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OPTIMAL STOPPING IN LÉVY MODELS, FOR NON-MONOTONE
DISCONTINUOUS PAYOFFS ∗

SVETLANA BOYARCHENKO† AND SERGEI LEVENDORSKǏI‡

Abstract. We give short proofs of general theorems about optimal entry and exit problems in
Lévy models, when payoff streams may have discontinuities and be non-monotone. As applications,
we consider exit and entry problems in the theory of real options, and an entry problem with an
embedded option to exit.
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1. Introduction. The paper presents a general approach for valuation of and
optimal exercise strategies for contingent claims of American type. Such problems
arise frequently in economics (real options) and finance (American options). See, e.g.,
[26, 12] for analysis of various situations and list of references.

In the majority of publications on optimal stopping problems, instantaneous pay-
off functions such as (eXt − K)+, (Xt − K)+, (K − eXt)+ and (K − Xt)+ were
considered; see, for example, [16] (random walks) and [7, 23, 2, 3, 1] (Lévy models).
In [8, 9, 10, 11, 13, 12], we developed a general approach to optimal stopping problems
based on the representation of an instantaneous payoff as the expected present value
(EPV) of a payoff stream. Under fairly weak conditions on the payoff stream, we de-
rived simple formulas for the optimal stopping time in the class of stopping times of
the threshold type; in [14, 15], the method was generalized to Markov-modulated Lévy
models. Later, the representation of the payoff as the EPV of a continuous stream
was used in [32, 17], and the monotonicity condition was relaxed. In [24, 25, 21, 17],
options with instantaneous payoffs (Xt)ν+ are studied; this type of payoffs leads to
non-trivial mathematical problems but it is rather artificial for applications in eco-
nomics and finance. The last remark concerns the examples in [32, 17] as well. For
general results on irreversible investment, see [28] and the bibliography therein. In
diffusion context, fairly general non-trivial results related to partially reversible in-
vestment problems and problems with non-smooth streams are available (see, e.g.,
[20, 22, 34] and the bibliography therein) but the methodology of these papers is
difficult to adjust to Lévy models.

In the present paper, we give short proofs of general stopping theorems for mea-
surable payoff streams and discontinuous instantaneous payoffs and relax the mono-
tonicity condition further. This allows us to consider options with more complicated
payoff structure. The results have natural counterparts in random walk models and
admit generalizations to regime-switching models and optimal stopping problems with
finite time horizon. This can be done as in [12, 14, 15] for the case of monotone payoff
functions.
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The usual disclaimer applies.
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The general methodology of the paper can be applied to analyze more involved
problems with strategic interactions and ambiguity, which were studied previously in
pure diffusion models (see, e.g., [27, 18, 19, 4] and the bibliography therein.)

The rest of the paper is organized as follows. In Section 2, we introduce the
necessary notation and recall general formulas for the EPV of streams which accrue
(or will start to accrue), when a certain boundary is reached or crossed, in terms of
the EPV operators under supremum and infimum processes. In Section 3, we prove
a series of general theorems for irreversible exit problems, which have solutions of
the threshold type, and, in Sections 4 and 5, we consider entry problems with payoff
streams and instantaneous payoffs, respectively. In Section 6, we apply the general
theorems derived in the main body of the paper to solve an investment problem with
the embedded option to exit. The main difficulty stems from the fact that once the
embedded problem of optimal exit is solved, the entry problem can be formulated as
an entry problem with the non-monotone payoff stream. Section 7 concludes.

2. Notation and auxiliary results.

2.1. Lévy processes: main objects. A Lévy process X = {Xt} on R is
defined in terms of the generating triplet (σ2, b, F (dx)), where σ2 is the (instanta-
neous) variance of the Brownian Motion (BM) component, F (dy) is the Lévy density
(density of jumps), and b ∈ R. The characteristic exponent ψ(ξ) is definable from
E
[
eiξXt

]
= e−tψ(ξ). An important general relation between ψ and L, the infinitesimal

generator of X, is Leixξ = −ψ(ξ)eixξ.
If X is a BM with embedded compound Poisson jumps or, more generally, if the

jump part is a finite variation process, then the Lévy-Khintchine formula for ψ can
be written in the form

ψ(ξ) =
σ2

2
ξ2 − ibξ +

∫
R\0

(1− eiξy)F (dy)(2.1)

(in the general case, the Lévy-Khintchine formula has an additional term, see, e.g.
[31]), the infinitesimal generator of X acts on sufficiently regular functions as follows

Lu(x) =
σ2

2
u′′(x) + bu′(x) +

∫
R\0

(u(x+ y)− u(x))F (dy),(2.2)

and b can be interpreted as the drift. As one of the simplest examples, the reader
may have in mind the double-exponential jump-diffusion (DEJD) model with

F (dy) = c+λ+e
−λ+y1(0,+∞)(y)dy + c−(−λ−)e−λ−y1(−∞,0)(y)dy,(2.3)

where λ− < 0 < λ+ and c± ≥ 0; if c+ = 0 (respectively, c− = 0), then there are no
positive (respectively, negative) jumps. Substituting (2.3) into (2.1), we find

ψ(ξ) =
σ2

2
ξ2 − ibξ − ic+ξ

λ+ − iξ
− ic−ξ

λ− − iξ
.(2.4)

For Lévy processes with the jump part of infinite variation, the action of L and
Lévy-Khintchine formula are more involved, and the interpretation of b is not so
straightforward. See, e.g., [31].

Given any q > 0, we let Tq ∼ Exp q denote an exponentially distributed random
variable, independent of X, with mean q−1. The normalized resolvent of X is given
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by

(Eqf)(x) = E[x+XTq
] := E

[∫ +∞

0

qe−qtf(x+Xt)dt
]
.(2.5)

We call Eq the expected present value operator (operator, which calculates the ex-
pected present value of a stream of payoffs) or EPV-operator. Note that

Eq = q(q − L)−1(2.6)

as operators in appropriate function spaces (see [10, 12, 11] for details).

2.2. Wiener-Hopf factorization and EPV operators. The supremum pro-
cess X and the infimum process X of X are given by by Xt = sup0≤s≤tXs, Xt =
inf0≤s≤tXs. Replacing in (2.5) X with X and X, we define the EPV-operators E±q
under supremum and infimum processes, respectively. It can be shown that Eqf and
E±q f are well-defined for a nonnegative measurable (or an arbitrary bounded measur-
able) function f on R. Being expectation operators, Eq and E±q are positive operators.
For illustration, the reader may have in mind the following simple examples:

Example 2.1. In the BM model, let β± = β±q be the positive and negative roots
of the characteristic equation

q −Ψ(β) = 0.(2.7)

Then E±q = I±β± , where I±β± denotes the following convolution operators with the
exponentially decaying kernels:

I+
β+u(x) =

∫ +∞

0

β+e−β
+yu(x+ y)dy,(2.8)

I−β−u(x) =
∫ 0

−∞
(−β−)e−β

−yu(x+ y)dy.(2.9)

Example 2.2. If X is spectrally negative, that is, there are no positive jumps,
then (2.7) has a unique positive root β+ = β+

q , and E+
q = I+

β+ ; if X is spectrally
positive, that is, there are no negative jumps, then (2.7) has a unique negative root
β− = β−q , and E−q = I−β− .

Example 2.3. In the case of DEJD model with the Lévy density (2.3), equation
(2.7) has two negative and two positive roots β±j = β±j (q), j = 1, 2, and

E±q =
∑
j=1,2

a±j (q)I±
β±j (q)

,(2.10)

where a±j (q) > 0 and a±1 (q) + a±2 (q) = 1 (see [11, 12]) For efficient realizations of the
EPV operators for a general Lévy process, see [6].

