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Abstract 

 
Recent theoretical and empirical evidence suggests that risk (especially covariant risk 
that is correlated across producers) may discourage both the supply of agricultural 
credit and the willingness of small holders to utilize available credit and enjoy the 
higher expected incomes credit could make available to them.  One possible resolution 
to this problem is to remove risk from the system by independently insuring it.  
However, conventional (all hazard) crop insurance has in almost every instance been 
rendered financially unsustainable by moral hazard and adverse selection problems. 
This paper instead analyzes two index-based insurance schemes, one based on a 
weather index, and a second based on measured average yields. While these index 
insurance products do not protect the farmer from all risks, our econometric analysis 
(which is based on data from the north coast of Peru) shows that they could have 
substantial value to the producer and could also crowd-in credit supply from lenders 
reluctant to carry too much covariant risk in their loan portfolios. We also show that 
insurance based on measured yields is markedly superior to a weather index (for both 
borrowers and lenders).  We close by arguing that present and past public good failures 
justify public intervention in this area, and analyze the feasibility of a public scheme to 
initially underwrite the costs and uncertainties associated with area-based yield 
insurance. 
 

_________ 

* The work reported here has been supported by the US Agency for International Development 
(USAID) Agreement No. LAG-A-00-96-90016-00 through the BASIS Collaborative Research 
Support Program. A previous version of this paper was presented at the FAO Conference, 
Rural Finance Research: Moving Results into Policies and Practice, held in Rome, 19-21 
March 2007.



UNDERWRITING AREA-BASED YIELD INSURANCE 
TO CROWD-IN CREDIT SUPPLY AND DEMAND 

 

Agricultural credit markets in developing countries are shallow for several reasons. On the 

supply side, lenders are reluctant to increase their agricultural loan portfolio because of the 

high risks (climatic events and political intervention being  two of the major covariate 

shocks that can affect repayment outcomes) and operational costs of providing loans in 

geographically scattered areas. Recent empirical evidence from Peru (and other developing 

countries, such as Bolivia) shows that public sector intervention through debt forgiveness 

programs in a purely private transaction can seriously damage the credit market by 

reducing the borrowers’ incentives to repay, which results in lower credit supply (Tarazona 

and Trivelli, 2006). 

On the demand side, recent theoretical and empirical evidence1 suggests:  

(i) That a subset of agricultural producers will be discouraged from taking 
productive loans because they fear the loss of collateral that could occur 
under the available set of highly collateralized loan contracts;  
 

(ii) That these “risk rationed” producers are likely to enjoy lower levels of 
productive wealth than other producers; and,  
 

(iii) Wealth-biased risk rationing primarily affects lower-income farmers, 
undercutting their capacity for investment and resulting in a more 
inegalitarian distribution of income.  
 

If these three observations are correct, then improving the financial performance of low-

wealth agricultural producers is going to require more than land titling and other supply-

side efforts.  It will also require efforts to address risk constraints that limit effective 

demand. 

 

                                                 
1 See Boucher et al. (2007) and Boucher and Guirkinger (2006). 
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One possible resolution to this problem is to remove risk from the system by 

independently insuring it.2  However, conventional (all hazard) crop insurance has in 

almost every instance been rendered financially unsustainable by moral hazard and adverse 

selection problems (Barnett, 2000; Barnett et al., 2005; Chambers and Quiggin, 2001; 

Duncan and Myers, 2000; Hazell et al, 1986; Hess and Syroka, 2005; Knight and Coble, 

1997; Skees et al., 1999; Skees et al., 2006).   

In clear contrast with the multiple-peril crop insurance contracts, index-based 

insurance (e.g., area-based yield insurance3 or insurance based on rainfall or other weather 

indices) has the virtue of being moral hazard proof in the sense that it preserves effort 

incentives for producers as no individual farmer can influence the probability of an 

insurance pay-off.  It also significantly mitigates adverse selection problems, because the 

expected indemnities paid out by the insurer are independent of the characteristics of the 

pool of insured farmers.  

