile does not differ significantly

for that associated to λ = 1, which does not contradict Ding, Granger and Engle (1993).

This fact is illustrated by figure 6, which refers to the SP500 series, displayed in the top right

panel. The plot also shows that the normalised variance profile is a minimum for λ in the vicinity

of 1.25. The last display shows the interval estimates of vp for λ = 1, 1.25 and 2. It can be seen

that the variance profile for the absolute returns does not differ from that for λ = 1.25, whereas

the squared returns (λ = 2) differ significantly. The implication is that the squared returns are less

predictable and interpolable than the absolute returns. Another conclusion is that the volatility of

Nasdaq returns is more predictable than SP500’s.

7.3 The Great moderation

The term Great Moderation (GM) refers to a substantive reduction in the volatility of macroe-

conomic fluctuations that took place around the mid 1980’s up to the the inception of the last

recession (around 2008). See, among others, McConnell and Perez-Quiros (2000) and Stock and

Watson (2002). The causes of this well documented phenomenon have been the matter of a an

interesting debate, with two alternative explanations being considered: a reduction in the size of

economic shocks (which could be measured by the one-step ahead prediction error variance), and

the change in the transmission mechanism by which shocks are propagated (which is measured by

the change in the coefficients of the Wold representation).

15



Figure 5: Nasdaq and SP500 daily absolute returns: estimates of the long memory parameter d

based on the variance profile as a function of the transformation parameter λ.
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Figure 6: Standard and Poor 500 daily absolute returns (standardised): variance profile as a

function of the Box-Cox transformation parameter: series (top left panel); sample autocorrelation

function (top right), estimate of the variance profile using m = 17 (bottom left) and comparison of

the interval estimates for λ = 1, 1.25 and λ = 2.
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The variance profile can provide further insight on this issue. We focus on the U.S. monthly

index of industrial production, made available by the Federal Reserve Board, both in seasonally

adjusted and unadjusted form. We set off analysing the series of yearly growth rates for the period

1949.1-2008.6, which is split into two subseries, the first covering the period predating the GM

(1949.1-1983.12) and the second covering the GM period (1984.1-2008.6). The series are plotted in

figure 7; the volatility reduction is indeed visible and the patterns of the autocorrelations are also

different - the behaviour is less cyclical in the GM period.

The estimated variance profile (using m = 7) for the two subperiods reveals that both the

variance and the prediction error variance are significantly reduced in the GM period. For p→ −1

v̂p gets very close to zero for both subseries. This is a likely consequence of the fact that seasonality

in the original series is very stable, so that the yearly growth rates are likely to be non-invertible

at the seasonal frequencies as a result of the application of the filter (1−B12).

When we come to the monthly growth rates (computed on the seasonally adjusted series), see

the bottom panel of figure 7, we also find a significant change in the variance profile, which flattens

downs to an almost horizontal pattern.

It should be noticed, however, that even though the GM is associated to a significant drop in

the prediction error variance (v0), the relative predictability, 1 − v0/v1, decreased, as well as the

interpolability, as measured by the index of linear determinism 1− v−1/v1.

8 Conclusions

The paper has introduced the variance profile and has proposed an estimator based on the smoothed

periodogram, which generalises the Hannan and Nicholls (1977) estimator of the prediction error

variance. The variance profile estimator was shown to be asymptotically normal and consistent.

We leave to future research the estimation of the variance profile using tapered and multi-

tapered periodograms (see Pukkila and Nyquist, 1985; Walden 1995, 2000; and, more recently,

Kohli and Pourahmadi, 2011) and the comparison with alternative parametric estimators based on

autoregressive model fitting, as in Cleveland (1972) and Bhansali (1993). A further alternative is

the estimation of the variance profile building on the Bayesian estimation of the spectral density

of a time series (Choudhuri, Ghosal and Roy, 2004).
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Figure 7: U.S. Index of industrial production, yearly (seasonally unadjsted) and monthly growth

rates (seas. adj.) for the two subperiods 1949.1-1983.12 (pre) and 1984.1-2008.6 (Great Mod-

eration). Comparison of autocorrelation function, variance profile and relative index 1 − vp/v1.
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Appendix

We provide the proof of the consistency and asymptotic normality of the estimator

v̂p(m) = m

 1

M

M−1∑
j=0

(
1

m

m∑
k=1

2πI(ωjm+k)

)p
Γ(m)

Γ(m+ p)

 1
p

.

We start from the case when p ̸= 0; the case when p→ 0 will be considered afterwards.

