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1 Introduction

Let f denote the density associated with a real random variable X and let {Xj}nj=1 be a random sample of

size n of X. We call a kernel any function K on < such that

∫ +∞

−∞
K(t)dt = 1. (1)

The Rosenblatt-Parzen estimator for the density f evaluated at x ∈ < is given by fR(x) = 1
n

∑n
j=1

1
hn
K
(
Xj−x
hn

)
,

where 0 < hn is a bandwidth sequence such that hn → 0 as n → ∞. Let B(fR(x)) = E(fR(x)) − f(x)

denote the bias of fR(x) at x. It is well known (Parzen, 1962; Pagan and Ullah, 1999; Fan and Yao, 2003)

that if f has its rth derivative bounded and continuous at x an interior point in the support of f and the

kernel is of order r, that is, K satisfies
∫ +∞
−∞ K(t)tjdt = 0 for j = 1, ..., r − 1 then Bias(fR(x)) = O(hrn).

Bias reduction through higher order kernels (Granovsky and Muller, 1991; Jones and Foster, 1993) can be

inconvenient in that for r > 2, K can no longer be nonnegative everywhere and therefore fR(x) may be

negative. There exist other approaches to bias reduction in density estimation (Jones et al., 1995; DiMarzio

and Taylor, 2004) but the asymptotic properties of these estimators have not been fully developed.

In this paper we propose a new nonparametric kernel based density estimator for which reduction in

the order of the bias, relative to the Rosenblatt-Parzen estimator, is attained by imposing global Lipschitz

conditions on f . The use of our estimator and higher order Lipschitz conditions seems desirable for the

following reasons: a) in a sense to be made precise in section 2, r-times differentiability of f is stronger than

r-times Lipschitz smoothness; b) we provide a full asymptotic characterization of our estimator, including

results on its uniform consistency, asymptotic normality and convergence rates. We emphasize that this is

the main theoretical advantage of our estimator. Its rates of convergence are true for all bandwidths and

sample sizes. By contrast, rates of convergence for higher-order kernels and local polynomial estimators are

valid only asymptotically; c) our estimator is nonnegative, given a suitable choice of the seed kernel. In fact,

the Cauchy kernel assures nonnegativity of the estimator (see section 2.2).

The rest of the paper is organized as follows. Section 2 provides a brief discussion of Lipschitz conditions,

discusses the properties of the new kernels we propose and defines our estimator. In section 3 the main
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asymptotic properties of our estimator are obtained. Section 4 contains a small Monte Carlo study that

gives some evidence on the small sample performance of our estimator relative to the Rosenblatt-Parzen and

local quadratic estimators. Sections 5 provides a conclusion and gives directions for future work.

2 Lipschitz conditions, associated kernels and a new nonparamet-
ric density estimator

2.1 Lipschitz conditions

The properties of nonparametric density estimators are traditionally obtained by assumptions on the smooth-

ness of the underlying density. Smoothness can be regulated by finite differences, which can be defined as

forward, backward, or centered. The corresponding examples of finite first-order differences for a function

f(x) are f(x+h)−f(x), f(x)−f(x−h), and f(x+h)−f(x−h), where h ∈ <. Here, we focus on centered even-

order differences because the resulting kernels are symmetric. Let Cl2k = (2k)!
(2k−l)!l! , l = 0, ..., 2k, k ∈ {1, 2, · · ·}

be the binomial coefficients, ck,s = (−1)s+kCs+k2k , s = −k, ..., k and

∆2k
h f(x) =

k∑
s=−k

ck,sf(x+ sh), h ∈ <. (2)

We say that a function f : < → < satisfies the Lipschitz condition of order 2k if for any x ∈ < there exist

H(x) > 0 and ε(x) > 0 such that
∣∣∆2k

h f(x)
∣∣ ≤ H(x)h2k for all h such that |h| ≤ ε(x). The following theorem

shows that H(x) and ε(x) can be obtained for the Gaussian and Cauchy densities.

Theorem 1 a) Let f(x) = e−
1
2x

2

/(2π)1/2, then for any small ε ∈ (0, 1) there exists a constant cε > 0 such

that ∣∣∆2k
h f(x)

∣∣ ≤ cεe−(1−ε)x2/2h2k for |h| ≤ ε(1 + |x|). (3)

b) Let f(x) = (π(1 + x2))−1, then there exist ε ∈ (0, 1) and a constant c > 0 such that

|∆2k
h f(x)| ≤ ch2kfk+1(x) for |h| ≤ ε(1 + |x|). (4)

Proof a) We prove the statement for f(t) = e−
1
2 t

2

. For any twice differentiable function f one has f(y) =

f(x) + f (1)(x)(y − x) +
y∫
x

(y − t)f (2)(t)dt, hence for h > 0

∣∣∆2
hf(x)

∣∣ = |f(x− h)− 2f(x) + f(x+ h)|
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=

∣∣∣∣∣∣
x+h∫
x

(x+ h− t)f (2)(t)dt+

x−h∫
x

(x− h− t)f (2)(t)dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
x+h∫
x

(x+ h− t)f (2)(t)dt+

x∫
x−h

(t− x+ h)f (2)(t)dt

∣∣∣∣∣∣
≤ sup

|x−t|≤h
|f (2)(t)|

 x+h∫
x

(x+ h− t)dt+

x∫
x−h

(t− x+ h)dt

 = h2 sup
|x−t|≤h

|f (2)(t)|. (5)

The case for h < 0 leads straightforwardly to the same bound. We now prove that

∆2
h

(
∆

2(k−1)
h f(x)

)
= ∆2k

h f(x). (6)

Observe that the left-hand side of (6) can be written as

∆2
h

(
∆

2(k−1)
h f(x)

)
=

k−1∑
s=−k+1

(−1)s+k−1Cs+k−12(k−1)f(x+ sh− h)− 2

k−1∑
s=−k+1

(−1)s+k−1Cs+k−12(k−1)f(x+ sh)

+

k−1∑
s=−k+1

(−1)s+k−1Cs+k−12(k−1)f(x+ sh+ h)

=

k−1∑
s=−k

(−1)s+kCs+k2(k−1)f(x+ sh) + 2

k−1∑
s=−k+1

(−1)s+kCs+k−12(k−1)f(x+ sh)

+

k∑
s=−k+2

(−1)s+kCs+k−22(k−1)f(x+ sh)

= C0
2(k−1)f(x− kh)−

(
C1

2(k−1) + 2C0
2(k−1)

)
f(x+ (−k + 1)h)

+

k−2∑
−k+2

(−1)s+k
(
Cs+k2(k−1) + 2Cs+k−12(k−1) + Cs+k−22(k−1)

)
f(x+ sh)

−
(

2C2k−2
2(k−1) + C2k−3

2(k−1)

)
f(x+ (k − 1)h) + C2k−2

2(k−1)f(x+ kh).

