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Abstract

This paper adds to the literature on the Sarbanes-Oxley Act’s net ef-
fects by looking at whether its passage was associated with a change in
innovation and patenting. Its effects are separated into temporary un-
certainty and changes in long term investment incentives in a dynamic
programming problem faced by innovators who learn over time about
SOX’s effect. Innovation is found to fall under uncertainty for potential
losses that are low relative to the potential profits. As companies learn,
innovation rates readjust to SOX’s long term persistent effect. We ex-
amine US patenting in stem cell technologies from 2001 to 2009 for SOX
related changes. To reduce the dependence of our estimates on timing
assumptions, we look for changes over the whole period. We firstly use a
rolling break test with a single break point with Monte Carlo correction to
p-values for search process endogeneity and MLE bias. Secondly, we run
a hidden Markov model allowing for multiple states in the patent process
and transitions between the states. We find a large and statistically sig-
nificant change at a date consistent with a SOX effect under both testing
methods. A three state hidden Markov model finds subsequent correction
consistent with the theoretical model. Four competing explanations are
found to account incompletely for the observed data.

∗Correspondence address: School of Law, University of Westminster, 4-12 Little Titchfield
Street, London, W1W 7UW, United Kingdom. E-mail: james.m.waters@hotmail.co.uk
†The author thanks Joe Tanega for helpful discussions, and for suggesting the importance

of learning and uncertainty in explaining the data’s behaviour.
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1 Introduction

The US Sarbanes-Oxley Act (Sarbanes-Oxley, 2002, hereafter SOX)
was a regulatory response to financial scandals in the early 2000s. It
imposed new disclosure requirements on companies, placed increased
restrictions on the behaviour and conflicts of interests for company
insiders, and specified new penalties for related malfeasance. Au-
ditors and securities analysts were also subject to more stringent
regulations on their behaviour, and a new not-for-profit company,
the Public Company Accounting Oversight Board (PCAOB), was
established to oversee auditors and audit quality.

Many regulatory demands of SOX could incur costs for com-
panies. The PCAOB, for instance, is funded by company levies,
and the increased demands on auditor quality could be passed on
as greater charges for audit. The net effect of SOX on available
company funds is not apparent as the Act may increase investor
confidence in investment at the same time as increasing the effec-
tive charges levied against that investment. Neither is it clear what
the change will be in incentives for particular managerial uses of
the available funds. For example, activities that are more heavily
regulated in the new rules may be relatively less profitable relative
to other activities after SOX.

Given these uncertain effects on company funding and incentives,
the literature has examined the association between the passage of
SOX and contemporaneous changes in a variety of financial and non-
financial corporate variables. They include market return (Li et al.,
2008; Zhang, 2007), equity cost (Ashbaugh-Skaife et al., 2009), in-
vestment discount factors (Kang et al., 2010), cross-listing premium
(Litvak, 2007), company cost and structure (Linck et al., 2009), mar-
ket entry choices (Engel et al., 2007; Leuz et al., 2008), and research
and development spending (Bargeron et al., 2010).

This paper examines whether SOX was associated with a change
in technological innovation by affected companies. SOX may have
altered their available funding for research and development or man-
agerial preferences for such risky activities as found by Bargeron
et al. (2010). Innovation represents an investment in intellectual
property made in anticipation of a stream of future income from its
commercialisation, and the decision to invest depends on revenues
net of SOX’s effects.
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We formulate the dynamic problem faced by a company consid-
ering an irreversible investment in innovation. Future income is un-
certain and subject to an additional uncertainty linked to SOX. As
time passes, investment behaviour changes endogenously as com-
panies learn about SOX’s effect. Kang et al. (2010) present an
investment model in which managers maximise utility from future
income, but contrary to our formulation managerial preferences are
adjusted exogenously in response to SOX. Bloom (2009) and Guo
et al. (2005) describe models with variable uncertainty able to gen-
erate endogenous dynamics in investment behaviour similar to ours.
They differ in their assumption of less than complete investment
irreversibility, their transition process for uncertainty, and their use
of simulation.

Our problem’s solution indicates that delays in investment occur
if the potential losses through early ignorant investment are even
moderately sized relative to the potential gains, if learning is quite
rapid, and if discounting of future income is not very large. We
present evidence that these conditions apply after SOX’s passage.
The transient, and generally patent reducing, effect of uncertainty
is distinguished from SOX’s long term effects which are ambiguous.

We test for the existence of a change in company innovation after
SOX by examining the time series of patent rates in stem cell tech-
nologies. The stem cell technology industry is new, small, and risky.
These characteristics have often been found to be linked to magni-
fication of SOX’s effects on funding and incentives (Chhaochharia
and Grinstein, 2007; Engel et al., 2007; Jain et al., 2008; Kamar
et al., 2007; Kang et al., 2010; Li et al., 2008; Litvak, 2007; Wintoki,
2007). Thus, while the univariate times series analysis here differs
from the panel data analyses common elsewhere in the literature,
the literature itself suggests that stem cell technology innovation
should demonstrate a clearer SOX related response than general in-
novation. Time series analyses allow ready graphical representation
of the empirical methods here, and are a bridge for their later entry
into panel data studies.

SOX’s effect can be identified by comparing quantities of inter-
est in base periods assumed to have been influenced by SOX with
their value in control periods assumed to be free of influence. Ex-
isting literature differs in the length and timing of the base and
control periods. Event studies such as Li et al. (2008) and Zhang
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(2007) take short base periods associated with plausibly significant
SOX-related occurrences and announcements, and usually extended
control periods around the base periods. Doidge et al. (2009) use a
long control and base period with a single cut-off point at the end
of 2001 (as well as a more flexible sequence of annual cross sectional
regressions). Engel et al. (2007) use both short and long base peri-
ods to classify times by SOX’s impact. These periods are generally
ultimately set according to the researchers’ judgement.

It is not clear which dates to include in each period in view of
SOX’s decade long planning, passage, implementation, and delay
(Gao et al., 2009). The theoretical case for including, say, the date
on which a senator issued a statement of regulatory intent, may be
uncertain. Further, the effect may spill beyond the period hypothe-
sised, or it may be delayed, or it may be a temporary reaction that
is subsequently corrected. Alternative date classifications can lead
to different conclusions. These classification problems are particu-
larly severe for short periods. Whilst longer periods mitigate the
difficulty, they are more likely to have influential non-SOX events
within them, leading to problems in ascribing any changes to SOX.