Recently, several authors have stressed the potential benefit of bundling index-

based insurance with micro loans (Alderman and Haque, 2007; Hess, 2003; Skees and 

Barnett, 2006; and Skees et al., 2007).  The main idea underlying this proposal is that by 

providing an effective tool to reduce the risk of substantial losses due to catastrophic 

                                                 
2 Other possible solutions include lending methodologies that do not depend on tangible collateral, such as 
group-based lending, and lending based on reputation. See Besley and Coate (1995) and Ghatak and 
Guinnane (1999) for theoretical treatments of advantages of group lending.  De Janvry et al. (2006) and 
Luoto et al. (2007) provide empirical evidence from Guatemala about the importance of information sharing 
in reducing loan defaults. In this context, credit bureaus can increase the value of borrowers’ reputation 
(building so-called reputation collateral), thus helping to “cream-skim” the market, with a resulting 
expansion of the credit market’s outreach (Jappelli and Pagano, 2000).  
3 In area-based yield insurance, insurance payoffs are based on the average yield of all producers in a region, 
irrespective of whether or not they purchase insurance.  Weather index-based insurance can be viewed as a 
subset of area-based yield insurance in which predictors of average yields (e.g., rainfall and temperature) are 
measured instead of realized average yields.  
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events, this type of insurance may also help reduce producers’ loan defaults, with obvious 

benefits for both borrowers and lenders.4  

In spite of its clear conceptual advantages, index-based insurance is not, of course, 

a silver bullet cure for the risk-related maladies of rural financial markets.  Most 

importantly, by construction, index-based insurance only covers a fraction of the risks 

faced by farming households, leaving them exposed to residual uninsured, or basis, risk. A 

key empirical question then is whether provision of the partial protection offered by index 

based insurance will suffice to relax demand constraints to borrowing and empower small 

holders to pursue more entrepreneurial strategies.  Similarly, on the supply-side, we might 

ask whether index insurance suffices to relax the reluctance of rural microfinance lenders 

to carry a larger agricultural portfolio (see Trivelli et al., 2006).  

Index-based (in particular area-based) insurance programs are currently operating 

in several developed countries (e.g., Canada, Sweden and the U.S.) and are either at the 

pilot stage or have recently started operating in some developing countries, including India 

(Hess (2003), Kalavakonda and Mahul (2005), Lilleor et al. (2005), Manuamorn (2007), 

and World Bank (2003)); Mexico (Skees et al., 2002); Morocco (McCarthy, 2003; Skees et 

al., 2001); Mongolia (Mahul and Skees, 2006); Malawi (Hess and Syroka, 2005); and 

Nicaragua (Miranda and Vedenov, 2001).5  In Peru, where we develop our empirical 

analysis, both the public6 and private7 sectors have taken steps toward developing index 

                                                 
4 In addition to enhancing loan performance, Alderman and Haque (2007) argue that this loan-insurance 
bundling may also reduce insurance marketing costs. 
5 Several of these experiences with weather-index insurance are summarized in World Bank (2005). With the 
exception of India, where a well developed weather insurance product is commercially available to small 
farmers in several regions, most of the other cases have not progressed beyond the pilot stage. 
6 The Peruvian Ministry of Agriculture evaluated the feasibility of weather-indexed insurance in several 
valleys, with technical assistance from the World Bank. Focus groups were conducted to examine the 
willingness to pay (WTP) for prototypical weather-index insurance products, and in all the cases there was a 
positive WTP.  To date, no concrete initiatives have emerged. 
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insurance models for agriculture.  To date, however, no index insurance product has been 

adopted.   

This paper contributes to the discussion about the benefits of index-based 

insurance.  In particular, we analyze the effects of area-based yield insurance on producers’ 

welfare and loan repayment outcomes.  Using data from coastal Peru, we estimate the 

parameters for two types of actuarially fair area-based yield insurance scheme.  In the first, 

average area yields are measured directly; while in the second they are imperfectly 

predicted using weather information. We then simulate and compare the value of each type 

of insurance to smallholder producers.   

This preliminary ex ante analysis confirms that area based yield insurance would be 

of significant value to producers.  Insurance based on directly measured yields 

significantly outperforms the more imprecise insurance based on a weather index, at least 

for the case analyzed here.  In addition, under reasonable assumptions about default 

behavior, both types of area yield insurance significantly reduce the probability of default 

(and the probability that the insured borrower will forfeit their collateral).  Together these 

observations suggest that area-based yield insurance can crowd-in both demand for and 

supply of credit.  We then consider the reasons for the general absence of privately 

provided area-based insurance in low-income economies. High costs of providing 

insurance (innovation and marketing), together with the scarcity of reliable data to 

calculate the distribution of payouts, both issues with public goods nature, are the most 