In the proofs of optimal stopping results, we will systematically use the following
properties of the EPV-operators.

Lemma 2.4. a) EPV-operators Eq and E±q are positive.
b) If u(x) = 0 ∀ x ∈ (−∞, h), then E−q u(x) = 0 ∀ x ∈ (−∞, h), and the same

statement holds with (−∞, h] instead of (−∞, h).
c) If u(x) = 0 ∀ x ∈ (h,+∞), then E+

q u(x) = 0 ∀ x ∈ (h,+∞), and the same
statement holds with [h,+∞) instead of (h,+∞).
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d) Statements b) and c) hold for the inverses (E−q )−1 and (E+
q )−1, respectively, if

u is sufficiently regular1 Note that in all cases, which we will consider, functions are
sufficiently regular so that d) is applicable. For details, see [9, 11, 12].

Denote

φ+
q (ξ) = E

[
eiξXTq

]
, φ−q (ξ) = E

[
e
iξXTq

]
.(2.11)

The form of the Wiener-Hopf factorization (WHF) formula that is commonly used in
probability theory is as follows:

E
[
eiξXTq

]
= E

[
eiξXTq

]
· E
[
e
iξXTq

]
, ∀ ξ ∈ R.(2.12)

Calculating the LHS in (2.12) and using (2.11), we obtain an equivalent form

q/(q + ψ(ξ)) = φ+
q (ξ)φ−q (ξ), ∀ ξ ∈ R.(2.13)

If the Lévy density exponentially decays at infinity, then (2.13) admits the analytic
continuation into a strip around the real axis.

The operator version of the Wiener-Hopf factorization states that

Eq = E+
q E−q = E−q E+

q ,(2.14)

as operators in spaces of measurable semi-bounded functions. In the proofs of optimal
stopping results, we will systematically use Lemma 2.4, equalities (2.6), (2.14) and
their corollaries such as

E+
q (q − L) = q(E−q )−1, E−q (q − L) = q(E+

q )−1.(2.15)

2.3. Stochastic expressions. For a stopping time τ and a measurable f , define

Vex(τ ; f ;x) = q−1E[1Tq<τf(x+XTq
)] =: E

[∫ τ−0

0

e−qtf(x+Xt)dt
]
,(2.16)

Ven(τ ; f ;x) = q−1E[1τ≤Tq
f(x+XTq

)] =: E
[∫ +∞

τ

e−qtf(x+Xt)dt
]
.(2.17)

To ensure finiteness, we assume that

E[|f(x+XTq )|] <∞ ∀ x;(2.18)

in some cases, this condition can be relaxed. Expression in (2.16) is the EPV of stream
f(Xt), which will be abandoned at time τ ; expression in (2.17) is the EPV of stream
f(Xt), which will start to accrue at time τ . If one chooses τ to maximize Vex(τ ; f ;x)
(resp., Ven(τ ; f ;x)), we obtain the exit and entry problem, respectively. Since

Vex(τ ; f ;x) = q−1Eqf(x) + Ven(τ ;−f ;x),(2.19)

1If process X has non-trivial BM component, then it is necessary to require that u is continuous
at h and piece-wise differentiable. Indeed, as the examples of BM and DEJD show, (E−q )−1 and

(E+q )−1 may have terms, which are differential operators of order 1. Therefore, for u = 1(−∞,0), we

have u(x) = 0, x ≥ 0, but (E±q )−1u(0) = d±δ, where δ is the Dirac delta function (unit mass at 0),
and d± are constants. If the process has no BM component, then the continuity condition at h can
be relaxed.
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the exit problem with stream f is equivalent to the entry problem with stream −f ,
and optimality conditions for one problem can be easily reformulated in terms of
optimality conditions for the other problem.

A natural generalization of both problems is optimal timing to swap one stream
for another one, that is, maximization of

V (τ ; f0, fn;x) = Vex(τ ; f0;x) + Ven(τ ; fn;x).(2.20)

This problem is equivalent to maximization of Vex(τ ; f0 − fn;x), or, alternatively, to
maximization of Ven(τ ; fn − f0;x). We leave to the reader evident reformulations of
the optimal stopping results for the exit and entry problems below for the case of the
option to swap one stream for another one.

For h ∈ R, denote by τ±h the first entrance time into [h,+∞) and (−∞, h],
respectively. The aim of the paper is to formulate general conditions, which ensure
that the optimal stopping time is of the threshold type, namely, of the form τ±h .
The main ingredient of the proof are the following general formulas established in
[8, 9, 10, 11, 13, 12] for wide classes of Lévy processes, and in [6] for an arbitrary Lévy
process.

Theorem 2.5. Let h ∈ R and let f be a measurable function, which is either
semi-bounded or satisfies (2.18). Then

Vex(τ−h ; f ;x) = q−1E−q 1(h,+∞)E+
q f(x),(2.21)

Ven(τ−h ; f ;x) = q−1E−q 1(−∞,h]E+
q f(x),(2.22)

Vex(τ+
h ; f ;x) = q−1E+

q 1(−∞,h)E−q f(x),(2.23)

Ven(τ+
h ; f ;x) = q−1E+

q 1[h,+∞)E−q f(x).(2.24)

For completeness, we recall the proof, which is similar to the standard proof of (2.12).
Assuming that X0 = 0, we use the obvious identity XTq

= (XTq
−XTq

) + XTq
, two

important facts [29, p. 81]:
(i) the random variables XTq

and XTq
−XTq

are identical in law,
(ii) the random variables XTq

and XTq
−XTq

are independent,
and definitions of the EPV-operators:

qVex(τ−h ; f ;x) = E[1τ−h <Tq
f(x+XTq

)]

= E[1x+XTq
>hf(x+XTq

+ (XTq −XTq
))]

= E[1x+XTq
>hE+

q f(x+XTq
)]

= E−q 1(h,+∞)E+
q f(x).

The result is (2.21). Using (2.14), we derive

E−q 1(h,+∞)E+
q f(x) = Eqf(x) + E−q 1(−∞,h]E+

q (−f)(x),

therefore, applying (2.19) and (2.21), we obtain (2.22). Finally, changing the direction
on the real axis and replacing the infimum process with the supremum process and
vice versa, we derive (2.22) and (2.24).

2.4. Optimal stopping lemmas. From now on, the standing assumptions are
Assumption 1. Function f is measurable and satisfies (2.18).
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Assumption 2. X is a Lévy process satisfying (ACP)-property, with non-trivial
supremum and infimum processes.

In [31, pp.288-289], the reader can find several equivalent definitions of (ACP)-
property. One of these is: for any f ∈ L∞(R), Eqf is continuous. A sufficient condition
is: for some t > 0, the transition measure PXt

is absolutely continuous.
For a Borel set B, let τB be the first entrance time into B. The proofs of the

following general lemmas are based on the Dynkin formula, which is applicable to
function V if LV is universally measurable. The definition of a universally measur-
able function can be found in [31]. For our purposes, it suffices to know that a Borel
function is universally measurable. In the optimal stopping lemmas and theorems
below, we will formulate conditions of optimality in class M of stopping times satis-
fying τ <∞, a.s., and, under weaker conditions, in the class of stopping times of the
threshold type.