Noting that C1
2(k−1) + 2C0

2(k−1) = C1
2k, 2C2k−2

2(k−1) + C2k−3
2(k−1) = C2k−1

2k and Cs+k2(k−1) + 2Cs+k−12(k−1) + Cs+k−22(k−1) =

Cs+k2k proves (6). Using (5) and (6) we have,

∣∣∆2k
h f(x)

∣∣ ≤ h2 sup
|x−t|≤|h|

|∆2(k−1)
h f (2)(t)| ≤ ... ≤ h2k sup

|x−t|≤k|h|
|f (2k)(t)|. (7)

If f(t) = e−t
2/2, then f (2k)(t) = P2k(t)f(t) where P2k is a polynomial of degree 2k. We can bound the

polynomial by the exponential function, so that for any ε ∈ (0, 1) there exists a constant cε > 0 such that

∣∣∣f (2k)(t)∣∣∣ ≤ cεe−(1−ε)t2/2. (8)
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Let |h| ≤ ε(1+|x|) and consider two cases. First, suppose that |x| ≥ 1. Then, |h| ≤ 2ε|x|, so that |x−t| ≤ k|h|

implies |t| = |x+ t− x| ≥ |x| − |t− x| ≥ |x| − 2εk|x|. Assuming that 2εk < 1, from (8) we have

sup
|x−t|≤k|h|

|f (2k)(t)| ≤ cεe−(1−ε)(1−2εk)
2x2/2 if |h| ≤ ε(1 + |x|). (9)

Second, suppose that |x| < 1. Since the function on the right hand side of (8) is bounded from above by cε

for any t and the function e−(1−ε)x
2/2 is bounded away from zero for |x| < 1,

sup
|x−t|≤k|h|

|f (2k)(t)| ≤ cε ≤ c̃εe−(1−ε)x
2/2 if |h| ≤ ε(1 + |x|).

The last inequality together with (9) and (7) proves (3).

b) We prove the statement for f(t) = (1 + t2)−1. By induction it is easy to show that, for any natural n,

f (n)(t) = Pn(t)fn+1(t) where Pn is a polynomial of order n. Indeed, f (1)(t) = −2t(1 + t2)−2 = P1(t)f2(t).

Suppose the formula is true for some n > 1, then

f (n+1)(t) = P (1)
n (t)fn+1(t) + Pn(t)(n+ 1)fn(t)f (1)(t)

= [P (1)
n (t)(1 + t2)− 2(n+ 1)tPn(t)]fn+2(t) = Pn+1(t)fn+2(t).

Since |P2k(t)| =
∣∣∣∑2k

j=0 ajt
j
∣∣∣ ≤∑2k

j=0 |aj |(1 + t2)j/2 ≤ c(1 + t2)k by (7) it follows that

|∆2k
h f(x)| ≤ h2k sup

|x−t|≤k|h|
|f (2k)(t)| ≤ ch2k sup

|x−t|≤k|h|
fk+1(t). (10)

Let |h| ≤ ε(1 + |x|) where ε = 1/(4k) and suppose |x| ≥ 1. As above, we have |t| ≥ |x|(1 − 2εk) = |x|/2.

Then, f(t) ≤ 4/(4 + x2) ≤ f(x) and (4) follows from (10). Now, suppose |x| ≤ 1, then 2f(x) ≥ 1. Since

f(t) ≤ 1 we have from (10) that |∆2k
h f(x)| ≤ ch2k ≤ ch2kfk+1(x)2k+1, which completes the proof.

We note that (7) shows that boundedness of f (2k)(x) implies a Lipschitz condition of order 2k. A

full description of the relationships between smoothness requirements in terms of derivatives and Lipschitz

conditions can be found in Besov et al. (1978). We now turn to the definition of a family of kernels that will

be used in constructing the new estimator we propose.
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2.2 Kernels and the proposed estimator

For a kernel K and natural number k we define the set {Mk(x)}k=1,2,3,··· where

Mk(x) = − 1

ck,0

k∑
|s|=1

ck,s
|s|

K
(x
s

)
. (11)

In this context we call K a seed kernel for Mk. The main impetus for the definition of Mk(x) is that it allows

us to express the bias of our proposed estimator in terms of higher order finite differences of the density f

(see Theorem 3). Let λk,s = (−1)s+1(k!)2

(k+s)!(k−s)! , s = 1, ..., k and since − ck,s

ck,0
= − ck,−s

ck,0
= λk,s, s = 1, ..., k, (11) can

also be written as Mk(x) =
∑k
s=1

λk,s

s

(
K
(
x
s

)
+K

(
−xs
))

. It follows by construction that Mk is symmetric,

that is Mk(x) = Mk(−x), x ∈ <. Since the coefficients ck,s satisfy
∑k
|s|=0 ck,s = (1− 1)2k = 0, we have

− 1

ck,0

k∑
|s|=1

ck,s = 1 or

k∑
s=1

λk,s =
1

2
. (12)

It is therefore the case that (1) and (12) imply that

+∞∫
−∞

Mk(x)dx =

k∑
s=1

λk,s
s

 +∞∫
−∞

K
(x
s

)
dx+

+∞∫
−∞

K
(
−x
s

)
dx

 = 1,

which establishes that every Mk(x) is a kernel for all k. The following theorem gives some properties of the

family {Mk(x)}k=1,2,··· based on the seed kernel K.

Theorem 2 Let G(x) = K(x) + K(−x) and M∞(x) =
∑∞
s=1

(−1)s+1

s G
(
x
s

)
. Suppose that the derivative

K(1) exists and is bounded in some neighborhood (−δ, δ) of the origin. Then, we have:

a) the series M∞(x) absolutely converges at any x 6= 0. At x = 0 it converges conditionally to M∞(0) =

2K(0) ln 2,

b) Suppose, additionally, that K is bounded and continuous in < and denote

||G||∞ = sup
x∈<
|G(x)| and ||G(1)||∞,δ = sup

x∈(−δ,δ)
|G(1)(x)|.