                                                                                                                                                    
7 In 2007, a private company began offering a weather-index insurance product in the northern department of 
Piura. This insurance is based on an ENSO (El Niño Southern Oscillation) index, which measures the sea-
surface temperature off the Peruvian coast as deviations from a long-run average temperature. This index is a 
good predictor of extreme rainfall resulting from an El Niño event.  However, despite the seeming 
attractiveness of this insurance product, to our knowledge, it has not yet been purchased by any of the 
agriculturally oriented financial institutions that were the original target market of the product. 
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likely explanations for the absence of area-based insurance. Finally, we analyze the 

possibilities for using a public guarantee scheme (over a five year period) in order to solve 

this public good issue. 

 

1. Directly Measured versus Estimated Area-based Yield Insurance  
 

Area-based yield insurance (ARBY) makes payouts to insured beneficiaries when area 

yields (e.g., average yields over a valley or other clearly defined geographic unit) fall 

below a critical threshold or strike-point.  This section provides a conceptual framework to 

understand the underlying logic of ARBY insurance and then uses the framework to put 

forward two options for ARBY insurance: one based on directly measured area yields, and 

a second based on estimated area yields, where estimated yields are based on observed 

weather information.  This second type of ARBY insurance is simply a particular way of 

expressing a weather index insurance product.   

Consider an agricultural valley composed of many farmers.  Viewed at the 

beginning of the planting season, both the yields of an individual farmer, ,
i

y  and the 

average yield across all farmers in the valley, ,y  are random variables.  Following 

Miranda (1991), we can express the relationship between individual and valley average 

yields using the following linear regression model:  

      ( ) ,y y y y

i i i i
y yµ β µ ε= + − +     [1] 

where y

i
µ is farmer i’s expected, or average, yield; yµ is the expected valley average yield; 

y

i
β is a farmer-specific parameter giving the average, or systematic, relationship between 

the individual farmer’s yield and the valley average yield; and y

i
ε represents idiosyncratic 
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yield variation (i.e., the variation in farmer i’s yield that is unrelated to average yields in 

the valley).  The value of ARBY insurance to an individual farmer hinges on the value of 

.y

i
β 8  A value of 1 implies that, on average, the farmer’s yields move in lockstep with 

valley average yields.  For example, when the valley average yield is 100 kilograms above 

its mean, we would expect that this individual farmer’s yield will also be 100 kilograms 

above her own mean.  In contrast, a value of 0 would imply that there is no systematic 

relationship between the farmer’s yield and valley average yields.  It is important to keep 

in mind that y

i
β represents the expected, or average, relationship between individual and 

valley average yields and that in any given year, the farmer’s actual yield will also be 

affected by idiosyncratic factors, such as health shocks or plot-specific pest infestations, 

that are independent of those factors driving valley average yields. 

  Equation [1] above expressed the relationship between individual farm yields and 

valley average yields and thus will serve as the basis to evaluate the value of an ARBY 

insurance product when data on valley average yields are available.  In some instances, 

direct data on valley average yields may not be available.  Instead, data may be available 

on certain weather variables, such as temperature or water availability, that affect 

agricultural production.  Letting ω denote the vector of weather variables, we can write the 

relationship between valley average yields and weather as follows: 

       ˆ ( ) .yy y ω ε= +     [2] 

Equation [2] decomposes valley average yields into a systematic component, ˆ ( ),y ω  which 

gives the average relationship between valley average yields and the weather variables, and 

                                                 
8 Formally, 

y

i
β is equal to cov( , ) / var( ),

i
y y y the OLS coefficient in a regression of ( )y

i i
y µ− on 

( ).yy µ−  
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a random component, yε , which represents the additional variation in valley average 

yields unrelated to weather (e.g., the impact of insect invasions). 

Note that ˆ ( )y ω  is simply a particular form of a weather index.  It translates weather 

information into predicted average yields.  This specification makes it clear that writing 

ARBY insurance on a weather index , ˆ ( )y ω , exposes the farmer to greater basis risk than 

does writing a contract based on directly measured yields, .y   The degree of additional 

basis risk, in turn, will depend on how “tight” is the relationship between valley average 

yields and the weather events (i.e., the magnitude of the variance of yε ).  