Lemma 2.6. Let B be a Borel set such that

Wex(τB ; f ; ·) := (q − L)Vex(τB ; f ; ·) is universally measurable;(2.25)
Wex(τB ; f ;x) = f(x), x ∈ R \B, a.e.;(2.26)
Wex(τB ; f ;x) ≥ f(x), x ∈ B, a.e.;(2.27)
Vex(τB ; f ;x) ≥ 0, ∀ x.(2.28)

Then τB maximizes Vex(τ ; f ; ·) in M.
Proof. Let τ be a stopping time. Then, using Dynkin’s formula and (2.26)–(2.28),

we obtain

Vex(τB ; f ;x) = E
[∫ τ

0

e−qt(q − L)Vex(τB ; f ;x+Xt)dt
]

+ E
[
e−qτVex(τB ; f ;Xτ )

]
≥ E

[∫ τ

0

e−qtf(x+Xt)dt
]
.

With τ = τB , we obtain the equality, which means that τB is optimal. For the entry
problem, the evident analog is

Lemma 2.7. Let B be a Borel set such that

Wen(τB ; f ; ·) := (q − L)Ven(τB ; f ; ·) is universally measurable;(2.29)
Wen(τB ; f ;x) = 0, x ∈ R \B, a.e.;(2.30)
Wen(τB ; f ;x) ≥ 0, x ∈ B, a.e.;(2.31)
Ven(τB ; f ;x) ≥ q−1Eqf(x), ∀ x.(2.32)

Then τB maximizes Ven(τ ; f ; ·) in M.
Remark 2.8. a) Lemma 2.6 and (2.25)– (2.28) with f are equivalent to Lemma

2.7 and (2.29)–(2.32) with −f on the strength of (2.19).
b) If X satisfies (ACP)-property and B is closed, then (2.26) and (2.30) follow

from the generalization of the Black-Scholes equation [9, Thm. 2.12]).

3. Irreversible exit.

3.1. Exit problem: optimality conditions for τ−h . Let there exist h such
that

E+
q f(x) ≤ 0, x ≤ h, and E+

q f(x) ≥ 0, x ≥ h.(3.1)
6



In the remaining part of the subsection, we use Lemma 2.6 to derive several groups
of sufficient conditions of optimality of τ−h .

Theorem 3.1. Let there exist h ∈ R such that (3.1) holds. Then
(a) τ−h maximizes Vex(τ ; f ;x) in the class of stopping times of the threshold type.
(b) If, in addition,

f(x) +
∫ ∞
h−x

Vex(τ−h ; f ;x+ y)F (dy) ≤ 0, x < h, a.e.,(3.2)

then τ−h maximizes Vex(τ ; f ;x) in M.
Denote the LHS in (3.2) by Uex(τ−h ; f ;x), and call this function the remorse index:

if the remorse index is non-positive in the action region, the exit is optimal, and there
is no reason to regret the decision to exit.

Proof. (a) If h is the exit boundary, then Vex(τ ; f ;x) is given by (2.21). Since E−q
is a positive operator, the RHS in (2.21) is maximized if and only if w := 1(h,+∞)E+

q f
is maximized. Condition (3.1) ensures that w is maximized.

(b) It follows from a generalization of the Black-Scholes equation [9, Thm. 2.12]
that (2.26) holds. Condition (2.28) is immediate from (2.21) and (3.1). Next, for
x ≤ h, we have Vex(τ−h ; f ;x) = 0, therefore, taking (2.2) into account, we conclude
that (2.27) is equivalent to (3.2). Since f and Vex(τ−h ; f ; ·) are measurable, Uex(τ−h ; f ; ·)
is a measurable function on (−∞, h). Hence,

Wex(τ−h ; f ; ·) = f − Uex(τ−h ; f ; ·)

is measurable on (−∞, h). Since Wex(τ−h ; f ;x) = f(x), x > h, and f is measurable,
(2.25) holds. Below, we discuss simple conditions, which imply the most involved
condition (3.2), hence, optimality of τ−h in M.

Theorem 3.2. Let there exist h ∈ R such that (3.1) holds, and let Uex(τ−h ; f ; ·)
be non-decreasing on (−∞, h). Then (3.2) holds, and τ−h maximizes Vex(τ ; f ;x) in
M.

Remark 3.3. The main idea is that under a weak condition (3.1), the remorse
index is non-positive in some neighborhood of the boundary of the inaction region.
The monotonicity condition ensures that the remorse index is non-positive on the
whole action region. The advantage of the monotonicity condition is that, in many
cases, this condition can be easily verified.

Proof. Since Uex(τ−h ; f ; ·) is non-decreasing on (−∞, h), it suffices to prove that
Uex(τ−h ; f ;h−0) ≤ 0. Assume that Uex(τ−h ; f ;h−0) > 0. Then there exists b < h such
that Uex(τ−h ; f ;x) > 0, b < x < h. To see that this is impossible, extend Uex(τ−h ; f ;x)
by zero to a function on R. Then, a.e.,

E+
q Uex(τ−h ; f ;x) = E+

q f(x)− E+
q Wex(τ−h ; f ;x)

= E+
q f(x)− E+

q (q − L)q−1E−q 1(h,+∞)E+
q f(x).

Using Eq = q(q − L)−1 and the Wiener-Hopf factorization formula (2.14), we obtain

E+
q Uex(τ−h ; f ;x) = 1(−∞,h]E+

q f(x).(3.3)

Due to (3.1), the RHS in (3.3) is non-positive, but, if Uex(τ−h ; f ;x) > 0, for b < x < h
(and Uex(τ−h ; f ;x) = 0, for x ≥ h), then the LHS is positive at some x, contradiction.

In the next three theorems, we give several sets of conditions on f , Vex(τ−h ; f ;x)
and F (dy), which imply that Uex(τ−h ; f ;x) is non-decreasing. The simplest sufficient
condition is given in

Theorem 3.4. Let f be a non-decreasing function which changes sign. Then
7



(i) there exists h such that (3.1) holds, and
(ii) τ−h maximizes Vex(τ ; f ;x) in M.

Proof. Since f is non-decreasing and changes sign, E+
q f enjoys these properties,

hence, h satisfying (3.1) exists. From (2.21) and positivity of E+
q , it follows that

Vex(τ−h ; f ;x) is non-decreasing, hence, Uex(τ−h ; f ;x) is non-decreasing.
Theorem 3.5. Let the following three conditions hold

(i) there exists h ∈ R such that (3.1) holds;
(ii) f is non-decreasing on (−∞, h);

(iii) Vex(τ−h ; f ;x) is non-decreasing on (h,+∞).
Then τ−h maximizes Vex(τ ; f ;x) in M.

Proof. Under conditions (ii)-(iii), Uex(τ−h ; f ;x) is non-decreasing on (−∞, h).
Theorem 3.6. Let the following three conditions hold

(i) there exists h ∈ R such that (3.1) holds;
(ii) f is non-decreasing on (−∞, h);

(iii) measure F (dy) is non-increasing on (0,+∞) in the following sense: for any
Borel set A ⊂ (0,+∞) and x > 0, F (A+ x) ≤ F (A).

Then τ−h maximizes Vex(τ ; f ;x) in M.
Proof. Changing the variables x+ y 7→ y, we obtain∫ ∞

h−x
Vex(τ−h ; f ;x+ y)F (dy) =

∫ ∞
h

Vex(τ−h ; f ; y)F (dy − x).

On the strength of (3.1) and (2.21), Vex(τ−h ; f ; y) ≥ 0, y ≥ h, and, on the strength of
(iii), F (dy − x) does not decrease as x increases. Hence, the second term in (3.2) is
non-decreasing on (−∞, h). The first term is non-decreasing by (ii).

Remark 3.7. If the restriction of F (dy) on (0,+∞) has the density: F (dy) =
p+(y)dy, then (iii) is equivalent to the condition that p+ in non-increasing on (0,+∞).
Monotonicity conditions can be relaxed further.