For all k > m ≥ [|x|/δ + 1] (integer part) one has the estimate of the rate of convergence

|Mk(x)−M∞(x)| ≤
∣∣|λk,m−1| − 1

∣∣ ‖ G ‖∞ m−1∑
s=1

1

s
+ 2 ‖ G ‖∞

1

m

+
(

2 max{‖ G(1) ‖∞,δ |x|, ‖ G ‖∞}+ ‖ G(1) ‖∞,δ |x|
) ∞∑
s=m

1

s2
(13)
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which implies locally uniform convergence of Mk to M∞ and continuity of M∞.

c) Let G be differentiable everywhere and fix x > 0. If fx(λ) = 1
λG(xλ ) has a negative derivative dfx

dλ (λ)

for all λ ≥ 1, then k
k+1G(x) > Mk(x) > 0 for all k. Consequently, when Mk(x) → M∞(x) we have

0 ≤M∞(x) ≤ G(x).

d) If G is infinitely differentiable, then so is M∞.

Proof a) The statement about conditional convergence at x = 0 follows from G(0) = 2K(0) and ln 2 =∑∞
s=1

(−1)s+1

s . Now, fix x 6= 0. For all large s we have [−x/s, x/s] ⊂ (−δ, δ) and by the mean value

theorem there exists θs ∈ [−x/s, x/s] such that G
(
x
s

)
= K(1)(θs)

2x
s . This implies absolute convergence∣∣∣∑∞s=m (−1)s+1

s G
(
x
s

)∣∣∣ ≤ c∑∞s=m 1
s2 .

b) We start by establishing two properties of the coefficients λk,s. Since Ck2k ≥ Ck+1
2k ≥ · · · ≥ C2k

2k = 1 one

has

1 ≥ |λk,1| ≥ |λk,2| ≥ · · · ≥ |λk,k| =
1

Ck2k
. (14)

Furthermore, from (−1)s+1λk,s = (k−s+1)···k
(k+1)···(k+s) =

(1− s−1
k )···(1− 1

k )1

(1+ 1
k )···(1+ s

k )
we see that for any fixed s

(−1)s+1λk,s ↑ 1 as k →∞. (15)

To prove convergence Mk →M∞, we take arbitrary 1 < m < k <∞ and split Mk and M∞ as

Mk(x) =

(
m−1∑
s=1

+

k∑
s=m

)
λk,s
s
G
(x
s

)
= Sk,m +Rk,m,

M∞(x) =

(
m−1∑
s=1

+

∞∑
s=m

)
(−1)s+1

s
G
(x
s

)
= S∞,m +R∞,m.

Let x ≥ 0 and take, without loss of generality, m ≥ [x/δ + 1] in R∞,m so that δ > x/m. Rearrange

∞∑
s=m

(−1)s+1

s
G
(x
s

)
=

∞∑
s=0

1

m+ 2s

(
G

(
x

m+ 2s

)
−G

(
x

m+ 2s+ 1

))

+

∞∑
s=0

G

(
x

m+ 2s+ 1

)(
1

m+ 2s
− 1

m+ 2s+ 1

)
.

For each s in the first sum, there exists a point θs ∈ [ x
m+2s+1 ,

x
m+2s ] such that

G

(
x

m+ 2s

)
−G

(
x

m+ 2s+ 1

)
= G(1)(θs)

m+ 2s

m+ 2s+ 1
.
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The last two equations imply that

|R∞,m| =

∣∣∣∣∣
∞∑
s=m

(−1)s+1

s
G
(x
s

)∣∣∣∣∣
≤

∞∑
s=0

(
‖ G(1) ‖∞,δ x

(m+ 2s)(m+ 2s+ 1)
+

‖ G ‖∞
(m+ 2s)(m+ 2s+ 1)

)

≤ 2 max{‖ G(1) ‖∞,δ x, ‖ G ‖∞}
∞∑
s=0

1

(m+ 2s)(m+ 2s+ 1)

≤ 2 max{‖ G(1) ‖∞,δ x, ‖ G ‖∞}
∞∑
s=m

1

s2
. (16)

Note that (14) and (15) imply that

|Sk,m − S∞,m| ≤
m−1∑
s=1

∣∣λk,s − (−1)s+1
∣∣

s
G
(x
s

)
≤ |λk,m−1 − (−1)m| ‖G‖∞

m−1∑
s=1

1

s
→ 0 as k →∞. (17)

For s between m and k there are points τs ∈ [0, x/s] such that G(x/s) = G(0) +G(1)(τs)x/s. Thus,

Rk,m = G(0)

k∑
s=m

λk,s
s

+ x

k∑
s=m

λk,s
s2

G′ (τs) .

Because of (14)

∣∣∣∣ k∑
s=m

λk,s

s2 G
(1) (τs)

∣∣∣∣ ≤ ∥∥G(1)
∥∥
∞,δ

∑∞
s=m

1
s2 . In the series

∑k
s=m

λk,s

s the terms have alternat-

ing signs and monotonically declining absolute values. By the Leibniz theorem

∣∣∣∣ k∑
s=m

λk,s

s

∣∣∣∣ ≤ |λk,m|
m ≤ 1

m .

Therefore

|Rk,m| ≤
|G(0)|
m

+ x ‖G′‖∞,δ
∞∑
s=m

1

s2
. (18)

Combining (16), (17) and (18) yields (13). Also, (13) and (14) show that one can choose first a large m and

then a large k to make the expression at the right of (13) arbitrarily small. Finally, M∞ is continuous as a

locally uniform limit of continuous functions.

c) Pairing the terms in Mk gives

Mk(x) =

[ k
2 ]−1∑
l=0

[
λk,2l+1

2l + 1
G

(
x

2l + 1

)
+
λk,2l+2

2l + 2
G

(
x

2l + 2

)]
+Rk

=

[ k
2 ]−1∑
l=0

[λk,2l+1fx(2l + 1) + λk,2l+2fx(2l + 2)] +Rk

7



where λk,2l+1 are all positive and Rk = 0, if k is even, and Rk =
λk,k

k G
(
x
k

)
, if k is odd. Further, by the

assumed negativity of dfx(λ)
dλ one has fx(2l + 1) > fx(2l + 2) for all l ≥ 0, so that

Mk(x) =

[ k
2 ]−1∑
l=0

λk,2l+1

[
fx(2l + 1)−

1− 2l+1
k

1 + 2l+2
k

fx(2l + 2)

]
+Rk

>

[ k
2 ]−1∑
l=0

λk,2l+1fx(2l + 2)

(
1−

1− 2l+1
k

1 + 2l+2
k

)
+Rk > Rk ≥ 0.