Before turning to the specification of the two alternative ARBY insurance 

contracts, we note that in irrigated systems such as the one in Peru where our empirical 

example is based, one reaction to water scarcity can be a reduction in area planted.  Let i
s  

and s  denote respectively the area sown by the i’th farmer and the average area sown by 

all farmers in the valley.  As in equation [1], we can decompose individual sown area into 

a component systematically related to average sown area and an idiosyncratic term as 

follows:  

      ( ) ,s s s s

i i i i
s sµ β µ ε= + − +     [3] 

where s

i
µ is the average area sown by farmer i; sµ is the average area sown throughout the 

valley; s

i
β  gives the average relationship between individual and valley average sown 

areas; and s

i
ε represents idiosyncratic shocks to individual sown area.  Analogous to 

equation [2], valley average sown area can be broken into a component systematically 

related to the weather variables and other factors:  

      ˆ ( ) ss s ω ε= +  .     [4] 
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Using [2] and [4] we can define directly measured adjusted valley average yields, ,y%  as: 

      
max

;
s

y y
s

 
=  
 

%       [5] 

where max
s is the maximum cultivable area per farmer in the valley.  Similarly, we can 

define estimated adjusted valley average yields, ˆ,y%  as: 

      
max

ˆ
ˆ ˆ.

s
y y

s

 
=  
 

%       [6] 

Note that [6] is another weather index, one that accounts for the impact of water 

availability on both yields and area sown. 

   Using this same idea of an adjusted yield, we define the farmers’ realized yields 

per-cultivable hectare, ,
i

y%  as: 

      
max

,i
i i

i

s
y y

s

 
=  

 
%      [7] 

where max

i
s is the cultivable land available to farmer i.    

We are now in a position to define alternative ARBY insurance contracts.  First, let 

cy% denote the contractually predetermined “strike point.”  If the relevant adjusted valley 

yield falls below this amount, the insurance pays out a per-hectare indemnity, ρ , 

equivalent to the shortfall.  For ARBY insurance based on directly measured yields and 

sown area, the indemnity is given by: 

     max[0, ].cy yρ = −% %      [8] 

For an estimated (or weather index) ARBY insurance the payout is instead given by: 

     ˆˆ max[0, ].cy yρ = −% %      [9] 
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In the analysis to follow, we will focus on actuarially fair insurance, which requires that 

the per-hectare insurance premium,π , equals the expected value of the indemnities paid 

out—i.e., [ ]Eπ ρ=  and ˆˆ [ ]Eπ ρ= .  Ignoring the fixed and other administrative costs of 

designing and delivering the insurance, actuarial fairness implies that the insurer will 

break-even in the long run as average premiums will equal average indemnity payouts.  

Fixed and other administrative costs are of course non-zero.  A typical assumption 

is that these costs lead to a 30% mark-up (or load) over the actuarially fair premium 

(Gollier, 2003).  Such costs will of course decrease the value of the insurance to the 

individual, and we will later consider their impact.  

 

2. Statistical Properties for Area-based Yield Insurance Indices for 
Lambayeque Valley in Peru 
 

This section defines and estimates the probability distributions needed to simulate 

the value of the area based yield insurance schemes defined in the prior section.  For 

illustrative purposes, we use information on irrigated rice production in the Lambayeque 

valley on the north coast of Peru.  As with all of Peru’s coastal valleys, agricultural 

production in Lambayeque depends on water that flows down from the Andean highlands.  

While the upstream Tinajones reservoir provides some degree of water management in the 

Lambayeque valley, its limited capacity leaves producers vulnerable to fluctuations in the 

river flows that feed into the reservoir.9  A year of scarce water has two impacts on 

farmers.  First, if water scarcity is revealed prior to planting decisions, it may lead to a 

                                                 
9 Of the 52 valleys on the Peruvian coast, only five have dams with sufficient capacity to allow significant 
inter-year water storage and transfer.  In principal, fluctuation in water availability in the other 47 valleys 
should be even more severe, making ARBY insurance even more valuable than what is calculated here for 
Lambayeque. 
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reduction in area sown.  Second, water scarcity reduces yields on those areas which are 

sown.  The empirical analysis reported in this section looks at these dual effects both at the 

valley and individual household levels.   