Theorem 3.8. Let (3.1) hold, and let there exist γ ∈ R such that Uex,γ(τ−h ; f ;x) :=
eγxUex(τ−h ; f ;x) is non-decreasing on (−∞, h). Then τ−h is an optimal exit time in
M.

Proof. Multiplying (3.2) by eγx, we obtain an equivalent condition Uex,γ(τ−h ; f ;x) ≤
0, ∀ x < h, a.e. If Uex(τ−h ; f ;h − 0) > 0, then Uex(τ−h ; f ;x) > 0 in some left neigh-
borhood of h, which contradicts (3.1) (the proof is the same as in Theorem 3.2).
Thus, Uex(τ−h ; f ;h − 0) ≤ 0, Uex,γ(τ−h ; f ;h − 0) ≤ 0, and Uex,γ(τ−h ; f ;x) ≤ 0, x < h.
Equivalently, (3.2) holds, and τ−h is an optimal exit time by Theorem 3.1.

Theorem 3.9. Let (3.1) hold, and let there exist γ ∈ R such that
(i) fγ(x) := eγxf(x) is non-decreasing on (−∞, h);

(ii) Vex,γ(τ−h ; f ;x) := eγxVex(τ−h ; f ;x) is non-decreasing on (h,+∞).
Then τ−h is an optimal exit time in M.

Proof. We multiply (3.2) by eγx and obtain an equivalent condition

fγ(x) +
∫ ∞
h−x

Vex;γ(τ−h ; f ;x+ y)e−γyF (dy) ≤ 0, x < h a.e.(3.4)

Under conditions (i)-(ii), both terms on the LHS are non-decreasing; hence, remorse
index Uex,γ(τ−h ; f ;x) is non-decreasing as well.

Example 3.10. Consider a multiplant firm in a declining industry. For simplicity,
in this example, the scrap value is 0. As the stochastic factor decreases, the profit flow
falls, but, at sufficiently low levels of profits, the firm may start a capacity-reduction
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process, and the profit flow will increase because the multiplant owner internalizes the
positive externality (price rise) that closing one of her plants has on her return from
others (see [33] for exit with multiplant firms without uncertainty). However, under
fairly general conditions, this anticipated improvement of fortune makes no impact
on the exit decision of the firm.2

To be more specific, we assume that f(x) = −A − eαx, x ≤ 0, and f(x) =
ex − B, x > 0, where A ≥ 0, α,B > 0, −A − 1 ≤ 1 − B, α ≤ 1 + A, and κ+

q (1) :=

E[eXTq ] < B.
Then (2.18) holds, and (3.1) is satisfied with h = ln

(
B/κ+

q (1)
)
> 0. Set γ =

−α/(1 +A). Then function fγ is non-decreasing. Indeed, for x < 0,

e−γxf ′γ(x) = e−γx(−γAeγx − (γ + α)e(γ+α)x) ≥ −γA− γ − α = 0,

since γ < 0 and γ + α ≥ 0. For x > 0, f ′γ(x) ≥ 0 because γ ∈ [−1, 0].
Define operators E±,γq = eγxE±q e−γx. Both are convolution operators with non-

negative (generalized) kernels. Since fγ is non-decreasing,

Vex,γ(τ−h ; f ; ·) = q−1E−,γq 1(h,+∞)E+,γ
q fγ

is non-decreasing as well. Thus, conditions (ii)-(iii) of Theorem 3.9 are satisfied, and
τ−h is an optimal exit time.

Remark 3.11. a) Condition “E+
q f is non-decreasing” fails in a neighborhood of

−∞, and this condition is imposed in [17] for an equivalent entry problem with the
reward function −f .

b) We allow f to be discontinuous at 0, which can be interpreted as a drop of
profitability.

Theorem 3.12. Let (3.1) hold, and let there exist γ ∈ R such that
(i) fγ(x) := eγxf(x) is non-decreasing on (−∞, h);

(ii) measure e−γyF (dy) is non-increasing on (0,+∞)
Then τ−h is an optimal exit time in M.

Proof. Since Vex,γ(τ−h ; f ;x) ≥ 0 for all x, the second term on the LHS of (3.4) is
non-decreasing; the first term is non-decreasing by (i).

Example 3.13. Theorem 3.12 is applicable to a firm, whose profit flow f(Xt)
is subject to adverse shocks at high levels of the underlying stochastic factor (e.g.,
demand). For instance, at a certain level, competitors using alternative technologies
will start entering the market, so that the profit flow drops and may even decrease
further because of the flow of new competitors; the other possibility is a profit stream
that may become negative over a certain interval at high levels of the stochastic factor
but is positive in a neighborhood of +∞. Then (3.1) can be satisfied.

At low levels, we may allow for discontinuities and non-monotonicity as in Exam-
ple 3.10, and allow for non-monotonicity of Vex(τ−h ; f ;x) if condition (ii) of Theorem
3.12 is satisfied.

Theorems above allow for non-monotone payoffs but exclude jumps of the payoff
down in the action region. However, this kind of situation is important for exit
problems in declining industry with firms of finite size: as some firms exit, the market

2For example, in case of a duoply, if the capacity of each of the two plants of the two plant
firm is higher than the capacity of a single plant firm, then the multiplant firm closes both of its
plants before the other firm closes its plant, see [33]. We leave for the future study construction
of an industry equilibrium with infinitesimally small heterogeneous firms, which supports the price
dynamics with these properties.
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share of the remaining firms, hence, their profits, jump up. Below, we formulate
and prove two simple analogs of Theorems 3.6 and 3.12, which allow one to consider
payoffs with jumps down. For simplicity, we consider the case of only one jump down
in the action region; the reader can easily generalize the theorem below to the case of
several jumps.

Theorem 3.14. Let the following four conditions hold
(i) there exists h ∈ R such that (3.1) holds;

(ii) there exists h′ < h such that f is non-decreasing on (−∞, h′) and on (h′, h);
(iii) Uex(τ−h ; f ;h′ − 0) ≤ 0;
(iv) measure F (dy) is non-increasing on (0,+∞).

Then τ−h maximizes Vex(τ ; f ;x) in M.
Proof. The proof of Theorem 3.6 can be repeated word by word to prove that

the no-remorse index Uex(τ−h ; f ;x) does not decrease on (−∞, h′) and on (h′, h).
Since Uex(τ−h ; f ;h′ − 0) ≤ 0, we have Uex(τ−h ; f ;x) ≤ 0, x < h′. Finally, the main
argument used in the proof of Theorem 3.2 can be repeated word by word to prove
that Uex(τ−h ; f ;x) ≤ 0, for x ∈ (h′, h). Modifying the proof of Theorem 3.12, we
derive from Theorem 3.14

Theorem 3.15. Let there exist γ ∈ R and h′ < h such that
(i) (3.1) holds;

(ii) fγ is non-decreasing on (−∞, h′) and on (h′, h);
(iii) Uex(τ−h ; f ;h′ − 0) ≤ 0;
(iv) measure e−γyF (dy) is non-increasing on (0,+∞).

Then τ−h is an optimal exit time in M.

3.2. Exit problem: optimality conditions for τ+
h . Changing the direction

on the real axis, and, therefore, replacing the supremum process and non-decreasing
functions with the infimum process and non-increasing functions, we obtain the coun-
terparts of the results of Subsection 3.1. The analog of (3.1) is

E−q f(x) ≥ 0, x ≤ h, and E−q f(x) ≤ 0, x ≥ h.(3.5)

Condition (3.2) becomes: on (h,+∞), a.e.,

f(x) +
∫ h−x

−∞
Vex(τ+

h ; f ;x+ y)F (dy) ≤ 0.(3.6)

Denote the LHS in (3.6) by Uex(τ+
h ; f ;x). The interpretation of this function as the

remorse index is the same as in the previous subsection – only the form of the action
region is different.