Similarly, Mk(x) = k
k+1G(x) +

∑[ k−1
2 ]

l=1 [λk,2lfx(2l) + λk,2l+1fx(2l + 1)] + Rk where all λk,2l are negative,

Rk = 0, if k is odd, and Rk =
λk,k

k G
(
x
k

)
, if k is even. Hence,

Mk(x) <
k

k + 1
G(x) +

[ k−1
2 ]∑
l=1

λk,2lfx(2l + 1)

(
1−

1− 2l
k

1 + 2l+1
k

)
+Rk

<
k

k + 1
G(x) +Rk ≤

k

k + 1
G(x).

d) If u
(1)
n (x) are continuous, then convergence of a series

∑
un(x) in addition to uniform convergence of the

series of derivatives
∑
u
(1)
n (x) are sufficient for

(∑
un(x)

)(1)
=
∑
u
(1)
n (x). Since G(1) is locally bounded,∑∞

s=1(−1)s+1s−2G(1)(x/s) converges locally uniformly. Therefore, M∞ is differentiable and M
(1)
∞ (x) =∑∞

s=1
(−1)s+1

s2 G(1)(x/s). Uniform convergence implies also continuity of M
(1)
∞ . This type of argument applies

to all higher order derivatives.

We note that dfx
dλ (λ) < 0 for λ ≥ 1 if and only if G(x/λ) +G′(x/λ)(x/λ) > 0 for λ ≥ 1. For the Gaussian

and Cauchy densities this is true if x < 1. It is worth pointing out that the negativity of the derivative in c)

is only a sufficient condition for Mk > 0 for all k.1

We are now ready to define a new family of alternative estimators which are similar to the Rosenblatt-

Parzen estimator with the exception that K is replaced by Mk. Hence, we put for k = 1, 2, · · ·

f̂k(x) =
1

n

n∑
j=1

1

hn
Mk

(
Xj − x
hn

)
=

1

n

n∑
j=1

wj ,

where wj = 1
hn
Mk

(
Xj−x
hn

)
. Given the independent and identically distributed (IID) assumption (maintained

everywhere), we have

E(f̂k(x)) =
1

n

n∑
j=1

E(wj) = E(w1), (19)

1We have several examples and graphical illustrations for which Mk > 0 with the Cauchy seed, but we have been unable to
establish this fact analytically.
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and

V
(
f̂k(x)

)
=

1

n2

n∑
j=1

V (wj) =
1

n
V (w1) =

1

n

(
E(w2

1)− (E(w1))2
)
. (20)

The next theorem reveals the main idea underlying our definition of the family {Mk}k=1,2,···.

Theorem 3 For any hn > 0 B(f̂k(x)) = − 1
ck,0

+∞∫
−∞

K(t)∆2k
hnt

f(x)dt.

Proof From (19) we have E(f̂k(x)) = Ew1 = 1
hn

+∞∫
−∞

Mk

(
t−x
hn

)
f(t)dt =

+∞∫
−∞

Mk (t) f(x+hnt)dt. Substitution

of (11) and change of variables give

E(f̂k(x)) = − 1

ck,0

k∑
|s|=1

ck,s

+∞∫
−∞

K(t)f(x+ shnt)dt. (21)

Hence, from (2) and (1) we get

B(f̂k(x)) = − 1

ck,0

+∞∫
−∞

K(t)

k∑
|s|=1

ck,sf(x+ shnt)dt− f(x)

+∞∫
−∞

K(t)dt

= − 1

ck,0

+∞∫
−∞

K(t)

k∑
|s|=0

ck,sf(x+ shnt)dt = − 1

ck,0

+∞∫
−∞

K(t)∆2k
hntf(x)dt. (22)

3 Asymptotic properties

In this section we give an asymptotic characterization of the estimator we propose. We start by providing

conditions under which the estimator is asymptotically (uniformly) unbiased. We note that Theorems 4

and 5 are general and do not rely on specific properties of the family of kernels {Mk}k=1,2,···.

Theorem 4 Given a kernel K satisfying (1) and a random sample {Xj}nj=1 we have,

a) If f(x) is bounded and continuous in < then limn→∞B(f̂k(x)) = 0 for all x ∈ <.

b) If f(x) is bounded and uniformly continuous in < then limn→∞ supx∈R |Bias(f̂k(x))| = 0.

Proof a) From (21), (1), boundedness and continuity of f(x) we have by the dominated convergence theorem

E(f̂k(x)) → − 1
ck,0

∑k
|s|=1 ck,sf(x). The desired property follows from (12). b) Using (21), (12) and (1), we

get B(f̂k(x)) = − 1
ck,0

∑k
|s|=1 ck,s

+∞∫
−∞

K(t)[f(x+ shnt)− f(x)]dt. Hence, for any δ > 0

∣∣∣B(f̂k(x))
∣∣∣ ≤ c∑k

|s|=1

[ ∫
|shnt|≤δ

|K(t)[f(x+ shnt)− f(x)]| dt+
∫

|shnt|>δ
|K(t)[f(x+ shnt)− f(x)]| dt

]

≤ c
∑k
|s|=1

[
sup|y|≤δ, x∈< |f(x+ y)− f(x)|

∫
<
|K(t)| dt+ 2 supx∈< |f(x)|

∫
|shnt|>δ

|K(t)| dt

]
.
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To make the right-hand side expression small, we can choose first a small δ and then a small hn.

We state the next theorem without proof since it follows closely the proof of Theorem 2.8 in Pagan and

Ullah (1999) with their kernel K replaced by our kernel Mk.

Theorem 5 If the characteristic function φK of K is integrable and nh2n →∞, then

lim
n→∞

E

(
sup
x∈<
|f̂k(x)− E(f̂k(x))|

)
= 0.

Note that if the conditions from Theorem 4 b) and Theorem 5 are combined, we can write

E

(
sup
x∈<
|f̂k(x)− f(x)|

)
≤ E

(
sup
x∈<
|f̂k(x)− E(f̂k(x))|

)
+ sup
x∈<
|B(f̂k(x))| → 0

establishing by the use of Markov’s Inequality that f̂k(x) is uniformly consistent. In the next theorem we

provide the order of decay for the bias and variance of our estimator.

Theorem 6 Suppose that a) f(x) is bounded and continuous, b) there exist functions H2k(x) > 0 and

ε2k(x) > 0 such that ∣∣∆2k
h f(x)

∣∣ ≤ H2k(x)h2k for all |h| ≤ ε2k(x) (23)

and c)
∫∞
−∞ |K(t)|t2kdt <∞. Then, for all x ∈ < and 0 < hn ≤ ε2k(x)

∣∣∣B(f̂k(x))
∣∣∣ ≤ ch2kn (H2k(x) + ε−2k2k (x)

)
(24)

where the constant c does not depend on x or hn. Suppose additionally that d) K is bounded, the set

{t : |K(t)| > 1} is bounded and there exist functions H2(x) > 0 and ε2(x) > 0 such that

∣∣∆2
hf(x)

∣∣ ≤ H2(x)h2 for all |h| ≤ ε2(x). (25)

Then, for all x ∈ < and 0 < hn ≤ min{ε2k(x), ε2(x)}

V (f̂k(x)) =
1

nhn

f(x)

∞∫
−∞

M2
k (t)dt+R2(x, hn)− hn[f(x) +R2k(x, hn)]2

 , (26)

where the residuals satisfy

|R2(x, hn)| ≤ c1h2n(H2(x) + ε−22 (x)), |R2k(x, hn)| ≤ c2h2kn (H2k(x) + ε−2k2k (x)) (27)
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with constants c1 and c2 independent of x and hn.