In order to analyze the value of both types of ARBY insurance, we need to fist 

estimate four things: 1) The parameters of the distribution of water availability in the 

valley; 2) The parameters describing the relationship between valley average yield and 

water availability (equation [2]); 3) The parameters describing the relationship between 

valley sown area and water availability (equation [3]) and; 4) The parameters of the 

relationship between individual farmer yields and valley average yields (equation [1]). We 

estimate the first three sets of parameters using time series data composed of 36 annual 

observations (1969 – 2004) on water flows, average yields and area sown in the 

Lambayeque valley.  We use a shorter panel of data (2002-2004) from a sample of 176 rice 

producers in the same valley to estimate the parameters of the individual yield 

distributions. 

Consider first water availability.  Our empirical measure of availability is the 

annual volume of water outflows from the Tinajones reservoir, the primary source of 

irrigation in the Lambayeque valley.  Let t
ω denote outflows in year t and ( )

t
f ω its 

probability density function.  We assume that the function f(.) follows the generalized beta 

distribution with parameters (a, b, p and q): 

     
1 1

1

( ) ( )
( ; , , , ) ,

( ; , )( )

p q

p q

a b
f a b p q

p q b a

ω ω
ω

ω

− −

+ −

− −
=

Β −
   [10] 

where: ; , 0a b p qω≤ ≤ > and 
1

1 1

0
( ; , ) (1 ) .p q
w p q dω ω ω− −Β = −∫   The parameters of this 

density function were estimated by maximum likelihood using the 36-year time series data 
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on water outflows from the Tinajones reservoir.  Table A-1 in the Appendix reports the 

parameter estimates and compares the distribution of the historical data to 100 draws from 

the estimated beta distribution. 

Our next step is to empirically estimate the relationship between valley average 

yields and water flows (equation [2]) and between valley average sown area and water 

flows (equation [4]).  We do so using the time series data (again for the period 1969 – 

2004) on average valley yields and area sown published by the Ministry of Agriculture.  

We assume that both relationships are quadratic in water flows so that the empirical 

specifications of equations [2] and [4] are given by the following two equations: 

 2

0 1 2 ;y

t t t t
y α α ω α ω ε= + + +  [11] 

 2

0 1 2 .s

t t t t
s γ γ ω γ ω ε= + + +  [12] 

We estimate the parameters of equations [11] and [12] using OLS.  The regression results 

are reported in table A2 in the Appendix.   The parameter estimates allow us to construct 

weather indices that are denominated in interpretable units of kilograms of rice per-sown 

hectare ( tŷ ) and sown hectares ( tŝ ).10  Using [6], these two indices can then be combined 

to generate an estimated adjusted area yield index.  As reported in the Appendix, the R2 of 

these regressions are between 10% and 50%, meaning that less than half of the variation in 

valley average yields can be explained by weather fluctuations, and hence that less than 

half of the insurable covariant risk can be covered by the simple weather index proposed 

here.11 

                                                 
10 The indices themselves are simply linear functions of the measured weather variables. 
11 More sophisticated yields models, especially those that rely on an expanded set of weather variables, could 
of course improve the explanatory power of these regressions and ultimately increase the value of a weather 
index based ARBY insurance. 
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Finally, we use the three year panel of data on individual producers to estimate the 

farmer-specific parameters of individual yields specified in equation [1].  We assume the 

idiosyncratic error component ( y

it
ε ) is normally distributed with mean zero and estimate 

this random coefficients model using maximum likelihood.12  This exercise allows us to 

estimate the farmer-specific y

i
β parameters from equation [1].  Appendix Table A-3 

summarizes the results from estimating equation [1] using the Lambayeque panel data.  As 

discussed above, these parameters measure the sensitivity of individual yields to average 

valley yields.  Note that while the distribution of the 'y s

i
β will be centered on one, some 

farmers will be hypersensitive to average outcomes (with the 1y

i
β > , perhaps the ‘tail-

enders’ in the irrigation system), while others will have yields and sown area that are more 

insulated from average outcomes (with the 1y

i
β < , perhaps those located at the head of 

irrigation canals). ARBY insurance will of course be less valuable for producers with 

lower values of .y

i
β  Finally, note that the distribution of the error term, y

itε , permits us to 

evaluate the magnitude of idiosyncratic risk faced by individual producers.  With these 

four sets of parameter estimates in hand, we turn now to analyze the value of the two types 

of ARBY insurance contracts to both farmers (borrowers) and lenders. 