Theorem 3.16. Let there exist h ∈ R such that (3.5) holds. Then
(a) τ+

h maximizes Vex(τ ; f ;x) in the class of stopping times of the threshold type.
(b) If, in addition, (3.6) holds, then τ+

h maximizes Vex(τ ; f ;x) in M.
Theorem 3.17. Let there exist h ∈ R such that (3.5) holds, and let Uex(τ+

h ; f ; ·)
be non-increasing on (h,+∞). Then (3.6) holds, and τ+

h maximizes Vex(τ ; f ;x) in
M. In the next three theorems, we give several sets of conditions on f , Vex(τ+

h ; f ;x)
and F (dy), which imply that Uex(τ+

h ; f ;x) is non-decreasing. The simplest sufficient
condition is given in

Theorem 3.18. Let f be a non-increasing function, which changes sign. Then
(i) there exists h such that (3.5) holds, and

(ii) τ+
h maximizes Vex(τ ; f ;x) in M.

Theorem 3.19. Let the following three conditions hold
10



(i) there exists h ∈ R such that (3.5) holds;
(ii) f is non-increasing on (h,+∞);

(iii) Vex(τ+
h ; f ;x) is non-increasing on (−∞, h).

Then τ+
h maximizes Vex(τ ; f ;x) in M.

Theorem 3.20. Let the following three conditions hold
(i) there exists h ∈ R such that (3.5) holds;

(ii) f is non-increasing on (h,+∞);
(iii) measure F (dy) is non-decreasing on (−∞, 0) in the following sense: for any

Borel set A ⊂ (−∞, 0) and x < 0, F (A+ x) ≤ F (A).
Then τ+

h maximizes Vex(τ ; f ;x) in M.
Remark 3.21. If the restriction of F (dy) on (−∞, 0) has the density: F (dy) =

p−(y)dy, then (iii) is equivalent to the condition that p− in non-decreasing on (−∞, 0).
Monotonicity conditions can be relaxed further.

Theorem 3.22. Let (3.5) hold, and let there exist γ ∈ R such that Uex,γ(τ+
h ; f ;x) :=

eγxUex(τ+
h ; f ;x) is non-increasing on (h,+∞). Then τ+

h is an optimal exit time in
M.

Theorem 3.23. Let (3.5) hold, and let there exist γ ∈ R such that
(i) fγ(x) := eγxf(x) is non-increasing on (h,+∞);

(ii) Vex,γ(τ+
h ; f ;x) := eγxVex(τ+

h ; f ;x) is non-increasing on (−∞, h).
Then τ+

h is an optimal exit time in M.
Theorem 3.24. Let (3.5) hold, and let there exist γ ∈ R such that

(i) fγ(x) := eγxf(x) is non-increasing on (h,+∞);
(ii) measure e−γyF (dy) is non-decreasing on (−∞, 0) .

Then τ+
h is an optimal exit time in M. We leave to the reader generalizations of

Theorems 3.20 and 3.24 for the case of the payoff f(x), which jumps up at some point
in the action region (cf. Theorems 3.14 and 3.15).

4. Irreversible entry. Assumptions 1-2 continue to hold.

4.1. Entry problem: optimality conditions for τ−h . The optimal entry the-
orems are obtained by trivial reformulations of the optimal exit theorems because

Ven(τ ; f ;x) = q−1Eqf(x) + Vwait.en(τ ; f ;x),

where Vwait.en(τ ; f ;x) = Vex(τ ;−f ;x) is the value of waiting to enter (until time τ).
Thus, we can use the theorems for the exit problem with −f and Vwait.en(τ ; f ;x) =
Vex(τ ;−f ;x) instead of f and Vex(τ ; f ;x). Each statement of the form “f is non-
decreasing” becomes “f is non-increasing”, and (3.1) and (3.2) become

E+
q f(x) ≥ 0, x ≤ h, and E+

q f(x) ≤ 0, x ≥ h,(4.1)

and

− f(x) +
∫ ∞
h−x

Vwait.en(τ−h ; f ;x+ y)F (dy) ≤ 0, x < h, a.e.,(4.2)

respectively. An equivalent form of (4.2) in terms of f only is

f(x) + q−1

∫ ∞
h−x

(E−q 1(h,+∞)E+
q f)(x+ y)F (dy) ≥ 0, x < h, a.e..(4.3)

Denote the LHS in (4.2) by Uen(τ−h ; f ;x), and call this function the remorse index: if
the remorse index is non-positive in the action region, the exit is optimal, and there
is no reason to regret the decision to enter.

Theorem 4.1. Let there exist h ∈ R such that (4.1) holds. Then
11



(a) τ−h maximizes Ven(τ ; f ;x) in the class of stopping times of the threshold type.
(b) If, in addition, (4.2) holds, then τ−h maximizes Ven(τ ; f ;x) in M.

Theorem 4.2. Let there exist h ∈ R such that (4.1) holds, and let Uen(τ−h ; f ; ·) be
non-decreasing on (−∞, h). Then (4.2) holds, and τ−h maximizes Ven(τ ; f ;x) in M.
In the next three theorems, we give several sets of conditions on f , Vwait.en(τ−h ; f ;x)
and F (dy), which imply that Uen(τ−h ; f ; ·) is non-decreasing. The simplest sufficient
condition is given in

Theorem 4.3. Let f be a non-increasing function, which changes sign. Then
(i) there exists h such that (4.1) holds, and

(ii) τ−h maximizes Ven(τ ; f ;x) in M.
Theorem 4.4. Let the following three conditions hold

(i) there exists h ∈ R such that (4.1) holds;
(ii) f is non-increasing on (−∞, h);

(iii) Vwait.en(τ−h ; f ;x) is non-decreasing on (h,+∞).
Then τ−h maximizes Ven(τ ; f ;x) in M.

Theorem 4.5. Let the following three conditions hold
(i) there exists h ∈ R such that (4.1) holds;

(ii) f is non-increasing on (−∞, h);
(iii) measure F (dy) is non-increasing on (0,+∞).
Then τ−h maximizes Ven(τ ; f ;x) in M. Monotonicity conditions can be relaxed
further.

Theorem 4.6. Let (4.1) hold, and let there exist γ ∈ R such that Uen,γ(τ−h ; f ; ·) :=
eγxUen(τ−h ; f ; ·) is non-decreasing on (−∞, h). Then τ−h is an optimal entry time in
M.

Theorem 4.7. Let (4.1) hold, and let there exist γ ∈ R such that
(i) fγ(x) := eγxf(x) is non-increasing on (−∞, h);

(ii) Vwait.en,γ(τ−h ; f ;x) := eγxVwait.en(τ−h ; f ;x) is non-decreasing on (h,+∞).
Then τ−h is an optimal entry time in M.

Theorem 4.8. Let (4.1) hold, and let there exist γ ∈ R such that
(i) fγ(x) := eγxf(x) is non-increasing on (−∞, h);

(ii) measure e−γyF (dy) is non-increasing on (0,+∞)
Then τ−h is an optimal entry time in M. We leave to the reader generalizations of
Theorems 4.5 and 4.8 for the case of the payoff f(x), which jumps up at some point
in the action region (cf. Theorems 3.14 and 3.15).