Our approach to the classification problem is to use the data to
estimate change dates in the number of US residents’ patent appli-
cations over the period 2001 to 2009. Our first procedure estimates
an autoregressive negative binomial count process in the presence of
a structural change in trend and level where the change date varies
across the whole period, leading to a series of change p-values. We
examine the p-values to identify the absolute and relative impor-
tance of any break that occurred around the time of SOX. We use
direct comparison of the p-values in the eighteen month period from
July 2002 to December 2003 to identify the date at which a break
was most likely. The coefficient estimates at that date are reported,
as are Monte Carlo simulated p-values for the break coefficients.
These values correct for the conditionality introduced in the raw
p-values by the search procedure, and for the bias induced by small
sample maximum likelihood estimation.

Our second procedure allows for multiple breaks and multiple
patenting states. To identify them, we assume a constant probabil-
ity of transition between Poisson states, with possibility of re-entry
to previously exited states. The resulting hidden Markov model is
estimated to give the most likely series of states over the whole pe-
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riod, and the coefficient estimates within each state. The estimation
is performed for two and three distinct states.

The p-value testing finds that structural change occurred with
higher probability around the time of SOX than elsewhere in the
period. A trend change in patenting was most likely around July
2002, while a level shift was most likely around July 2003. In the two
state hidden Markov model, a pre-SOX change is identified where
patenting starts to increase from a very low level. The three state
hidden Markov model identifies another change in July 2003, when
the rate of patenting declines. Consistent with the earlier theoret-
ical predictions following from the modelling assumptions, the rate
corrects after two years to its previous process.

The timing of the patenting process break is consistent with other
feasible non-SOX explanations. They include shocks to the patent-
ing process that affect US and non-US patenters equally (unlike
SOX), an exhaustion of the technological prospects of US patenters,
a recent industry downturn that had driven many US innovators out
of the market, and reduction in US government funding for stem cell
research. We consider their plausibility and some empirical hypothe-
ses that are closely related to them. Evidence is presented against
them as exclusive explanations for the observed break.

Section 2 looks at the dynamic optimisation problem faced by
innovators, section 3 performs the empirical analyses, and section 4
concludes.

2 Optimisations faced by innovators when SOX
occurs

In this section, we present the optimisations faced by innovators be-
fore and after the passage of SOX. Innovation entails an irreversible
investment, while SOX introduces uncertainty about costs that is
resolved after a period of learning. We derive investment timings,
and examine how much they are impacted by uncertainty, pace of
learning, and discount rates.

2.1 Specification

Companies maximise expected profits through innovating and re-
ceiving income from the resulting intellectual property. Companies
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are indexed by i. They discount future income at a rate of d.
A company can choose to invest in a single innovation project

at a cost that varies across companies. Company i has costs of Ci.
Companies are aware of the project cost prior to investment. In-
vestment is non-reversible and there are no resale opportunities at
a value above the discounted stream of future income. Mathemat-
ically, the investment dummy Ii,t for company i at time t is one
or zero dependent on whether the company is invested or not, and
satisfies Ii,1 = 0 and Ii,t+1 ≥ Ii,t.

Innovation results in an expected constant stream of income of
Ri,t per period in perpetuity starting ni periods after investment.
Ri,t is stochastic and drawn from distribution ri after payment starts,
being previously zero. Ri,t is not known at the time of investment
and is revealed only at the time payments start, when it becomes
fixed in perpetuity. The distribution is known to the company at the
time of investment. Thus, company i’s investment return at time t
is given by Ri,t = Ri,t−1 + (Ii,t−ni

− Ii,t−ni−1)ri for t > ni−1 + 1, and
Ri,t = 0 for t ≤ ni + 1.

On investment, companies protect their intellectual property by
patenting. The number of patents following an investment is stochas-
tic. The expected number is monotonically increasing in aggregate
investment.

Companies enter the equity market and become subject to SOX
provisions at the time they first receive profits and at all times sub-
sequently. Such coincidence may occur if venture capitalists seek
to realise their investments through the market when they start to
produce revenue. In view of the importance of this exit route for
early stage investors, we anticipate that many companies would use
it. Our conclusions do not change if the timing is varied; what mat-
ters is that companies that have chosen to operate as innovators are
affected by SOX’s provisions. Indirect exposure through changes in
the price of audit services, for example, leads to the same qualita-
tive results. When companies are subject to SOX, their income per
period is adjusted by an amount Si,t. The sign and size of the effect
is ambiguous, and certain company characteristics may be penalised
under SOX while others may lead to financial benefit.

Companies are initially unsure about SOX’s effect on income.
They have assumptions about how they will update their prior dis-
tribution of the effect as information emerges over time, assuming
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that Si,t will have distribution function Fi,t taking values in si,t.
Companies anticipate that they will have sufficient information to
form stable judgements of SOX’s effect by time m and no later
than the time of first payment ni periods after investment, so that
Si,t+1 = Si,t for all t ≥ min(m, tinv +ni) where tinv is the investment
time.

A company that seeks to maximise expected future income has
to choose if and when to innovate, using their subjective prior dis-
tribution for calculating expectations. They select the investment
dummy Ii,t+1, t = 2, 3, . . . in the following Bellman equation:

V (Ii,t,Ri,t, Si,t)

= max
Ii,t+1

(−(Ii,t+1 − Ii,t)Ci + Ii,t−n(Ri,t + Si,t)

+
1

1 + d
E(V (Ii,t+1, Ri,t+1, Si,t+1)),

where V is the expected present value of the company’s future in-
come under the company’s optimum investment plan.

2.2 Solution

For particular distributional assumptions and parameter values, this
Bellman equation can be solved numerically. Without making such
assumptions, we can deduce general behaviour algebraically.

In the absence of any SOX effect, Si,t = 0. The problem faced
by the company stays the same over time if no investment is made,
so that investment either occurs in the first period or not at all.
The condition for investment is that the expected net income from
immediate investment exceeds the net income from non-investment.