Proof Condition c) implies for any N > 0

∫
|t|>N

|K(t)| dt ≤
∫
|t|>N

|K(t)|
∣∣∣∣ tN
∣∣∣∣2k dt ≤ N−2k

∞∫
−∞

|K(t)| t2kdt. (28)

Using (22) and conditions a) and b) we have

∣∣∣B(f̂k(x))
∣∣∣ ≤ c1

 ∫
|hnt|≤ε2k(x)

+

∫
|hnt|>ε2k(x)

 |K(t)∆2k
hntf(x)|dt

≤ c2

H2k(x)

∫
|hnt|≤ε2k(x)

|K(t)|(hnt)2kdt+ sup
x∈<
|f(x)|

∫
|hnt|>ε2k(x)

|K(t)|dt

 .
It remains to apply (28) and condition c) to obtain (24).

Now we proceed with derivation of (26). According to (20), we need to evaluate E(w2
1) and (Ew1)2. By

(19) and (24),

E(w1) = E(f̂k(x)) = f(x) +R2k(x, hn) where R2k satisfies (27). (29)

Now, E(w2
1) = 1

h2
n

∫
M2
k

(
t−x
hn

)
f(t)dt = 1

hn

∫
M2
k (t) f(x+ hnt)dt and by symmetry of Mk we have

∫
M2
k (t) f(x+ hnt)dt− f(x)

∫
M2
k (t) dt =

 ∞∫
0

+

0∫
−∞

M2
k (t) f(x+ hnt)dt− 2

∞∫
0

M2
k (t) f(x)dt

=

∞∫
0

M2
k (t) ∆2

hntf(x)dt.

Using (25) the same way we applied (23) to obtain (24), we get

∫
M2
k (t) f(x+ hnt)dt = f(x)

∫
M2
k (t) dt+R2(x, hn) (30)

where the residual R2(x, hn) satisfies (27). In this argument we used the fact that
∫∞
−∞K2(t)t2dt =(∫

t:|K(t)|>1
+
∫
t:|K(t)|<1

)
K2(t)t2dt ≤ c l({t : |K(t)| > 1}) +

∫∞
−∞ t2|K(t)|dt < ∞, where l({t : |K(t)| > 1})

denotes the measure of the set {t : |K(t)| > 1}. As a result
∞∫
−∞

M2
k (t)t2dt < ∞. Note that (26) is a

consequence of (20) and equations (29) and (30).

We note that the order of the bias for our estimator is similar to that attained by a Rosenblatt-Parzen

estimator constructed with a kernel of order 2k for k = 1, 2, · · ·. The advantage of our estimator in this

11



case results from the fact that it can be constructed to be nonnegative and, as observed after Theorem 1,

boundedness of f (2k) implies a Lipschitz condition of order 2k. In addition, if x is fixed and f(x) 6= 0 then

(26) can be (for small hn) simplified to

V (f̂k(x)) =
1

nhn

f(x)

∞∫
−∞

M2
k (t)dt+ f(x)O(hn)

 (31)

which is of order similar to that of a Rosenblatt-Parzen estimator.

It is also instructive to compare the results in Theorem 6 with those obtained for the nonparametric

density estimator fJ(x) = fR(x) 1
nhn

∑n
j=1

1
fR(Xj)

K
(
Xj−x
hn

)
proposed by Jones et al. (1995). The fact that

fR(Xj) appears in the denominator creates theoretical difficulties for the analysis of the bias of fJ(x). In

particular, the expressions for the bias obtained by Jones et al. (1995) ignore terms of order O((nhn)−1)

and o(h4n), and as a result the expression for the bias is valid only asymptotically. Unlike their expressions,

our results hold for all bandwidths hn. The same comments apply to the variance of fJ(x).

Certain seed kernels may not satisfy condition c) in Theorem 6 . One example is the Cauchy kernel which

has been considered above. In the next theorem we show that the Cauchy kernel can produce undesirable

results when attempting to reduce bias.

Theorem 7 Let K be a Cauchy seed kernel and, for a given k, let H2k and ε2k be Lipschitz parameters

as implied by Theorem 1 - b): H2k(x) = cKk+1(x), ε2k(x) = ε(1 + |x|). Denote q0 = (2k + 1)/2, take any

q > q0 and let p = q/(q − 1), α = (2k/q)− (1/p). Then, there exists a small h0 > 0 such that

|B(f̂k(x))| ≤ c
(
H2k(x)ε2k(x)

2k+1
p |h|α + |h|ε2k(x)−1

)
for |h| ≤ h0 (32)

Since α < 1 can be made arbitrarily close to 1 by selecting q close to q0 we have |B(f̂k(x))| = O(hαn)

irrespective of the choice of k.

Proof We have 1
p + 1

q = 1 and by Hölder’s inequality

∫
|ht|≤ε2k(x)

|K(t)∆2k
htf(x)|dt =

∫
|ht|≤ε2k(x)

K(t)|∆2k
htf(x)|

1
p+

1
q dt

≤

(∫
|ht|≤ε2k(x)

|∆2k
htf(x)|dt

)1/p(∫
|ht|≤ε2k(x)

K(t)q|∆2k
htf(x)|dt

)1/q

.(33)

12



Applying (23) we can bound the right-hand expression by

(H2k(x)|h|2k)1/p

(∫
|ht|≤ε2k(x)

t2kdt

)1/p

(H2k(x)|h|2k)1/q

(∫
|ht|≤ε2k(x)

K(t)qt2kdt

)1/q

. (34)

Here, ∫
|t|≤ε2k(x)/|h|

t2kdt = 2

∫ ε2k(x)/|h|

0

t2kdt = c (ε2k(x)/|h|)2k+1
. (35)

The condition for convergence of
∫∞
−∞K(t)qt2kdt is 2q− 2k > 1 and it is satisfied by our choice of q. Hence,

(33) through (35) lead to∫
|ht|≤ε2k(x)

|K(t)∆2k
htf(x)|dt ≤ cH2k(x)|h|2k−

2k+1
p (ε2k(x))

2k+1
p

= cH2k(x)|h|α(ε2k(x))
2k+1

p . (36)

Furthermore, ∫
|ht|>ε2k(x)

|K(t)∆2k
htf(x)|dt ≤ c sup

x∈<
|f(x)|

∫
|ht|>ε2k(x)

K(t)dt. (37)

Since ε2k(x) = ε(1+ |x|) ≥ ε, K(t) can be estimated by c1t
−2 in the domain of interest for all |h| ≤ h0 where

h0 is sufficiently small. Hence,∫
|t|>ε2k(x)/|h|

K(t)dt ≤ c1
∫
|t|>ε2k(x)/|h|

dt

t2
= c2

|h|
ε2k(x)

. (38)

(36), (37) and (38) prove (32).