4.2. Entry problem: optimality conditions for τ+
h . We use the theorems

for the exit problem in Subsection 3.2 with −f and Vwait.en(τ ; f ;x) = Vex(τ ;−f ;x) in-
stead of f and Vex(τ ; f ;x). Each statement of the form “f is non-increasing” becomes
“f is non-decreasing”, and (3.5) and (3.6) become

E−q f(x) ≤ 0, x ≤ h, and E−q f(x) ≥ 0, x ≥ h,(4.4)

and

− f(x) +
∫ h−x

−∞
Vwait.en(τ+

h ; f ;x+ y)F (dy) ≤ 0, x > h, a.e.,(4.5)

respectively. An equivalent form of (4.5) in terms of f only is

f(x) + q−1

∫ h−x

−∞
(E+
q 1(−∞,h)E−q f)(x+ y)F (dy) ≥ 0, x > h, a.e..(4.6)
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The LHS in (4.5) is denoted Uen(τ+
h ; f ;x) and called the remorse index. The interpre-

tation is the same as in the preceding subsection only the action region is different.

Theorem 4.9. Let there exist h ∈ R such that (4.4) holds. Then
(a) τ+

h maximizes Ven(τ ; f ;x) in the class of stopping times of the threshold type.
(b) If, in addition, (4.5) holds, then τ+

h maximizes Ven(τ ; f ;x) in M.
Theorem 4.10. Let there exist h ∈ R such that (4.4) holds, and let Uen(τ+

h ; f ; ·)
be non-increasing on (h,+∞). Then (4.5) holds, and τ+

h maximizes Ven(τ ; f ;x) inM.
In the next three theorems, we give several sets of conditions on f , Vwait.en(τ+

h ; f ;x)
and F (dy), which imply that Uen(τ+

h ; f ; ·) is non-decreasing. The simplest sufficient
condition is given in

Theorem 4.11. Let f be a non-decreasing function, which changes sign. Then
(i) there exists h such that (4.4) holds, and

(ii) τ+
h maximizes Ven(τ ; f ;x) in M.

Theorem 4.12. Let the following three conditions hold
(i) there exists h ∈ R such that (4.4) holds;

(ii) f is non-decreasing on (h,+∞);
(iii) Vwait.en(τ+

h ; f ;x) is non-increasing on (−∞, h).
Then τ+

h maximizes Ven(τ ; f ;x) in M.
Theorem 4.13. Let the following three conditions hold

(i) there exists h ∈ R such that (4.4) holds;
(ii) f is non-decreasing on (h,+∞);

(iii) measure F (dy) is non-decreasing on (−∞, 0).
Then τ+

h maximizes Ven(τ ; f ;x) in M. Monotonicity conditions can be relaxed
further.

Theorem 4.14. Let (4.4) hold, and let there exist γ ∈ R such that Uen,γ(τ+
h ; f ;x) :=

eγxUen(τ+
h ; f ;x) is non-increasing on (h,+∞). Then τ+

h is an optimal entry time in
M.

Theorem 4.15. Let (4.4) hold, and let there exist γ ∈ R such that
(i) fγ(x) := eγxf(x) is non-decreasing on (h,+∞);

(ii) Vwait.en,γ(τ+
h ; f ;x) := eγxVwait.en(τ+

h ; f ;x) is non-increasing on (−∞, h).
Then τ+

h is an optimal entry time in class M.
Theorem 4.16. Let (4.4) hold, and let there exist γ ∈ R such that

(i) fγ(x) := eγxf(x) is non-decreasing on (h,+∞);
(ii) measure e−γyF (dy) is non-decreasing on (−∞, 0).

Then τ+
h is an optimal entry time in class M.

Example 4.17. Consider the investment into a plant, which will produce a widget
of a new kind. The investment cost I is fixed, and the profit flow is an increasing
function of the underlying stochastic factor, say, the demand for new widgets of this
kind. However, as the demand increases, competitors enter the market, with newish
versions of the widget. Hence, eventually, the profit flow will start to decline. We
assume that the profit flow will stabilize at level A ≥ qI. To be more specific, we model
the profit flow as Π(x) = Aex, x ≤ 0, Π(x) = xe−x + A, x > 0. The entry problem
is equivalent to the option with the non-monotone payoff stream f(x) = Π(x) − qI.
Assume that κ−q (1) := E[eXTq ] > qI/A; then, on the negative half-axis, there exists
a unique h = ln(qI/(Aκ−q (1)) such that E−q f(x) ≤ 0, x ≤ h, E−q f(x) ≥ 0, x ∈ (h, 0).
Since f(x) ≥ f1(x) := Amin{ex, 1}, and f1 is non-decreasing on R, we have E−q f1(0) ≤
E−q f1(x) ≤ E−q f(x), x ≥ 0; but E−q f1(0) = E−q f(0) > 0. Hence, (4.4) is satisfied.
Clearly, there exist γ > 0 such that xe(γ−1)x + (A− qI)eγx is increasing; the smallest
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one is γ = 1/(1+A−qI). If e−γyF (dy) is non-decreasing on (−∞, 0), all conditions of
Theorem 4.13 are satisfied, and h = ln(qI/(AE[eXTq ]) is the optimal entry threshold.
We leave to the leader the generalizations of Theorems 4.13 and 4.16 for the case of
the payoff f(x), which jumps down at some point in the action region (cf. Theorems
3.14 and 3.15).

5. Problems with instantaneous payoffs.

5.1. Relation to entry problems. In this section, we consider an option to
get an instantaneous payoff G(Xt). If τ is an optimal exercise time, then the option
value is

Vinst(τ ;G;x) = Ex[e−qτG(Xτ )].

If G(Xt) can be represented as the EPV of a stream f(Xt): G(x) = q−1Eqf(x),
then the reformulation of the results for the entry problems is straightforward. In
particular, using the Wiener-Hopf factorization formula Eq = E−q E+

q , we can write
formally E±q f = q(E∓q )−1G, and derive from (2.23) and (2.24)

Vinst(τ−h ;G;x) = E−q 1(−∞,h](E−q )−1G(x),(5.1)

Vinst(τ+
h ;G;x) = E+

q 1[h,+∞)(E+
q )−1G(x).(5.2)

Under weak regularity conditions on G and process X, one can define w±(x) =
(E±q )−1G(x) without resorting to f and prove (5.1) and (5.2) (see [9, 12, 11] for a
detailed analysis). For instance, if, on a semi-bounded interval (A,+∞), G(x) = eβx,
and κ+

q (β) := E
[
eβXTq

]
<∞, then

w+(x) = (E+
q )−1G(x) = κ+

q (β)−1eβx, x > A.(5.3)

Similarly, if, on a semi-bounded interval (−∞,−A), G(x) = eβx, and κ−q (β) :=

E
[
e
βXTq

]
<∞, then

w−(x) = (E−q )−1G(x) = κ−q (β)−1eβx, x < −A.(5.4)

For more general G, w± can be calculated using the Fourier transform technique [9].
Another possibility, which can be realized for wide classes of Lévy processes, is to
represent (E±q )−1G(x) in the form

(E+
q )−1G(x) = c+q0G(x)− c+q1G′(x)−

∫ +∞

0

G(x+ y)k+−
q (y)dy,(5.5)

(E−q )−1G(x) = c−q0G(x)− c−q1G′(x)−
∫ 0

−∞
G(x+ y)k−−q (y)dy,(5.6)

where c±q0 and c±q1 are constants, and k±−q are sufficiently regular functions on (0,+∞)
and (0,−∞), respectively. In BM model, c±q0 = 1, c±q1 = 1/β±, and k±−q (y) = 0; in
DEJD model,

c±q0 =
λ±(β±1 + β±2 )

β±1 β
±
2

, c±q1 =
λ±

β±1 β
±
2

, k±−q (y) =
∓λ±(λ± − β±1 )(λ± − β±2 )

β±1 β
±
2

e−λ±y.