For m odd, the quantity 1
m

∑m
k=1 2πI(ωjm+k) can be interpreted as a Daniell type estimator for

2πf(ωjm+m+1
2

). Hence, assuming M and m large enough for asymptotics and m
M small enough for

f(ω) to be constant over frequency intervals of length 2πm
M , for fixed m, and for 1 ≤ k ≤ m,

m∑
k=1

I(ωjm+k)
1
2f(ωjm+m+1

2
)
∼ χ2

2m

(see Koopmans, 1974, pp. 269-270) and therefore

m∑
k=1

2πI(ωjm+k) = 2πf(ωjm+m+1
2

)Xj

where the Xj are independent and identically distributed random variables Xj ∼ 1
2χ

2
2m or equiva-

lently, Xj ∼ G(m, 1), a basic Gamma random variable with shape parameter equal to m. Thus,(
m∑
k=1

2πI(ωjm+k)

)p

=
(
2πf(ωjm+m+1

2
)
)p
Xp

j . (18)

By direct integration,

E
(
Xp

j

)
=

Γ(m+ p)

Γ(m)
(19)

and by the usual formula for the variance of a random variable one gets,

Var(Xp
j ) =

Γ(m+ 2p)

Γ(m)
− Γ2(m+ p)

Γ2(m)
, (20)

which exist for p > −m
2 . Hence, the random variable Zj defined as

Zj =
Xp

j − Γ(m+p)
Γ(m)√

Γ(m+2p)
Γ(m) − Γ2(m+p)

Γ2(m)

, (21)

has zero mean and unit variance.

Under the assumption of a uniformly bounded power of the spectral density function and by

approximating the integral with its Riemannian sum,

1

2π

∫ π

−π
(2πf(ω))2p dω = lim

M→∞

1

M

M−1∑
j=0

(
2πf(ωjm+m+1

2
)
)2p

(22)
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the quantity

QM =
1

M

M−1∑
j=0

(
2πf(ωjm+m+1

2
)
)2p

exists and has a limit, limM→∞QM = v2p2p.

Let now

bj =

(
2πf(ωjm+m+1

2
)
)p

√
MQM

, (23)

which satisfies
M−1∑
j=0

b2j = 1. (24)

Moreover, since the p-th power of the spectral density function is uniformly bounded and since QM

converges to a positive term, we have that

max
0≤j≤M−1

|bj | → 0.

Hence the assumptions for the central limit theorem for linear combinations of sequences of random

variables (Gleser, 1965, Theorem 3.1, which relates to Eicker, 1963, and Gnedenko and Kolmogorov,

1954) are satisfied and
M−1∑
j=0

bjZj →d N(0, 1).

It follows by (21) and (24) that

M−1∑
j=0

bjX
p
j →d N

M−1∑
j=0

bj
Γ(m+ p)

Γ(m)
,

(
Γ(m+ 2p)

Γ(m)
− Γ2(m+ p)

Γ2(m)

)
and, as a function of our estimator, using (23),

{v̂p(m)}p = 1

M

√
MQM

M−1∑
j=0

bjX
p
j

Γ(m)

Γ(m+ p)
→d N

 1

M

M−1∑
j=0

(
2πf(ωjm+m+1

2
)
)p
,ΩM

 (25)

where

ΩM =
1

M
QM

(
Γ(m+ 2p)

Γ(m)
− Γ2(m+ p)

Γ2(m)

)(
Γ(m)

Γ(m+ p)

)2

.

By taking the limits

√
M({v̂p(m)}p − vpp) →d N

(
0, v2p2p

(
Γ(m+ 2p)Γ(m)

Γ2(m+ p)
− 1

))
(26)

and applying the delta method we finally get the asymptotic distribution

√
n(v̂p(m)− vp) →d N

(
0, 2m

(
vp
p

)2(v2p
vp

)2p(Γ(m+ 2p)Γ(m)

Γ2(m+ p)
− 1

))
. (27)
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We now prove the consistency of v̂p(m) for vp, that is a consequence of three facts: the Chebychev

weak law of large numbers, applied to the sequence of random variables Yj =
√
MQMbjXj

Γ(m)
Γ(m+p)

in v̂p(m)p, see equation (25); the convergence of the Riemannian sum to the integral, see equation

(22); the Slutsky theorem for the probability limit, which allows us to state that since v̂p(m)p,

is consistent for vpp then v̂p(m) is a consistent estimator for vp, given that the power function is

continuous.