The exponent α satisfies α = 2k
q − 1 + 1

q = 2k+1
q0

q0
q − 1 = 2 q0q − 1 < 1 and can be made arbitrarily close

to 1 by selecting q > q0 close to q0.

The Cauchy density declines at infinity too slowly, and this slow decay is inherited by our kernel Mk. As

a result, the reduction in bias achieved through an increase in the Lipschitz smoothness is limited, even when

that smoothness and, correspondingly, the order k of the kernel Mk is very high. We have also verified this

in Monte Carlo simulations. Better estimation results have been obtained (see section 4) using the Gaussian

density as a seed but in this case Mk is not necessarily nonnegative. Other seed kernels, for which Mk is

nonnegative, may exist but we have failed to find one.

In many instances there is an interest in integration of bias and variance expressions over the range of

the random variable X. In this case, it is necessary to investigate the convergence of integrals involving x
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before omitting terms of higher order in hn. This is done in the following theorem, where we denote the

mean squared error by MSE(f̂k(x)) = V (f̂k(x)) + B(f̂k(x))2 and the integrated mean squared error by

IMSE =
∫
<MSE(f̂k(x))dx.

Theorem 8 Let assumptions a) - d) of Theorem 6 be satisfied. Then,

1) If hn → 0 and n → ∞ in such a way that nhn → ∞, then MSE(f̂k(x)) → 0. If, additionally, f , H2,

H2k, ε−12 and ε−12k are bounded, then supx∈<MSE(f̂k(x))→ 0.

2) Suppose that H2k, ε−2k2k ∈ L2(<), f , H2, ε−22 ∈ L1(<), then IMSE is bounded by a function of the form

φ(h) = c1/(nh) + c2h
4k. The optimal hn resulting from minimization of φ is of order hopt � n−

1
4k+1 .

Proof 1) The first statement follows from (24) and (31). The second is an implication of (24), (26) and (27).

2) Replacing V (f̂k(x)) and B(f̂k(x)) in IMSE by their approximations (24) and (26), we get an approximation

for IMSE, which we denote by

AIMSE =

∫
<

 1

nh

f(x)

∫
<

M2
k (t)dt+R2(x, h)− h[f(x) +R2k(x, h)]2

+R2
2k(x, h)

 dx.

Under the conditions imposed, the integrals in x are finite. f ∈ L2(<) because f ∈ L1(<) ∩ L∞(<). Since

all terms of higher order in h can be omitted for small h, we have AIMSE ≤ c1/(nh) + c2h
4k = φ(h).

Note that for the optimal hn we have nhn → ∞, nh2n → ∞, like in the classical treatment of the

Rosenblatt-Parzen estimator. By Theorem 1, for the Gaussian density all conditions of Theorem 8 are

satisfied. We now establish the asymptotic normality of our estimator under suitable normalization.

Theorem 9 Suppose that f is continuous and bounded, f(x) > 0, there exist functions H2(x) > 0 and

ε2(x) > 0 such that (25) holds, and for some δ > 0,
∫
< |K(t)|2+δ(t)dt <∞. If nhn →∞, then

(nhn)1/2
(
f̂k(x)− E(f̂k(x))

)
d→ N

(
0, f(x)

∫
<
M2
k (t)dt

)
. (39)

If additionally,

nh4k+1
n → 0, (40)

then

(nhn)
1/2

(f̂k(x)− f(x))
d→ N

(
0, f(x)

∫
<
M2
k (t)dt

)
. (41)

14



Proof Normalizing f̂k(x)− E(f̂k(x)) by its standard deviation, we obtain by (19) and (20)

Sn ≡
f̂k(x)− E(f̂k(x))

V
(
f̂k(x)

)1/2 =
1

n

n∑
j=1

wj − E(wj)

(V (w1)/n)1/2
=

n∑
j=1

Xnj .

Here Xnj =
wj−E(wj)

(nV (w1))1/2
, E(Xnj) = 0, V (Xnj) = 1

n , V (Sn) = 1. Recall that Xi are IID and therefore so

are Xnj . Using the notation in the Lindeberg-Feller Theorem (Davidson, 1994) µnj = 0, σnj = 1/n, σn = 1

and maxj σnj/σn → 0, n→∞. Let Fnj be the distribution function of Xnj . All Fnj coincide with Fn1 and

the Lindeberg function takes the form

λ ≡ 1

σ2
n

n∑
j=1

∫
|x|>ε

x2dFnj(x) = n

∫
|x|>ε

x2dFn1(x) ≤ n

εδ

∫
|x|2+δdFn1(x)

=
n

εδ
E(|Xn1|2+δ) =

nE(|w1 − E(w1)|2+δ)
εδ(nV (w1))1+δ/2

.

Here by Minkowski’s and Hölder’s inequality E(|w1−E(w1)|2+δ) ≤ 22+δE(|w1|2+δ). In addition, by a result

similar to (30) we have

E(|w1 − E(w1)|2+δ) ≤
(

2

hn

)2+δ ∫
<

∣∣∣∣Mk

(
s− x
hn

)∣∣∣∣2+δ f(s)ds

= 2

(
2

hn

)1+δ ∫
<
|Mk|2+δ(t)f(x+ hnt)dt � 2

(
2

hn

)1+δ

f(x)

∫
<
|Mk|2+δ(t)dt.

By (31) V (w1) = nV (f̂k(x)) � 1
hn
f(x)

∫
<M

2
k (t)dt. Consequently,

λ ≤
(nhn)−δ/222+δf(x)

∫
< |Mk|2+δ(t)dt

εδ
(
f(x)

∫
<M

2
k (t)dt

)1+δ/2 = O
(

(nhn)−δ/2
)
→ 0.

By the Lindeberg-Feller Theorem Sn
d→ N(0, 1). Since nhnV (f̂k(x)) → f(x)

∫
<M

2
k (t)dt, the equation

(nhn)1/2(f̂k(x) − E(f̂k(x))) = (nhnV (f̂k(x)))1/2Sn implies (39). Finally, since (nhn)1/2(f̂k(x) − f(x)) =

(nhn)1/2(f̂k(x)−E(f̂k(x))) + (nhn)1/2(E(f̂k(x))− f(x)) we see that (41) is true if lim(nhn)1/2(E(f̂k(x))−

f(x)) = 0. By (24) this follows from (40).