For Lévy processes with the Lévy density given by exponential polynomials on positive
and negative half-axes, representations (5.5) and (5.6) are derived in [9, 12, 11].
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5.2. Optimality of τ−h . The results below are obtained from the results of Sub-
section 4.1 replacing f , E+

q f , Ven(τ ; f ;x) and Vwait.en(τ ; f ;x) with (q−L)G, (E−q )−1G,
Vinst(τ ;G;x) and Vwait.en(τ ;G;x) = Vinst(τ ;G;x) − G(x), respectively. To avoid any
changes in the proofs, we assume that there exists a measurable f satisfying the no-
bubble condition (2.18) such that G = q−1Eqf although this condition can be relaxed.
Conditions (4.1) and (4.2) become

(E−q )−1G(x) ≥ 0, x ≤ h, and (E−q )−1G(x) ≤ 0, x ≥ h,(5.7)

and

− (q − L)G(x) +
∫ ∞
h−x

Vwait.inst(τ−h ;G;x+ y)F (dy) ≤ 0, x < h, a.e.,(5.8)

respectively. An equivalent form of (5.8) in terms of G only is

(q − L)G(x) +
∫ ∞
h−x

(E−q 1(h,+∞)(E−q )−1G)(x+ y)F (dy) ≥ 0, x < h, a.e..(5.9)

The LHS in (5.8) is denoted Uinst(τ−h ; f ;x) and called the remorse index.
Theorem 5.1. Let there exist h ∈ R such that (5.7) holds. Then

(a) τ−h maximizes Vinst(τ ; f ;x) in the class of stopping times of the threshold type.
(b) If, in addition, (5.8) holds, then τ−h maximizes Vinst(τ ; f ;x) in M.

Theorem 5.2. Let there exist h ∈ R such that (5.7) holds, and let Uinst(τ−h ; f ; ·)
be non-decreasing on (−∞, h). Then (5.8) holds, and τ−h maximizes Vinst(τ ; f ;x)
in M. In the next three theorems, we give several sets of conditions on G,
Vwait.inst(τ−h ;G;x) and F (dy), which imply that Uinst(τ−h ; f ; ·) is non-decreasing. The
simplest sufficient condition is given in

Theorem 5.3. Let (q − L)G be a non-increasing function, which changes sign.
Then

(i) there exists h such that (5.7) holds, and
(ii) τ−h maximizes Vinst(τ ;G;x) in M.

Theorem 5.4. Let the following three conditions hold
(i) there exists h ∈ R such that (5.7) holds;

(ii) (q − L)G is non-increasing on (−∞, h);
(iii) Vwait.inst(τ−h ;G;x) is non-decreasing on (h,+∞).
Then τ−h maximizes Vinst(τ ;G;x) in M.

Theorem 5.5. Let the following three conditions hold
(i) there exists h ∈ R such that (5.7) holds;

(ii) (q − L)G is non-increasing on (−∞, h);
(iii) measure F (dy) is non-increasing on (0,+∞).
Then τ−h maximizes Vinst(τ ;G;x) in M. Monotonicity conditions can be relaxed
further.

Theorem 5.6. Let (5.7) hold, and let there exist γ ∈ R such that Uinst,γ(τ−h ; f ;x) :=
eγxUinst(τ−h ; f ;x) is non-decreasing on (−∞, h). Then τ−h maximizes Vinst(τ ;G;x) in
M.

Theorem 5.7. Let (5.7) hold, and let there exist γ ∈ R such that
(i) ((q − L)G)γ(x) := eγx(q − L)G(x) is non-increasing on (−∞, h);

(ii) Vwait.inst,γ(τ−h ;G;x) := eγxVwait.inst(τ−h ;G;x) is non-decreasing on (h,+∞).
Then τ−h maximizes Vinst(τ ;G;x) in M.

Theorem 5.8. Let (5.7) hold, and let there exist γ ∈ R such that
15



(i) ((q − L)G)γ(x) := eγx(q − L)G(x) is non-increasing on (−∞, h);
(ii) measure e−γyF (dy) is non-increasing on (0,+∞)

Then τ−h maximizes Vinst(τ ;G;x) in M. We leave to the reader generalizations of
Theorems 5.5 and 5.8 for the case of (q − L)G(x), which jumps up at some point in
the action region (cf. Theorems 3.14 and 3.15).

5.3. Optimality conditions for τ+
h . The results below are obtained from

the results of Subsection 4.2 replacing f , E−q f , Ven(τ ; f ;x) and Vwait.en(τ ; f ;x) with
(q−L)G, (E+

q )−1G, Vinst(τ ;G;x) and Vwait.en(τ ;G;x) = Vinst(τ ;G;x)−G(x), respec-
tively. To avoid any changes in the proofs, we assume that there exists a measurable
f satisfying the no-bubble condition (2.18) such that G = q−1Eqf although this con-
dition can be relaxed. Conditions (4.4) and (4.5) become

(E+
q )−1G(x) ≤ 0, x ≤ h, and (E+

q )−1G(x) ≥ 0, x ≥ h,(5.10)

and

− (q − L)G(x) +
∫ h−x

−∞
Vwait.inst(τ+

h ;G;x+ y)F (dy) ≤ 0, x > h, a.e.,(5.11)

respectively. An equivalent form of (5.11) in terms of G only is

(q − L)G(x) +
∫ h−x

−∞
(E+
q 1(−∞,h)(E+

q )−1G)(x+ y)F (dy) ≥ 0, x > h, a.e..(5.12)

The LHS in (5.11) is denoted Uinst(τ+
h ; f ;x) and called the remorse index.

Theorem 5.9. Let there exist h ∈ R such that (5.10) holds. Then
(a) τ+

h maximizes Vinst(τ ; f ;x) in the class of stopping times of the threshold type.
(b) If, in addition, (5.11) holds, then τ+

h maximizes Vinst(τ ; f ;x) in M.
Theorem 5.10. Let there exist h ∈ R such that (5.10) holds, and let U be non-

increasing on (h,+∞). Then (5.11) holds, and τ+
h maximizes Vinst(τ ;G;x) in M.

In the next three theorems, we give several sets of conditions on f , Vwait.inst(τ+
h ;G;x)

and F (dy), which imply that Uinst(τ+
h ; f ; ·) is non-decreasing. The simplest sufficient

condition is given in
Theorem 5.11. Let (q −L)G be a non-decreasing function, which changes sign.

Then
(i) there exists h such that (5.10) holds, and

(ii) τ+
h maximizes Vinst(τ ;G;x) in M.

Theorem 5.12. Let the following three conditions hold
(i) there exists h ∈ R such that (5.10) holds;

(ii) (q − L)G is non-decreasing on (h,+∞);
(iii) Vwait.inst(τ+

h ;G;x) is non-increasing on (−∞, h).
Then τ+

h maximizes Vinst(τ ;G;x) in M.
Theorem 5.13. Let the following three conditions hold

(i) there exists h ∈ R such that (5.10) holds;
(ii) (q − L)G is non-decreasing on (h,+∞);

(iii) measure F (dy) is non-decreasing on (−∞, 0).
Then τ+

h maximizes Vinst(τ ;G;x) in M. Monotonicity conditions can be relaxed
further.

Theorem 5.14. Let (5.10) hold, and let there exist γ ∈ R such that Uinst,γ(τ+
h ; f ;x) :=

eγxUinst(τ+
h ; f ;x) is non-increasing on (h,+∞). Then τ+

h maximizes Vinst(τ ;G;x) in
M.