When a SOX effect is first introduced, companies are uncertain
about its magnitude and face a problem of choosing between im-
mediate investment, delayed investment, and non-investment. Once
all information is known about SOX’s effect, the problem stabilises
over time and so investment occurs at some stage during the learn-
ing process or not at all. Investment in period p2 rather than in an
earlier period p1 is optimal if discounted expected net income given
the state of knowledge in period p2 is higher than expected net in-
come given the state of knowledge in period p1. If discounting is not
large, post-SOX losses are considered possible, and learning occurs
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reasonably quickly, it will be advantageous to delay investment. For
instance, suppose that p2 represents the first time at which SOX’s
effects are known in full, when the company has determined the ef-
fect as a single unchanging point from the assumed distribution at
time p1. We define vi,t to be the stochastic discounted income when
investment is made at time t. Then the optimisation criteria for
delay from time p1 to p2 is that

ER,S(vi,p1) <

(
1

1 + d

)p2−p1
ER,S(vi,p2) (1)

where the expectation is taken with respect to assumed future Ri,t

and Si,t. Then the left hand side can be rewritten as

ER,S(vi,p1) =

∫
s+

ER(vi,p1) dF (Si,t) +

∫
s−

ER(vi,p1) dF (Si,t)

where s+ is the subset of si,p1 defined by

s+ = {S+ ∈ si,p1 : ER(vi,p1|Si,p1 = S+) > 0}
and s− is the complement of s+ in si,t,

s− = si,t \ s+.

The learning procedure anticipated between times p1 and p2 identi-
fies a single point Si,p2 in si,p1 , and investment will go ahead if and
only if Si,p2 lies in s+, so∫

s+

ER(vi,p1) dF (Si,t) = ER,S(vi,p2).

We rewrite equation (1) as

∫
s+

ER(vi,p1) dF (Si,t)+

∫
s−

ER(vi,p1) dF (Si,t)

<

(
1

1 + d

)p2−p1 ∫
s+

ER(vi,p1) dF (Si,t)

or
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1−
(

1

1 + d

)p2−p1
< −

∫
s−

ER(vi,p1) dF (Si,t)∫
s+

ER(vi,p1) dF (Si,t)

Taking an example of parameter values of p2 = p1 + 1 and d =
10%, the left hand side equals 0.09, so that a potential loss from
ignorance that is quite small relative to the potential profit from
early investment will lead to delay.

Hartman (2007) presents data from 2001 to 2006 on SOX related
costs and companies’ self-reported ability to predict them. The sur-
vey results show (pages 16-7) stabilisation of overall costs of oper-
ating as a public company after 2004, for companies with annual
revenue over and under $1 billion. The stabilisation is attributed
to offsetting internal efficiencies, as actual external payments such
as audit fees continue to increase (pages 2 and 19). They further
show (page 14) a large increase between 2004 and 2006 in com-
panies agreeing or strongly agreeing with the statement “. . . I am
better able to predict costs associated with corporate governance
reforms”, from 38% to 65%. These results do not translate to an
exact parameterisation for our model. However, they indicate nar-
rowing distributions close to a point or slow moving deterministic
process if the prediction process for future distributions has addi-
tional plausible assumptions, such as more weight being given to
recent observations than older ones, importance being assigned to
small changes in recent costs, and increased confidence in prediction
resulting in diminishing importance of wide prior distributions.

Differences in costs, expected returns, prior and updated SOX
distributions, and learning processes can generate differences in in-
vestment timing across companies in response to SOX. If these char-
acteristics tend to be clustered within certain types of companies,
then group behaviour can be observed in response to SOX. For ex-
ample, risky companies may have a higher expectation of potential
loss under SOX than less risky companies, and so a wait-and-see op-
tion may have a higher value to risky companies leading to relatively
greater delays on investment.

After the end of the learning period, the investment problem sta-
bilises for all companies, both those present when SOX was enacted
and new entrants in subsequent periods. SOX’s effect acts as a
permanent adjustment to returns in the Bellman equation, with a
positive adjustment lowering the required revenue to cross the in-
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vestment threshold and negative adjustment raising it. Whether the
threshold is crossed depends on company characteristics, and again
group behaviour may be observed when characteristics are clustered.
SOX’s post-adjustment effect on investment may be positive or neg-
ative.

In summary, we expect the introduction to SOX to lead to an
initial drop in aggregate investment due to delays in commitment
to investment projects, followed by a spike as decisions are made.
Delays in investment are easily triggered and may lead to a series of
aggregate movements during the adjustment. Investment will then
move to a rate higher or lower than prior to SOX’s introduction
depending on whether SOX increases or diminishes revenue. These
long run effects are dependent on company characteristics and may
act in different directions for different companies. The same shape
of dynamic behaviour is anticipated in expected patents due to its
monotonicity and shared sign with aggregate investment. The re-
sponse in patents may be delayed by lags between investment and
patenting. The patents literature has generally found a economi-
cally and statistically strong contemporaneous effect (Blazsek and
Escribano, 2010; Gurmu and Perez-Sebastian, 2008; Hall et al., 1986;
Montalvo, 1997); an exception is Blundell et al. (2002) who find a
slower effect under additional modelling assumptions.

3 Empirical analysis

Our empirical analysis examines the patenting rates for innovation in
the area of stem cell technology. The stem cell technology industry
is recently established, with only 22 issued patents referring to stem
cells in their title by the end of 1995 (USPTO, 2010), shortly fol-
lowing the establishment of current industry leaders such as Geron,
Osiris, and Viacord. The industry today remains relatively small,
with Lysaght et al. (2008, Table 2) estimating 2007 commercial sales
at $273 million, with average sales per operating company of $11
million. In the early 2000s, some of the industry’s leading stocks
exhibited considerable volatility (Salter, 2005). Investors at that
time faced additional uncertainty relative to the situation today,
in that the science was at a preliminary stage, product sales were
negligible, and a number of the pioneering commercial enterprises
in tissue engineering such as Organogenesis and Advanced Tissue
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Sciences had filed for Chapter 11 bankruptcy. Investment, company
numbers, and sales were all rapidly increasing and volatile (Salter,
2005, Table 3; Salter, 2005, Table 1; Lysaght et al., 2008, Figure 1).
These characteristics indicate that companies innovating in stem cell
technologies would be among those the literature finds to be most
susceptible to SOX’s impact.