4 Monte Carlo study and example

In this section we perform a small Monte Carlo study to implement our proposed estimator and illustrate

its finite sample performance. In addition, we provide an example that shows that the negativity problem
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of density estimators based on higher order kernels (or local polynomial estimators) can be severe while our

proposed estimator is everywhere positive.

4.1 Monte Carlo study

We implement our estimator and for comparison purposes we also include the Rosenblatt-Parzen estimator

and the local quadratic estimator of Lejeune and Sarda (1992), which is given by f̂LS(x) = 1
nhn

∑n
i=1W

(
Xi−x
hn

)
,

where W (u) =
(
3
2 −

1
2u

2
)
K(u) and K(u) is the Gaussian kernel. We note that W (u) is a fourth order kernel,

and consequently, f̂LS(x) can be negative as all other density estimators obtained using different higher order

kernels.

We consider simulated data from five different densities. The first four were proposed in Marron and

Wand (1992) and are examples of normal mixtures. They are: 1) Gaussian (f1(x) ≡ N(0, 1)), 2) Bimodal

(f2(x) ≡ 1
2N(−1, 4/9) + 1

2N(1, 4/9)), 3) Separated-Bimodal (f3(x) ≡ 1
2N(−1.5, 1/4) + 1

2N(1.5, 1/4)) and 4)

Trimodal (f4(x) ≡ 9
20N(−6/5, 9/25) + 9

20N(6/5, 9/25) + 1
10N(0, 1/16)). The fifth density is given by

f5(x) =


1
c exp

(
−(x+2)2

2

)
if x ≤ −1

1
c exp

(
−(x−2)2

2

)
if x ≥ 1

1
2c exp(−1/2)(x2 + 1) if −1 < x < 1

where c = 2F1(1)
√

2π+ 4
3 exp(−1/2), F1(a) =

∫ a
−∞ f1(x)dx. It is easy to verify that f

(2)
5 (x) is not continuous

for all x, but it does satisfy a Lipschitz condition of order 2 for all x.

For each of these densities 1000 samples of size n = 200, 400 and 600 were generated.2 In our first set

of simulations five estimators were obtained for each sample: f̂k(x) for k = 2, 4, 8, f̂R(x) and f̂LS(x). The

bandwidths for each estimator (say f̂E(x)) were selected by minimizing integrated squared error I(f̂E) =∫
(f̂E(x) − f(x))2dx for each simulated sample. In practice, this bandwidth is infeasible given that f(x) is

unknown. However, in the context of a Monte Carlo study it is desirable since estimation performance is

not impacted by the noise introduced through a data driven bandwidth selection. See Jones and Signorini

(1997) for an approach that is similar to ours. Table 1 provides average absolute bias (B) and average mean

squared error (MSE) for each estimator and each density considered for n = 200, 400 respectively.3

2Results for samples of size n = 600 are not reported but are available upon request from the authors.
3As expected from asymptotic theory, when n = 600 bias and MSE for all estimators across all densities are reduced.
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Table 1. Five estimators with optimal bandwidth (hn)

Average bias(×103)(B), Mean Squared Error(×103) (MSE)

n = 200 f1(x) f2(x) f3(x) f4(x) f5(x)
estimators B MSE B MSE B MSE B MSE B MSE

f̂R 6.637 0.317 7.644 0.437 8.710 0.645 8.919 0.529 14.020 0.324

f̂LS 5.239 0.251 6.079 0.403 6.784 0.544 8.126 0.523 13.285 0.269

f̂2 5.493 0.250 6.403 0.410 7.038 0.551 8.292 0.521 13.453 0.279

f̂4 5.109 0.235 5.839 0.407 6.936 0.539 8.097 0.536 10.294 0.159

f̂8 4.936 0.216 5.744 0.403 6.999 0.557 8.045 0.547 12.316 0.231

n = 400 f1(x) f2(x) f3(x) f4(x) f5(x)
estimators B MSE B MSE B MSE B MSE B MSE

f̂R 4.975 0.184 5.959 0.271 6.674 0.393 6.839 0.344 8.700 0.128

f̂LS 3.727 0.132 4.629 0.236 4.996 0.313 5.759 0.334 7.820 0.098

f̂2 3.908 0.135 4.845 0.243 5.195 0.321 6.010 0.333 7.926 0.102

f̂4 3.762 0.134 4.348 0.225 5.225 0.308 5.638 0.329 7.618 0.127

f̂8 3.779 0.125 4.240 0.230 4.940 0.302 5.560 0.331 7.280 0.087

In our second set of simulations we consider the performance of f̂2(x), f̂R(x) and f̂LS(x) based on data-

driven bandwidths obtained from the minimization of a suitably defined cross-validation function. Thus, we

define

hCV ≡ argminh
1

n2h

n∑
i=1

n∑
j=1

G ∗G
(
Xi −Xj

h

)
− 2

1

n(n− 1)h

n∑
i=1

n∑
j=1,j 6=i

G

(
Xi −Xj

h

)

where G ∗ G(u) =
∫
G(u − t)G(t)du. For f̂2(x), f̂R(x) and f̂LS(x), G(u) is respectively M2(u), K(u),

and W (u). Given that K(u) is a Gaussian kernel we can easily obtain through Fourier transform methods

the convolutions W ∗W (u) = 1
2
√
2π

exp
(
− 1

4u
2
) (

u4

64 −
7x2

16 + 27
16

)
and M2 ∗M2(u) = 16

9
√
2
√
2π

exp
(
− 1

4u
2
)
−

8
9
√
5
√
2π

exp
(
− 1

10u
2
)

+ 4
3
√
2π

exp
(
− 1

16u
2
)
. Table 2 provides average absolute bias (B) and average mean

squared error (MSE) for each estimator and each density considered for n = 200 and 400.