Theorem 5.15. Let (5.10) hold, and let there exist γ ∈ R such that
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(i) ((q − L)G)γ(x) := eγx(q − L)G(x) is non-decreasing on (h,+∞);
(ii) Vwait.inst,γ(τ+

h ;G;x) := eγxVwait.inst(τ+
h ;G;x) is non-increasing on (−∞, h).

Then τ+
h maximizes Vinst(τ ;G;x) in M.

Theorem 5.16. Let (5.7) hold, and let there exist γ ∈ R such that
(i) ((q − L)G)γ(x) := eγx(q − L)G(x) is non-decreasing on (h,+∞);

(ii) measure e−γyF (dy) is non-decreasing on (−∞, 0).
Then τ+

h maximizes Vinst(τ ;G;x) in M. We leave to the reader generalizations of
Theorems 5.13 and 5.16 for the case of (q−L)G(x), which jumps down at some point
in the action region (cf. Theorems 3.14 and 3.15).

6. Entry with an embedded option to exit.

6.1. Post-investment value of the investment project. Consider the firm’s
manager, who contemplates the investment into a plant, which will yield a revenue
stream R(Xt) = GeXt , the operational cost stream being constant c > 0. Should
the firm decide to abandon the project in the future, it can do it at any moment.
The scrap value C may be either positive or negative; for instance, if the clean-up
of the contaminated site is required by law, then C is negative. Once the project
is in operation, the exit problem is equivalent to the option to abandon a stream
f(Xt) = GeXt − c − qC. Assume that c + qC > 0. Function f(x) is non-decreasing,
and it changes sign, hence, Theorem 3.4 is applicable. This theorem states that there
exists h satisfying (3.1), and τ−h∗ is the optimal exit time. Since f is increasing, the
h, denote it h∗, is unique. It is given by

eh∗ = (c+ qC)/(Gκ+
q (1)).(6.1)

The post-investment value of the investment project can be written in several forms

V (x) = C + Vex(τ−h∗ ;R− c− qC;x)(6.2)

= C + q−1Eq(R− c− qC)(x) + Ven(τ−h∗ , c+ qC −R, x)(6.3)

= q−1Eq(R− c)(x) + Ven(τ−h∗ , c+ qC −R, x)(6.4)

= C + q−1(Eqf1)(x),(6.5)

where, a.e.,

f1(x) = f(x) +Wen(τ−h∗ ;−f ;x)(6.6)

= f(x)− q−1(q − L)E−q 1(−∞,h∗]E
+
q f(x).(6.7)

6.2. Timing investment. Assume that the fixed investment cost I > C; then
entry is non-optimal at x ≤ h∗. Timing investment, the manager maximizes Vinst(τ ;G;x),
where G(x) = V (x)− I. In order to apply one of the theorems of Subsection 5.3, we
impose two additional conditions:

(i) k−(x), the pdf of XTq
, satisfies

k−(x) =
∫
µ−(dβ)(−β)e−βx, x < 0,(6.8)

where µ−(dβ) is a non-negative measure supported at a subset of (−∞, 0) (by
Bernstein’s theorem, (6.8) is equivalent to absolute monotonicity of k−(x));
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(ii) the inverse (E+
q )−1 admits the representation

(E+
q )−1 = c+q0 − c

+
q1∂x −K+−,(6.9)

where c+q0, c
+
q1 > 0, and K+−

q is the convolution operator with the non-negative
kernel k+−, which is monotone on (0,+∞).

Conditions (i)–(ii) hold in BM and DEJD model, and for many other classes of Lévy
processes. See (5.5)-(5.6).

Theorem 6.1. Let (6.8) and (6.9) hold. Then
a) there exists the unique h∗∗ > h∗ such that (5.10) holds with h = h∗∗, hence, τ+

h∗∗

is the optimal entry time in the class of stopping times of the threshold type;
b) if, in addition, measure F (dy) is non-decreasing on (−∞, 0), then τ+

h∗∗ is an opti-
mal entry time in M.
Proof. a) Using (6.8) and (6.1), we derive, for x > h∗,

Ven(τ−h∗ , c+ qC −R, x)

= q−1E−q 1(−∞,h∗]E
+
q (c+ qC −R)(x)

= q−1(E−q 1(−∞,h∗](c+ qC −Gκ+
q (1)e·))(x)

= q−1

∫
µ−(dβ)

∫ 0

−∞
dy (−β)e−βy1(−∞,h∗](x+ y)(c+ qC −Gκ+

q (1)ex+y))

= (c/q + C)
∫
µ−(dβ)

∫ 0

−∞
dy (−β)e−βy1(−∞,h∗](x+ y)(1− ex+y−h∗))

= (c/q + C)
∫
µ−(dβ)

∫ h∗−x

−∞
dy (−β)e−βy(1− ex+y−h∗))

= (c/q + C)
∫
µ−(dβ)

eβ(x−h∗)

1− β
.

Substituting into (6.3) and using (E+
q )−1Eq = E−q , we calculate

w(x) := (E+
q )−1(V (x)− I)

= −c/q − I + q−1κ−q (1)Gex + (c/q + C)
∫
µ−(dβ)

eβ(x−h∗)

1− β
.

Since the support of µ(dβ) is a subset of (−∞, 0), and, for β < 0, κ+
q (β)−1 > 0, we

see that the second derivative of w(lnS) w.r.t. S is positive, hence, w(lnS) is convex,
and to prove that equation w(h) = 0 has a unique root on (h∗,+∞), it suffices to
show that w(h∗ + 0) < 0 and w(+∞) > 0.

Using the Wiener-Hopf factorization formula, (6.5) and (6.6), we obtain

w(x) = −(I − C) + q−1E−q f(x) + q−1E−q Wen(τ−h ;−f ; ·)(x)

= q−1E−q (R− c− qI)(x) + q−1E−q Wen(τ−h ;−f ; ·)(x)

Since Wen(τ−h ;−f ;x) = 0, x ≥ h∗, the second term on the RHS above vanishes as
x→ +∞, and the first term tends to +∞ because R(x) does. Hence, w(+∞) = +∞.

It remains to show that w(h∗ + 0) < 0. Suppose that w(h∗ + 0) ≥ 0. Then, for
x > h∗, w(x) ≥ 0, and, therefore,

Vinst(τ+
h∗

;V − I;x) = E+
q 1(h∗,+∞)(E+

q )−1(V − I)(x) ≥ 0, x > h∗.
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Hence, the value of entry at the threshold h∗, at cost I, is non-negative. But
V (f ;C;h∗) = C < I, contradiction.

b) Conditions (i) and (iii) of Theorem 5.13 hold, therefore, it remains to prove
that (q − L)G is non-decreasing on (h∗∗,+∞). On the strength of (6.5) and (6.7),

(q − L)G(x) = (q − L)(V − I)(x) = f(x)− q−1(q − L)E−q 1(−∞,h∗]E
+
q f(x)− q(I −C),

hence, for x > h∗∗,

(q − L)G(x) = f(x)− q(I − C) = ex − c− qI.

The RHS defines an increasing function.

7. Conclusion. In the paper, we derived a series of optimal stopping theorems
for options with non-monotone discontinuous payoff streams and options with instan-
taneous payoffs, in Lévy driven models, and, as an application, solved the investment
problem with an embedded option to exit. The results have natural analogs for ran-
dom walks, and can be generalized for regime-switching models.
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[12] S.I. Boyarchenko and S.Z. Levendorksĭi, “Irreversible Decisions Under Uncertainty (Optimal
Stopping Made Easy)”, Springer, Berlin, 2007.
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