3.1 Data

Our data on patents is from the US Patent and Trademark Office
online database at USPTO (2010). We use patent applications as
our measure of patents rather than granted patents because there is
a delay between application and issuance while the patent examiner
assesses whether the application meets the criteria for granting a
patent. The date of application thus better measures the time at
which the decision to commercialise was made. The USPTO records
both the date of application and the date at which the application
information was published on their database which is later than
the date of application. Thus, some recent patent applications are
omitted from the database, with more recent times having a smaller
proportion of their applications recorded. To avoid the risk of a fall
in applications due to delayed coding interfering with our attempts
to identify changes in applications due to other factors, we identify
patent applications with the date at which their information was
recorded on the database. This date is a noisy and lagged measure
of the application date. Table 1 shows the summary statistics for
the distribution of times between filing and publication for stem
cell technology applications published in 2003. Half of all patent
application filings are published within 39 weeks, and three quarters
are published in just over a year. Some publications take place
shortly after application, so that an event affecting the decision to
apply for patents should be reflected in changes in applications at
contemporaneous publication dates with a near complete effect over
the following two years.

The USPTO database publishes applications only after March 1,
2001, with applicants after this date able to choose whether they
wish to allow publication. Prior applications may not have been of-
fered this choice, so would by default be deemed secret. Thus, most
patent applications eligible for publication at much later dates would

11



Table 1: Summary statistics for the number of weeks between filing and publi-
cation of stem cell technology applications published in 2003

Percentile

Statistic Mean St.dev 50 75 90 95

Weeks 50 33 39 58 80 91

be made by applicants who could choose, whereas many patent ap-
plications eligible for publication at early dates may not have been
published because the choice was not offered. This effect would be
expected to lower the initial publication rate relative to later rates.
Table 1 suggests that the effect will have substantially diminished
by the middle of 2002 and all but vanished a year later. Its pres-
ence and timing complicates the interpretation of any change in
the patent series as being due to SOX. We try to separate the two
causes in section 3.4.1 by seeing whether the patenting of non-US
applicants differed from that of US applicants, as both were subject
to the USPTO regulations but generally only US applicants were
subject to SOX.

Figure 1: Published patent applications by month for US residents

We used the USPTO online search facilities to identify patents
with the exact phrase “stem cell” or “stem cells” in their title. The
search was for published applications split by the month of publica-
tion for US resident applicants. Thus the code looked like

12



TTL/(“stem cell” OR “stem cells”) and PD/4/1/2001->4/31/2001
and ICN/(“US”).

The data covered the period from April 2001 to August 2009,
and was accessed in September 2009. 982 patent applications by US
residents were published in the period. Figure 1 shows publications
of patent applications by US residents. The rate of publications
increases rapidly until around the middle of 2003, then steadies until
around 2005 when it steps up to a new plateau. The plateau lasts
until around 2007 when a new period of accelerating publication
begins, lasting until the middle of 2009.

An alternative to searching by individual patents is to look for
patent classes mentioning stem cell technology within their patent
schedule or definition, and then count the number of patents within
them. There are six such classes, listed in table 2. The classes do not
exactly coincide with all stem cell patents, so patents not relating to
stem cells are included and some stem cell patents may lie outside
the classes. The classes can be narrowed down to subclasses to
mitigate the latter problem, but may worsen the former.

Table 2: US Patent and Trademark Office patent classes with “stem cell” or
“stem cells” in the description or schedule

Patent class Description

424 Drug, bio-affecting and body treating compositions
435 Chemistry: molecular biology and microbiology
530 Chemistry: natural resins or derivatives; peptides or pro-

teins; lignins or reaction products thereof
800 Multicellular living organisms and unmodified parts thereof

and related processes
977 Nanotechnology

Generated by website searches on
http://www.uspto.gov/web/patents/classification/ for “stem cell” and for
“stem cells”.

3.2 Estimation method

We present next the equations we will use in empirical estimation.
They allow for the previous theoretical prediction of discontinuities
in the patent process, through an autoregressive innovation metric
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combined with a current research input subject to breaks. We intro-
duce two null hypotheses on the distribution of breaks in the patent
process for testing an exceptional change around the time of SOX,
and identify these changes with rolling p-value and hidden Markov
chain estimations.

Our base specification has published patent applications Pt at
time t following a random process with conditional expected value
at any time dependent on a numerical measure of investment condi-
tions It at time t, exogenous research Rt until time t, and the history
Ht = {Pt−1, Pt−2, Pt−3, . . . } of past patent rates until time t. Ex-
pected patents are a free combination of a proportion of patents in
each previous period and exogenous research. The specific form of
conditional expected patent numbers is multiplicative and exponen-
tial in lagged patents and exogenous research. The multiplicative
metric for innovation has been analysed in Blundell et al. (1995).
The exponents depend on innovation activity, which itself depends
on investment conditions. Given investment conditions, the expo-
nents are constant and the consequent growth in patents captures
both market entry by potential innovators and their innovation ac-
tivity. Exogenous research grows at an exponential rate. Thus we
have

E(Pt|It, Rt, Ht) = A(It)(e
gt)B(It)

∞∏
i=1

P
ci(It)
t−i

where g is a constant, and A, B, and ci are functions.
Some of new potentially patentable innovations will have been an-

ticipated by previous patents, and others will have been subject to
accelerated approval by the patent office. These two effects are cap-
tured by dividing the expected patent numbers by fractional powers
of lagged patents. The form of the equation is therefore unchanged.
The exponents may be negative as well as positive.

Changes in investment conditions are represented by changes in
the equation’s coefficients. Given the analysis in section 2, condi-
tions are variable at the time of the introduction of legislation and
during the period of investors’ learning about its effects.

Our first empirical specification has a single shock occurring over
the period. We assume that the exponents on the lagged patents
are constant before and after the shock, while allowing the drift and
level to change. The testable equation is
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E(Pt|It, Rt, Ht) = exp(a + bt + d1DSt>u + d2DTt>u)
∞∏
i=1

P ci
t−i

where DSt>u is a unit shift equal to one for times t > u and zero
otherwise, and DTt>u is a trend change defined by DTt>u = t − u
for times t > u and zero otherwise. The stochastic distribution is
taken to be negative binomial, and the estimation is by maximum
likelihood. As logarithms are taken when calculating the negative
binomial likelihoods under a multiplicative specification, we add one
to all patent numbers before estimation.