Table 2. Three estimators with cross validation bandwidth (hCV )

Average bias(×103)(B), Mean Squared Error(×103)(MSE)

n = 200 f1(x) f2(x) f3(x) f4(x) f5(x)
estimators B MSE B MSE B MSE B MSE B MSE

f̂R 6.580 0.484 7.500 0.613 8.782 0.839 9.148 0.706 14.159 0.326

f̂LS 5.214 0.693 6.188 1.308 6.918 0.977 8.932 1.861 15.276 0.360

f̂2 5.356 0.406 6.978 0.579 7.040 0.742 8.329 0.709 13.616 0.284
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n = 400 f1(x) f2(x) f3(x) f4(x) f5(x)
estimators B MSE B MSE B MSE B MSE B MSE

f̂R 4.788 0.272 5.867 0.348 6.437 0.486 6.914 2.049 8.546 0.128

f̂LS 3.810 0.325 4.465 0.454 4.661 0.574 5.238 0.518 8.788 0.134

f̂2 3.682 0.215 4.724 0.321 4.955 0.443 5.997 0.410 7.870 0.102

We first discuss the results in Table 1. We observe the following general regularities. First, as predicted

by our asymptotic results, for all densities considered the average absolute bias and average mean squared

error of our estimators f̂k(x) for k = 2, 4, 8 fall as the sample size increases. Second, as suggested in

Theorem 6, increases in the values of k reduce average absolute bias and MSE, but this is not verified for

all experiments. Specifically, when the sample size is small (n = 200) bias does not fall with k for some of the

densities that are more difficult to estimate, i.e, f3 and f5. Reductions in average mean squared error due to

increases in k are much less pronounced. Third, density functions with larger curvature (in increasing order

of curvature f1, f2, f3, f4 and f5) are more difficult to estimate both in terms of bias and mean squared error

for all estimators considered. Our proposed estimators (f̂2, f̂4, f̂8) and the local quadratic estimator (f̂LS)

outperform the Rosenblatt-Parzen estimator both in terms of bias and mean squared error. For k = 2, the

case where the smallest bias reductions are attained, bias can be reduced by as much as 20 percent relative to

the Rosenblatt-Parzen estimator. Additionally, the magnitude of bias reduction produced by our estimator

increases with sample size. We observe that f̂2, the estimator we propose that is more directly comparable to

the local quadratic estimator, and f̂LS perform very similarly both in terms of bias and MSE. In summary,

all of the asymptotic characterizations provided in section 3 seem to accurately predict the behavior of our

estimators in reasonably small sample sizes.

In Table 2 we observe that the MSE of all estimators across all densities increases when the bandwidth is

selected by cross validation for n = 200 and n = 400. This is not surprising, as additional noise is introduced

in computing f̂R, f̂LS and f̂2. Interestingly, there is not a significant change in bias between the results in

Table 1 and Table 2 for n = 200 or n = 400. As in Table 1 f̂2 and f̂LS outperform f̂R in both bias and

MSE. It is worth noting that with estimated bandwidths f̂2 seems to outperform f̂LS in terms of MSE for all

densities and for both n = 200 and n = 400. However, in terms of bias, the estimators continue to perform
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rather similarly, with the exception of the density f5, where our estimator outperforms f̂LS . This might

be due to the fact that f5 satisfies an order two Lipschitz condition but does not have a continuous second

derivative. We note that the bias of f̂2 was smaller relative to that f̂LS in the case for f5 in Table 1, but the

difference was of smaller magnitude.

4.2 Example

We apply our estimator with k = 3 based on a Gaussian seed kernel and a Rosenblatt-Parzen estimator

constructed with an order six kernel given by W (u) = 1
8

(
15− 10u2 + u4

)
K(u) to a sample of 600 realizations

from a Dickey-Fuller statistic.4 Bandwidths for both density estimators are obtained via cross-validation

and the estimated densities evaluated at the sample points are shown in Figure 1.

Figure 1: Estimated Dickey-Fuller density using order 6 kernel and f̂3.

The figure shows that our estimator is everywhere positive but the higher order kernel estimator is

negative at a number of points in which it is evaluated. It is important to note that that when the same

sample of Dickey-Fuller statistics is treated with f̂2 (k = 2) and f̂LS (order four kernel) the estimated

4See Fuller (1976), Dickey and Fuller (1979) and Pagan and Ullah (1999).
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densities are rather similar and f̂LS is everywhere positive (see Figure 2).

Figure 2: Estimated Dickey-Fuller density using order 4 kernel and f̂2.

5 Summary

In this paper we attain reduced bias for nonparametric kernel density estimation by defining a new kernel

based estimator that explores the theory of finite differences. The main characteristic of the proposed

estimator is that bias reduction may be achieved relative to the classical Rosenblatt-Parzen estimator without

the disadvantage of potential negativity (depending on the seed kernel) of the estimated density - a deficiency

that results from using higher order kernels to attain bias reduction. Contrary to other popular approaches

for bias reduction, e.g., Jones et al. (1995) and DiMarzio and Taylor (2004) we provide a full asymptotic

characterization of our estimator. A small Monte Carlo study reveals that our estimator performs well

relative to the Rosenblatt-Parzen estimator and the promised bias reduction is obtained in fairly small

samples. Future work should provide seed kernels K that assure nonnegativity of Mk and are different from

the Cauchy kernel.
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[1] Besov, O., V. Il’in and S. Nikol’skĭi, 1978, Integral representations of functions and imbedding theorems,
Wiley, New York.

[2] Davidson, J., 1994, Stochastic limit theory, Oxford University Press, Oxford.

[3] Dickey, D. A. and W. Fuller, 1979, Distribution of the estimators for autoregressive time series with a
unit root, Journal of the American Statistical Association 74, 427-431.

[4] DiMarzio, M. and C. C. Taylor, 2004, Boosting kernel density estimates: A bias reduction technique?,
Biometrika 91, 226-233.

[5] Fan, J. and Q. Yao, 2003, Nonlinear time series: nonparametric and parametric methods, Springer-Verlag,
New York.

[6] Fuller, W., 1976, Introduction to statistical time series, John Wiley and Sons, New York.

[7] Granovsky, B. and H. G. Müller, 1991, Optimizing kernel methods: A unifying variational principle,
International Statistical Review 59, 373-388.

[8] Jones, M. C. and P. J. Foster, 1993, Generalized jackknifing and higher order kernels, Journal of Non-
parametric Statistics 3, 81-94.

[9] Jones, M. C., O. Linton and J. P. Nielsen, 1995, A simple bias reduction method for density estimation,
Biometrika 82, 327-338.

[10] Jones, M. C. and D. F. Signorini, 1997, A comparison of higher-order bias kernel density estimators,
Journal of the American Statistical Association, 92, 1063-1073.

[11] Lejeune, M. and P. Sarda, 1992, Smooth estimators of distribution and density functions, Computational
Statistics & Data Analysis, 14, 457-471.

[12] Marron, J. S. and M. P. Wand, 1992, Exact mean integrated squared error, Annals of Statistics 20,
712-736.

[13] Pagan, A. and A. Ullah, 1999, Nonparametric econometrics, Cambridge University Press, Cambridge.

[14] Parzen, E., 1962, On estimation of a probability density and mode, Annals of Mathematical Statistics
33, 1065-1076.

21