  

3. Benefits to Borrowers of Area-based Yield Insurance 

The expressions linking individual farmer i’s yields and sown area to valley 

averages are given in equations [1] and [3].  Note that the insurance is written on valley 

                                                 
12 Note that while we could estimate the individual farmer’s sown area in a similar fashion using [3], we will 
here assume that local irrigation commissions restrict all individuals to sow the same fraction of their 
cultivable area.  
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averages, not individual outcomes. While this resolves moral hazard and adverse selection 

problems, it also limits the value of the insurance to the individual.  The actual value of 

insurance to the farmer will depend on the variance of idiosyncratic risk (the itε ’s), and on 

the values of y

i
β and s

i
β which determine how closely the individual’s yields and sown area 

track the valley averages.   In addition, for ARBY insurance based on estimated yields, the 

value of insurance further depends on the accuracy with which average valley yields can be 

predicted with weather information (i.e., on the variances of yε and sε ).  If all the variance 

terms were zero, and if 1y s

i i
β β= = , then the ARBY insurance would perfectly cover all 

production risk faced by the farmer.  As those variances increase, or as the βi decline, the 

insurance becomes less valuable to the farmer.   

How valuable ARBY will be is an empirical question and context specific.  Using 

the econometric results summarized in the prior section, we will now simulate the value of 

various ARBY contracts to agricultural producers in Lambayeque.  Later sections will 

return to consider some of the limitations of this sort of ex ante analysis. 

To get an idea of the benefits to farmers from an ARBY scheme, we use the results 

of the estimations described above to generate a 100-year simulated time series of 

outcomes for the valley and for 500 individual rice farmers.  To ensure that the 500 

farmers are representative of Lambayeque, each farmer is assigned a y

i
β drawn from the 

estimated distribution of this parameter.  Each farmer is assumed to own five hectares of 

land and, in order to produce on their land, is assumed to take out a working capital loan.  

Each farmer also has the option to purchase an ARBY product.  Finally, to keep matters 

simple, we assume that all farmers have the same average yield. 

The simulation proceeds in the following six steps. 
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1. First, we took 100 draws from the estimated Beta distribution (see table A1 in 
the Appendix) to generate a simulated time series of valley water 

flows 1 2 100( , ,..., ).ω ω ω  

2. We then used the simulated water flow data along with 100 draws from the 

estimated distribution of y

t
ε and the parameter estimates of equation [11] to 

generate a 100 year time series of average yields in the valley 1 2 100( , ,..., ).y y y    

3. Similarly, we used the simulated water flow data along with 100 draws from the 

estimated distribution of s

t
ε and the parameter estimates of equation [12] to 

generate a 100 year time series of average area sown in the valley 1 2 100( , ,..., ).s s s  

4. For each farmer, we then generated a time series of 100 idiosyncratic yield 

shocks by taking draws from the estimated distribution of .y

it
ε  

5. We next combined these simulated data according to equation [1] to generate a 

100 year time series of individual yields, 1 2 100( , ,..., ),
i i i

y y y  for each of the 500 

farmers.   

6. Finally, we used equation [7] to generate the time series of realized yields per 

cultivable hectare for each farmer, 1 2 100( , ,..., ).
i i i

y y y% % %  We made the additional 

assumption that there is no idiosyncratic area shock (i.e., 0,s

it
tε = ∀ ) so that the 

ratio 
max

it

it

s

s

 
 
 

 in equation [7] is equal to 
max

.t
s

s

 
 
 

   

 

  In subsequent analysis, we will treat these 500 individuals as if they were the 

clientele (the loan portfolio) of a single microfinance organization.  For purposes of the 

simulation, we assume that all farmers borrow working capital equal to 40 percent of the 

expected value of production (that is, we assume that financed inputs constitute 40 percent 

of the value of production).13  Matching the reality of agricultural microfinance lending in 

coastal Peru, the interest rate was set to 21.7 percent (in Soles, non-annualized) for a five-

                                                 
13 This assumption roughly corresponds to conditions in northern Peru, where loans for rice production range 
from $300 - $500 per hectare and revenues per hectare average around $1,000.  The main purpose of this 
assumption is to reflect the use of external financing in agricultural production. Varying this proportion will 
only affect farmers’ consumption (ceteris paribus, the higher the proportion of loan, the lower the 
consumption, keeping unchanged the full loan repayment result) in the case of buying a measured ARBY 
insurance. In the case of not buying insurance or buying insurance indexed by the estimated average valley 
yields (estimated ARBY, with weather index) a higher proportion of loans will decrease farmers’ 
consumption and reduce returns on lending. As we will see in Table 1, ARBY insurance will have more 
value to farmers when computed using the measured valley yields. 
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month loan.14 We further assume that farmers have the option to take out an insurance 

contract for all 5 of their hectares.  Initially, we will assume that the strike point is equal to 

long-run average valley yields—i.e., c yy µ=% .   Later, we will also consider contracts with 

other strike points (e.g., 0.8c yy µ=% ). 