The number of lags was determined by estimating the equation
with up to twenty four lags. The Akaike Information Criteria and
the coefficient significance of the highest lagged term were used to
determine the optimal number of lags. The results are shown in the
appendix. Four lags were taken as optimal.

If shocks to the patent process are persistent, the accumulating
error may be collinear with a change in the time trend and estimator
distributions may be different from their non-persistent versions (see
Hamilton (1994, pages 497-501) for derivations with normally dis-
tributed errors). Persistent shocks may be misidentified as a break
in the series. We tested for persistency in expected patent rates
using a Zivot-Andrews test on the logarithmic series, which tests for
unit roots when there may be a trend change or unit shift in the
series. The statistic was -5.42, which is significant at five percent
against a null hypothesis of a unit root.

We estimate the equation repeatedly with the value of u varying
across the period under consideration. Estimations are not made
for the first and last six months. Estimation is undertaken for the
equation with a unit shift alone, a trend change alone, and both
break types.

The procedure produces a series of p-values associated with an
asymptotically valid normal test that the break variables are indi-
vidually or dually equal to zero at each date. The p-values over the
eighteen month period from July 2002 to December 2003 are directly
compared to find the minimal one, and the parameter estimates at
the corresponding break date calculated. The validity of the direct
comparison relies on the assumption that our prior information is
that a patenting incentive shock is equally likely to occur at any
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point in the period, implying a rising probability of incentive shock
conditional on no shocks prior to the considered date.

The p-values may not accurately reflect the probability of a break
in the generating process because of parameter biases in the finite
sample maximum likelihood estimations. Moreover, as estimates of
the probability that the patent process has a significant break during
the eighteen month period, they do not allow for our search proce-
dure. We want the probability of no break at the date conditional
on that date having the greatest unconditional evidence of a break
in the period, rather than the unconditional probability of no break
at the date. To correct for MLE bias and allow for conditionality, we
estimate the patent process without breaks and use the estimated
parameters to generate a thousand Monte Carlo simulations of the
process. For every simulation, we test for each type of break over
the period and record the minimal p-values. The frequency of the
simulated p-values lying below the actual data p-value is taken as
an adjusted p-value for the break.

Our second empirical specification considers multiple shocks over
the period, with possibly repeated entry, exit, and return to a fixed
number of patenting incentive states. The incentive states have
expected patent numbers with the autoregressive coefficients con-
strained to zero, that is,

E(Pt|It, Rt, Ht) = Aj(t)e
bj(t)t

where Aj(t) and bj(t) are the coefficients in state j(t), the state pre-
vailing at time t. The coefficients are specific to each state and do
not have any relation to each other across states. The stochastic
distribution of the patents is Poisson in each state. When in one
state, the probabilities of moving to the same or another state in
the following time period depend only on the current state, not the
transition history or the date. These assumptions define a Poisson
hidden Markov model (Zucchini and MacDonald, 2009).

We estimate the parameters in the second specification by maxi-
mum likelihood estimation. The most likely sequence of states is also
estimated by maximum likelihood using the Viterbi algorithm. The
algorithm calculates the most likely sequences of increasing lengths,
given the estimation transition matrix and observed data, and end-
ing in each possible state, using the Markov property to increment
the length. For the sequences extending over the whole period, the
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maximum likelihood sequence is found by inspection of the likeli-
hood of the sequences for each end state. Zucchini and MacDonald
(2009) describe the mathematics of the algorithm and give a com-
puter code implementation.

We estimate the model for two and three states. For a sequence
of n periods, the number of state sequences is 2n or 3n. The most
likely path differs little from many other paths, and its individual
probability may be low. The estimates may be influenced by conver-
gence thresholds even if they are small. There are plausibly multiple
local maxima that may be identified by maximum likelihood. In or-
der to ensure that the estimated sequence reflects a global maxima
and its broad shape has a high concentration of probability among
potential sequences, we repeat the estimation for multiple starting
values for the Poisson rates in each state, selected either by visual
inspection of plausible values or as starting, average, and end values
of second or third quantiles of the data. The results we present are
representative of the shape and timing of the shifts between states
across most estimations.

The estimation was performed in the R computer language (R
Development Core Team, 2009) using the library packages Hmisc,
urca, and MASS for the p-value estimation and testing, and the
msm package for the HMM estimation. All R code for the modelling
is available at the author’s website1, together with base data and
simulated p-values.

3.3 Results

Figure 2 shows the p-values for unit, trend, and dual breaks (that is,
breaks in either the unit or trend component) at dates throughout
the period 2001 to 2009 for published patent applications by US
residents. The solid line indicates values for dual breaks, the dashed
line for unit shifts, and the dotted line for trend changes. The unit
shifts are most likely to have occurred around the start of 2002,
followed by the middle of 2003. The trend changes are most likely to
have occurred in the middle of 2002. Changes elsewhere are unlikely.
After allowing for correlations between the breaks, the dual break
curve finds strongest evidence for a break occurring at dates from
around the middle of 2002 to the last half of 2003. The strongest

1http://ebasic.easily.co.uk/02E044/05304E/sox effect on innovation.html
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Figure 2: P-values for breaks in US residents’ applications by date

The solid line shows values for dual breaks, the dashed line for unit shifts, and
the dotted line for trend changes.

evidence occurs around the second quarter of 2003.
Table 3 shows the coefficient estimates for each break date. The

coefficients are evaluated at the minimal p-value from July 2002 to
December 2003. The unit shift is most significant at July 2003,
where it has a negative coefficient. It is significant at ten percent,
but the adjusted p-value shows the coefficient has no significance.
The minimal trend p-value is at July 2002, where the change is neg-
ative. The change is equivalent to an eleven percent reduction in
expected patents compounded over time. It has an adjusted signif-
icance of eight percent. With both breaks included, the minimal
p-value occurs in July 2003. The unit shift coefficient has a nega-
tive sign, marking a one-off reduction of 47 percent in the expected
rate of patenting, while the trend change is also negative, equivalent
to a six percent compounded reduction in the patenting rate. The
adjusted probability that the coefficients are simultaneously zero is
two percent.