Let us now consider p→ 0. In this case, the estimator (12) equals the prediction error variance

estimator (11), see equation (13); moreover, in this context, the case p → 0 correspond to the

case when the logarithm of Xj is taken, rather then its power, i.e. when p → 0, Xp
j is to be read

as logXj . Hence, E (exp{t logXj}), given in equation (19), is the moment generating function of

logXj and gives E (logXj) = ψ(m) and Var (logXj) = ψ′(m). Therefore, when p → 0, equation

(18) becomes (some parentheses are omitted for sake of notation)

log

m∑
k=1

2πI(ωjm+k) = log 2πf(ωjm+m+1
2

) + logXj

with

E log

(
m∑
k=1

2πI(ωjm+k)

)
= log 2πf(ωjm+m+1

2
) + ψ(m)

and

Var log

(
m∑
k=1

2πI(ωjm+k)

)
= ψ′(m),

respectively. What follows is that in the limit case, the bias correction via a multiplication (by the

inverse expected value, see equation (25)), becomes a subtraction and the subtracted quantity does

not modify the asymptotic variance of the estimator of the quantity (E(Xp
j ))

−2. Specifically, when

p→ 0 v̂p(m)p takes the following form

log σ̂2(m) =
1

M

M−1∑
j=0

(
log 2πf(ωjm+m+1

2
) + logXj − ψ(m)

)
,

i.e. the sample means ofM random variables each one having expected value log 2πf(ωjm+m+1
2

) and

variance ψ′(m). Since the variables are uniformly integrable (as implied by assuming that log f(ω) is

uniformly bounded for all ω) the central limit theorem applies and, since 1
M

∑M−1
j=0 log f(ωjm+m+1

2
),

√
M(log σ̂2(m)− log σ2) →d N(0, ψ′(m))

and replacing M = (n− 1)/(2m) and by the delta method,
√
n(σ̂2(m)− σ2) →d N(0, 2mσ4ψ′(m)).

The case when m = 1, is a particular case of (12). However, one could note that when m = 1

the estimator (12) becomes

v̂p =

 1

N

N∑
j=1

[2πI(ωj)]
p [Γ(p+ 1)]−1


1
p
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and the random variables involved in its asymptotic distributions can be written as monotonic

transforms of χ2
2 random variables, as Yj = [2πI(ωj)]

p =
[
πf(ωj)χ

2
2

]p
. It follows that for p ̸= 0, by

applying the density transform method one gets

fY j(y) =

1
|p|

[2πf(ωj)]p

(
y

[2πf(ωj)]p

) 1
p
−1

exp

{
−
(

y

[2πf(ωj)]p

) 1
p

}
.

When p is positive and finite, then fY j(y) is the density of a Weibull distribution with parameters

(α, β) where α = 1
p , β = [2πf(ωj)]

p; on the other hand, when p is negative, then Yj is distributed

like a Frechét random variables with the same parameters. Note that when p → 0 we find the

Gumbel distribution, i.e. the distribution of the logarithm of an exponential random variable,

that coincides with Davis and Jones (1968) distribution of the log-periodogram. For p > −1
2 , the

expected value and the variance of the Yj are given by

E(Yj) = [2πf(ωj)]
pΓ(p+ 1)

Var(Yj) = [2πf(ωj)]
2p
[
Γ(2p+ 1)− Γ2(p+ 1)

]
from which follows that the random variables Zj = YjΓ(p+ 1)−1 have mean and variance given by

E (Zj) = [2πf(ωj)]
p

Var(Zj) = [2πf(ωj)]
2p
[
Γ(2p+ 1)Γ−2(p+ 1)− 1

]
.

and since they are uniformly bounded the Lindeberg-Feller central limit theorem applies and we

get (26) and (27) with m = 1.

Note that for p > 0 we find the result of Corollary 1 in Taniguchi (1980), which requires positivity

of the exponent for existence of the inverse Laplace transform upon which his estimator is based.

Finally, it is straightforward to verify that when p → 0 and m = 1 we find the asymptotic

distribution of the Davis and Jones (1968) estimator for the prediction error variance.

23



References

[1] Atkinson, A. C. (1985), Plots, Transformations and Regression: An Introduction to Graphical

Methods of Diagnostic Regression Analysis, Oxford University Press, Oxford, UK.

[2] Baillie, R.T. (1996), Long memory processes and fractional integration in econometrics, Journal

of Econometrics, 73, 5, 1–59.

[3] Battaglia, F., Bhansali, R. (1987), Estimation of the Interpolation Error Variance and an Index

of Linear Determinism, Biometrika, 74, 4, 771–779.

[4] Bhansali, R. (1993), Estimation of the Prediction Error Variance and an R2 Measure by Au-

toregressive Model Fitting, Journal of Time Series Analysis, 14, 2, 125–146.

[5] Box, G.E.P., and Cox, D.R. (1964), An analysis of transformations (with discussion), Journal

of the Royal Statistical Society, B, 26, 211–246.

[6] Chatfield, C.S. (1972), Inverse Autocorrelations, Journal of the Royal Statistical Society, Series

A, 142, 3, 363–377.