The top panel of figure 3 shows the decoded states of a two state
hidden Markov model applied to the patent data. There are two
temporally connected states identified. The first runs for seven
months from April to October 2001 and has low and roughly con-
stant patenting rates. The second runs unbroken from November
2001 onwards and has an apparently increasing patent rate. The

18



Table 3: Coefficient estimates for breaks at the time of the
minimum p-value in July 2002 to December 2003 inclusive

1 2 3

Unit shift -0.198 * -0.643 ***
0.116 0.176

Trend change -0.115 ** -0.059 ***
0.047 0.018

Time 0.006 *** 0.12 ** 0.068 ***
0.002 0.048 0.019

Constant 1.125 *** 0.038 0.74 ***
0.205 0.497 0.245

Dependent(t-1) 0.285 *** 0.238 ** 0.208 **
0.099 0.101 0.101

Dependent(t-2) 0.008 -0.067 -0.069
0.1 0.104 0.102

Dependent(t-3) 0.269 *** 0.186 * 0.156
0.099 0.104 0.104

Dependent(t-4) -0.095 -0.209 ** -0.218 **
0.092 0.099 0.099

Break significance 0.087 0.015 0.001
Adjusted significance 0.522 0.084 0.017
Pseudo R2 0.52 0.54 0.58
Box-Ljung p-value 0.98 0.9 0.89
Break date Jul-03 Jul-02 Jul-03

Standard deviations are shown below the coefficients. ***
denotes an unconditional p-value of less than 0.01, ** of less
than 0.05, * of less than 0.1. Time is measured in number of
months elapsed since March 2001.

bottom panel of figure 3 shows the decoded states for a three state
HMM process. The early connected state to October 2001 is un-
changed. A second state from November 2001 persists until April
2002, and then returns for a connected two year period from July
2003 to June 2005. The second state’s sequence is interrupted by a
third state which lasts unbroken until the second state is restored in
July 2003. After exit from the second state in June 2005, the third
state returns and persists until the end of the period. The third
state has a higher apparent patenting rate than the second state
after transition. It is not clear whether the time trend is higher or
lower.
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Figure 3: Decoded states for a two state hidden Markov model (top) and three
state HMM (bottom) for US residents’ published patent applications; states are
connected by coloured lines

Table 4 contains the maximum likelihood estimates of the coef-
ficients in each Poisson patenting state, showing the constant and
time trend components of the expectation. The short-lived first state
has a low rate throughout its duration under both the two state and
three state specifications. The second state has a far higher constant
component to the state expectation. For the three state estimation,
the last state has a higher constant component but lower trend than
the second state.

The observations indicate a large upwards shift in the patenting
rate and trend in November 2001 away from the negligible patenting
activity that existed until then. A further upwards shift in level,
if not in trend, occurred in May 2002. The patenting state that
emerged was interrupted temporarily from July 2003 to June 2005
by the restoration of the previous state. The timing of the July 2003
break is consistent with an adverse effect due to SOX.
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Table 4: Coefficient estimates for the states in the two and
three state HMMs on US residents’ applications

1 2

State 1
Constant 0.209 1.004
Trend -0.234 0.141
State 2
Constant 9.819 *** 8.616 ***
Trend 0.088 *** 0.135 *
State 3
Constant 11.194 ***
Trend 0.062

Date of first entry into state 1 Apr-01 Apr-01
Date of first entry into state 2 Nov-01 Nov-01
Date of first entry into state 3 May-02

*** denotes an unconditional p-value of less than 0.01,
** of less than 0.05, * of less than 0.1. The p-values are
for an asymptotically valid chi-squared test using paramet-
rically bootstrapped standard deviations with 100 boot-
straps. Time is measured in number of months elapsed
since March 2001 multiplied by 0.1.

3.4 Non-SOX explanations for the patenting shifts

The previous section has found evidence of a break in the patenting
rates of US residents in stem cell technology. The timing is consis-
tent with an effect due to SOX. We also have a plausible theoretical
explanation for an effect. We can strengthen the support for a link
by showing the likelihood of alternative explanations is low.

3.4.1 Alternative explanation one: the change was due to factors
affecting both US and non-US resident patenters

A number of explanations arise from factors affecting the patenting
of both US and non-US residents. Among them are an exhaus-
tion of commercialisable ideas in stem cell technologies, a shift of
global investor preferences against funding its innovation, a shift
against speculative investment generally, a reduction in US demand
for stem cell technologies, processing delays at the US patent office,
or an increasing proportion of applicants choosing to publish their
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applications over time.

Figure 4: Published patent applications by month for non-US residents

Under this class of explanations, the incentives or ability of non-
US residents to patent in stem cell technologies is reduced at the
same time as those of US residents. A break in non-US residents’
published patent applications is likely to occur and approximately
coincide with the previously observed breaks. The earlier empirical
equations form the basis for testable hypotheses on a break in their
published patent applications.

The data for non-US residents is also from the US Patent and
Trademark Office. It is shown in figure 4. The publication rate rises
until around the start of 2003, then stabilises until the end of 2004
when it begins to increase rapidly, lasting until the middle of 2006.
It undergoes a possible downwards shift in the level of the series. It
then rises, falls, and then rises again until the middle of 2009. The
observed pattern is not clear; it could alternatively be explained as
a roughly constant growth rate with a period of greater volatility
around the end of 2005 and start of 2006.

Figure 5 shows the p-values for unit shifts (dashed line), trend
changes (dotted line), and dual breaks (solid line), estimated with
an autoregressive lag of two. Unit shifts are most likely at the end
of 2004, and in the second halves of 2006 and 2007. The period from
the middle of 2002 to the end of 2003 has relatively less evidence of
a break. Trend changes are most likely to have occurred in 2005.
The most probable times for a break in at least one of the series are
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Figure 5: P-values for breaks in non-US residents’ applications by date

The solid line shows values for dual breaks, the dashed line for unit shifts, and
the dotted line for trend changes.

at the ends of 2004 and 2005, and the middle of 2006. The SOX
period is relatively less likely to have experienced a break.

The results contrast with the observed decline in the US resi-
dents’ patent rate at the time of SOX. The two results are consistent
with the decline’s cause acting only on US residents. They provide
evidence against the class of alternative explanations to SOX that
explain the decline in terms of globally effective factors.

The decoded states for a two state hidden Markov model of the
non-US patent data are in the top panel of figure 6. The initial
state lasts from April 2001 to January 2002. From February 2002
it undergoes an extended break and is restored only in September
2007. It then endures to the end of the period. The intervening
second state lasts unbroken for over five and a half years. It has
an apparently higher level than the first state. They both have an
upward trend. In the three state model shown in the bottom panel,
the first state is unchanged from the two state model. The second
state only occurs for the period from February 2002 to November
2004. It has a higher apparent rate than the first state. After its
end until the restoration of the first state, a third state occurs with
apparently even higher rate and uncertain trend.

We do not see any evidence of a downward break in the period
around SOX, or any break at all. The analysis produces a similar
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Figure 6: Decoded states for a two state hidden Markov model (top) and three
state HMM (bottom) for non-US residents’ published patent applications; states
are connected by coloured lines

conclusion to the p-values break results. It is less likely that glob-
ally applicable factors were the main cause for the reduction in US
residents’ patent rates, and more likely that SOX was.

3.4.2 Alternative explanation two: there was a natural patenting
downturn due to exhaustion of ideas, but only in the US

A further explanation for the observed break is based on the pattern
of emergence and exhaustion of patentable ideas. Ideas are posited
to lead to patents. Ideas start slowly at first as a technological idea
is first investigated, then as the most promising prospects are dis-
covered the generation of patentable ideas accelerates, and finally
the prospects begin to be exhausted and the rate flattens. The ob-
served break corresponds to the beginning of the gradual exhaustion
and deceleration.

In order to distinguish this explanation from the general global
explanations just discussed, we have to posit that the decline is in
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the US alone. The situation might arise if US innovators are in-
novating in a different type of patents than foreign innovators, for
example if they are far more technologically advanced. The con-
dition requires that technological innovation does not rapidly spill
across borders, which is open to theoretical and empirical question.

The explanation suggests a trend change in the patenting rate
without a level shift in it. The rolling p-value analysis earlier found
evidence for a trend change but no significant evidence of a unit
shift. The hidden Markov model estimation by comparison found
that there was a temporary downwards level shift in the aftermath
of SOX. Thus, the evidence available so far provides mixed evidence
against the exhaustion hypothesis.

We investigate further by examining behaviour after the down-
turn. Under the exhaustion hypothesis, the rate of innovation will
decline further after the initial transition. We test empirically for
the presence of further downturn by modifying the form of expected
patents to

E(Pt|It, Rt, Ht) = exp(a + bt + et2 + d2DTt>u)
∞∏
i=1

P ci
t−i

where the period assessed is from August 2003 to August 2009. Our
first specification has the restriction e = 0 with u set at the mid
point between the break date and the end of the period, ie August
2006 (so allowing for a late break). Our second specification has
d2 = 0 (allowing for a quadratic downturn in time with linear time
as a covariate), and our third has b = 0 and d2 = 0 (allowing for a
quadratic downturn in time without a linear covariate).

Table 5 shows the sign and significance of the late trend change
and quadratic terms in the maximum likelihood estimations. The
sign on the late trend change is negative, but the coefficient has
low statistical significance. The same is true for the quadratic time
term in the presence of a linear time trend. If quadratic time is
present without a linear time trend, it has a positive coefficient and
is highly significant, probably capturing some of the linear trend
effect. In summary, we again find limited evidence for the exhaustion
hypothesis as it is presented here.
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Table 5: Coefficient estimates for the states in the two and three state
HMMs on US residents’ applications

Variation from a linear process Sign, p-value of the non-linear term

Late trend change -, 0.63
Month2 (with covariate month) -, 0.55
Month2 only +, 0.00

3.4.3 Alternative explanation three: the earlier market downturn
reduced perceived incentives for patenting

The observed change in the patenting process may alternatively be
attributed to a downturn in market prospects. Under this hypothe-
sis, there was a loss of confidence or funding in the market, and many
innovators exited the market. There is data presented in Lysaght
et al. (2008) showing a decline in the financial performance and size
of the tissue engineering market prior to SOX, although the stem
cell sub-sector experienced employment growth and was financially
sheltered by its pre-commercial status.

After a market decline and financial rationing, if remaining fi-
nanciers are reasonably accurate at assessing financial prospects of
innovations the residual funding should be allocated to innovations
offering better financial prospects than innovations funded prior to
the rationing. By contrast, SOX has been associated with reduction
in corporate funding for new, small, and high growth companies,
who may be expected to produce innovations with better than av-
erage, if risky, prospects. Thus, the SOX and market downturn
explanations for patent number changes have different implications
for the prospects of the remaining innovations relative to innovations
prior to the downturn.

We may noisily measure the financial prospects of patents by
the number of patents citing them. The propositions and measure
allow us to form a testable hypothesis associated with the downturn
conjecture, that the rate of citing of new patents was higher after the
process change than before it. The alternative hypothesis associated
with a SOX effect is that the rate of citing was the same or lower
after the process change.

Table 6 shows the citation rates for stem cell technology patents
whose applications were filed from April 2001 to March 2002 in-
clusive, compared with those filed between April 2003 and March
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Table 6: Rate of citing of patents whose applications were filed April 2001
to March 2002 or April 2003 to March 2004 inclusive, split by issue year

Applications filed in 2001/2 Applications filed in 2003/4

Issue year Counts Average citations Counts Average citations
2002 1 1
2003 5 4.8
2004 15 5.3
2005 15 2.5 1 0
2006 17 1.3 5 0.6
2007 6 2.2 5 1.2
2008 3 1 12 0.2
2009 5 0 9 0.1
2010 1 0 8 0
Total 68 2.6 40 0.3

Data is from the US Patent and Trademark Office. The website
search term was, for example, TTL/(“stem cell” OR “stem cells”) and
APD/4/1/2001->3/31/2002 and ISD/4/1/2006->3/31/2007.