[7] Choudhuri, N., Ghosal, S., Roy, A. (2004), Bayesian Estimation of the Spectral Density of a

Time Series, Journal of the American Statistical Association, 99, 468, 1050–1059.

[8] Cleveland, W.S. (1972), The Inverse Autocorrelations of a Time Series and Their Applications,

Technometrics, 14, 2, 277–293.

[9] Davis, H.T. and Jones, R.H. (1968), Estimation of the Innovation Variance of a Stationary

Time Series, Journal of the American Statistical Association, 63, 321, 141–149.

[10] Diebold, F.X. and Kilian, L. (2001), Measuring Predictability: Theory and Macroeconomic

Applications, Journal of Applied Econometrics, 16, 657–669.

[11] Ding, Z., Granger, C.W.J. and Engle, R.F. (1993), A long memory property of stock market

returns and a new model, Journal of Empirical Finance, 1, 1, 83–106.

[12] Eicker F. (1963), Central Limit Theorems for Families of Sequences of Random Variables, The

Annals of Mathematical Statistics, 34, 2, 439–446.

[13] Geweke, J. and Porter-Hudak, S. (1983), The Estimation and Application of Long-Memory

Time Series Models, Journal of Time Series Analysis, 4, 221–238.

[14] Gleser L.J. (1965), On the Asymptotic Theory of Fixed-Size Sequential Confidence Bounds

for Linear Regression Parameters, The Annals of Mathematical Statistics, 36, 2, 463–467.

[15] Gnedenko, B.V. and Kolmogorov, A.N. (1954), Limit Distributions for Sums of Random Vari-

ables, Addison-Wesley Publishing Company.

[16] Janacek, G. (1975), Estimation of the Minimum Mean Square Error of Prediction, Biometrika,

62, 1, 175–180.

24



[17] Johnson N.L. and Kotz, S. (1972), Power Transformations of Gamma Variables, Biometrika,

59, 1, 226–229.

[18] Hannan, E.J. and Nicholls, D.F. (1977), The Estimation of the Prediction Error Variance,

Journal of the American Statistical Association, 72, 360, 834–840.

[19] Hannan, E.J., Terrell, R.D., and Tuckwell, N.E. (1970), The seasonal adjustment of economic

time series, International Economic Review, 11, 24–52.

[20] Harvey, A.C. (1989), Forecasting, Structural Time Series Models and the Kalman Filter,

Cambridge University Press.

[21] Haywood, J. and Tunnicliffe-Wilson, G. (2000), An Improved State Space Representation for

Cyclical Time Series, Biometrika, 87, 3, 724–726.

[22] Kensahara, Y., Pourahmadi, M. and Inoue, A. (2009), Duals of Random Vectors and Processes

with Applications to Prediction Problems with Missing Values, Statistics and Probability Letters,

79, 1637–1646.

[23] Kohli, P. and Pourahmadi, M. (2011), Nonparametric estimation of the innovation variance

and judging the fit of ARMA models, forthcoming in Bell, W.R., Holan, S.H. and McElroy T.

(eds) Economic Time Series: Modeling and Seasonality, Chapman and Hall/CRC.

[24] Kolmogorov, A.N. (1941), Interpolation and Extrapolation of Stationary Random Sequences

(in Russian), Izv. Akad. Nauk SSSR Sere Mat., 5, 3–14.

[25] Kolmogorov, A.N. (1992), Interpolation and Extrapolation of Stationary Random Sequences,

in Selected works of A.N. Kolmogorov, Volume II, Probability and Mathematical Statistics, 272–

280.

[26] Koopmans, L.H. (1974), The Spectral Analysis of Time Series, Academic Press.

[27] Luati, A. and Proietti, T. (2010), Hyper-spherical and Elliptical Stochastic Cycles, Journal of

Time Series Analysis, 31, 169–181.

[28] Masani, P. (1960), The prediction theory of multivariate stochastic processes, III Unbounded

spectral densities, Acta Mathematica, 104, 1-2, 141–162.

[29] McConnell, M.M. and Perez-Quiros, G. (2000), Output Fluctuations in the United States:

What Has Changed since the Early 1980’s?, American Economic Review, 90, 1464–1476.

[30] Nelson, C.R. (1976), The Interpretation of R2 in Autoregressive-Moving Average Time Series

Models, The American Statistician, 30, 175–180.

[31] Pukkila, T. and Nyquist, H. (1985), On frequency domain estimation of the innovation variance

of a stationary univariate time series. Biometrika, 72, 317323.

[32] Salehi, H. (1979), Algorithms for Linear Interpolator and Interpolation Error for Minimal

Stationary Stochastic Processes, The Annals of Probability, 7, 5, 840–846.

25
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