2004. Data is from USPTO (2010). The rates are given for all
citing patents up to July 2010, and are split by the year of patent
issue and for all issue years combined. The combined citation rate
is far higher for the earlier period of filing. The higher combined
rate may be possibly attributable to a longer post-issue period for
earlier filed patents and hence more exposure and opportunities for
citation. The length of the period since issue is controlled by the
comparison of patents issued in the same year. These rates are con-
sistently higher for the patents filed in 2001 to 2002. We find no
evidence of an increase in the citation rate for patents filed after the
observed break, or that financial prospects as proxied by citation
rates picked up after it. The result weakens support for the hypoth-
esis that a financial downturn was the main driver of the observed
changes in the patent process.

3.4.4 Alternative explanation four: the change can be attributed to
US Government funding cuts for human embryonic stem cell
research

A further candidate explanation for the observed change in the
patenting process is that legislative or federal funding activity relat-
ing to human embryonic stem cell technologies in the United States
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affected the rate of patent applications. In 2001, the US adminis-
tration restricted federal funding for research in human embryonic
stem cells (United States White House, 2001). The decision may
have driven down innovation in human embryonic stem cell tech-
nologies directly, and indirectly affected companies producing other
stem cell technologies (see Salter (2005, page 8) for a description of
a contamination effect between the two forms of technology).

Figure 7: Published patent applications in human embryonic stem cells tech-
nologies by month for US residents

The mechanism is feasible, but it seems implausible that it would
have a sufficiently large effect to be the only cause of the observed
process change. Firstly, federal research funding was restricted on
stem cell lines from embryos destroyed after the date of the restric-
tion, but not prior to the date. Thus, the restriction was partial.
Secondly, it did not affect privately funded research. Thirdly, the
number of human embryonic stem cell patents was very small com-
pared with the number of general stem cell patents. From a search
on the US Patent and Trademark Office database, the cumulative
number of US residents’ patent applications between April 2001 and
August 2003 with “human embryonic stem cell” or “human embry-
onic stem cells” in the title was just ten compared with 185 general
stem cell technology patents. Even if the federal funding restriction
stopped most innovation in human embryonic stem cell technology,
the direct effect on the broader innovation group would be very lim-
ited. Fourthly, if there is a contamination effect on non-embryonic
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innovation from the restriction, it would have to be very large and
persistent to account for the observed process change. There seems
little prior reason to believe in such an effect. Fifthly and finally,
insofar as it is possible to determine a process shift from the low
numbers of human embryonic patents in figure 7, it does not seem
to be any greater than that affecting the general stem cell patent
series.

4 Conclusion

We have presented and partially solved a optimisation faced by in-
novators in the presence of a SOX caused change to investment in-
centives. Postponement of investment due to temporary uncertainty
means double breaks of a decline and correction are more likely than
single breaks in the time series of innovation investment. The long
term effect is ambiguous. Empirically, we found using a p-value time
series and a hidden Markov model that the observed data showed
behaviour consistent with these theoretical results, with the latter
method finding a reversion to the pre-SOX process after two years.
We considered several feasible non-SOX explanations for the break
and found available evidence suggested they were unlikely to explain
the change on their own.

The optimisation assumes that investors are risk neutral. The
assumption may be replaced with constant risk aversion to reinforce
the initial post-SOX dip in investment in the presence of learn-
ing. The dynamic delay effect would not lead to any investment
decline under correctly anticipated constant risk, whereas constant
risk aversion would result in a decline, potentially allowing for as-
sessment of these two effects’ relative importance in future work.

Investor-manager identity is assumed in the optimisation, so that
managerial perception of increased personal costs of risky activities
after SOX or uncertainty about them are combined with investor
assessment of income changes and corresponding uncertainty. The
manager and investor optimisations may be separated giving rise to
a two step decision process. The approach may bring out agency
tensions, enrich the dynamics, and present new testable implica-
tions.

Various small departures from the empirical model’s assumptions
were tested during this paper’s preparation, being rejected as im-
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perfect models of count data although they may be more valid for
other data sets. We tested additive instead of multiplicative patent
forms and used random walk processes for patent emergence with
sandwich and GARCH errors. The conclusions were not altered.

Most analyses of SOX’s effects are based on panel data rather
than a single time series. We may extend the approach here to
patent panel data, using multivariate count data and HMM mod-
els which are established in the literature. The dummies that are
used in the SOX literature based on differences-in-differences may
not enter these count data models in additive form making their re-
moval more complex, if possible at all. Thus, relative to the existing
literature it may be more difficult to isolate SOX breaks and sepa-
rate SOX effects from other effects, and the graphs presented here
may not readily translate into a panel data analysis for visual ex-
amination. Preliminary data investigations indicate that non-stem
cell technology patent series also exhibit breaks around the time of
SOX.

Future work could examine SOX-related causes for the observed
break in more detail. The reduction in available funds for patenting
is one candidate. There are other possible links such as companies
avoiding patenting in order to avoid value creation and so remain
below the threshold for accelerated SOX filing (see Gao et al., 2009).
Larger theoretical models and multivariate empirical models may
expose the links.
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Appendix: Autoregressive diagnostics

Table A1: AIC and highest lag p-values by AR order
for negative binomial models of patent applications

US applicants Non-US applicants

Lag AIC Lag p-value AIC Lag p-value
1 424.6 0.09 375.1 0.05
2 426.6 0.9 374.4 0.1
3 427.5 0.31 376.2 0.61
4 426.7 0.08 378.1 0.83
5 428.6 0.77 379.9 0.67
6 430.3 0.62 381.9 0.98
7 432.1 0.66 382.6 0.24
8 432.6 0.21 382.2 0.13
9 434.3 0.63 383.6 0.44
10 436.3 0.95 384.5 0.28
11 437.4 0.33 386.4 0.73
12 438.9 0.49 387 0.24
13 436.6 0.04 388.3 0.42
14 434.5 0.05 390.3 0.93
15 435.8 0.38 384 0
16 434.5 0.07 386 0.96
17 436.5 0.94 386.5 0.23
18 434.7 0.05 386.8 0.19
19 435.7 0.32 388.5 0.62
20 437.4 0.58 389.2 0.25
21 438.5 0.34 391.1 0.76
22 437.9 0.1 393.1 0.93
23 438 0.17 394.8 0.57
24 433.3 0.13 390.8 0.17
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