Farmers’ full-repayment–net-income is defined as the residual income, after paying 

any insurance premium, receiving any insurance indemnity payments and repaying a loan 

of L at a nominal interest rate, r.  Note that, since insurance is actuarially fair, the average 

full-repayment-net-income of insured farmers will equal that of uninsured farmers (who 

also obtain a loan, but not insurance, to finance their production).   However, to properly 

value the insurance for farmers and lenders, we need to make assumptions regarding loan 

repayment.  While full repayment is an option, we more realistically assume that the 

borrower always pays back as much as is feasible after meeting a subsistence consumption 

level, c  (set at a fraction of long-run average production).  Under these assumptions, the 

net income available for the farmer’s consumption is: 

 5 (max[ , ( (1 ) ) ])ARBY

it it t t
c c y r Lπ ρ= × − − + +%  [13] 

if she buys insurance. Similarly, the farmer’s net income without insurance is:   

 5 (max[ , ( (1 ) )]).NI

it it
c c y r L= × − +%  [14] 

Note that under this specification, default can either be total or partial.  In addition, because 

borrowers repay as much as possible after reserving c for themselves, insured borrowers 

will end up repaying more on average and hence have lower average consumption levels 

                                                 
14 This interest rate corresponds to current interest rates charged for agricultural loans by microfinance 
lenders (the Cajas Municipales) in Peru. 
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than their more frequently defaulting counterparts.  For simplicity, the lender’s income is 

total repayments received minus the value of loans made.15 

Equations [13] and [14] above are the critical objective inputs into the farmer’s 

valuation of ARBY insurance as they compare his consumption levels with and without 

insurance for each possible joint outcome of his individual yield and average yields in the 

valley.  Ultimately, the value of ARBY and the decision of whether or not to purchase the 

insurance will also depend on each farmer’s preferences with respect to (i.e., sensitivity to) 

risk. We assume that farmers’ preferences are given by the following Constant Relative 

Risk Aversion (CRRA) utility function:16  

      

1

( ) ,   for 0, 1;
1

g

it
it

c
U c g g

g

−

= > ≠
−

   [15] 

where g is the Arrow-Pratt coefficient of relative risk aversion. The higher the parameter g, 

the more risk averse the individual.  The analysis below will consider various degrees of 

risk aversion.   

In order to make the implications of risk aversion more transparent, we will use our 

assumptions on the nature of risk aversion to express the value of a given risky prospect 

(e.g., a risky income stream without insurance, or with imperfect ARBY insurance) in 

certainty equivalence terms.  In particular, the certainty equivalent of the risky 

consumption stream ( ; , )y y

it t i it
c ω β ε 17 is defined as the value of consumption that, if 

received with certainty, would yield the same level of well-being as the expected utility of 

                                                 
15 Abstracting from other costs (e.g., operating costs) will allow us to concentrate on examining repayment 
rates only.  
16 These preferences were assumed by similar studies for the U.S., such as Coble et al. (2004) and Wang et 
al. (1998). 
17 Note that in this exercise we focus on yield variability and neglect variability in sown area so that 

consumption depends only on
y
itε  and 

y
iβ ; not 

s
itε  nor 

s
iβ . 
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the risky income stream.  The certainty equivalent of contract k, k

cec , is thus implicitly 

defined by the following equation: 

 ( ) ( ),, , ; , ;k k c k y y

it it t i it
U c EU c yω π β ε =  

%  [16] 

where kπ and ,c ky% are the premium and strike point for contract k.  

 
To complete the empirical specification, we set the minimum (subsistence) 

consumption level, c , equal to  20% of long-term expected income.18  Yields, and other 

values, are converted to US dollars.  Throughout the exercise we set the rice price at $0.16 

per kilo, which is the price that prevailed in Lambayeque in 2004. 

Tables 1 and 2 present the results of this simulation analysis.  The top panel of table 

1 reports the mean values of farmer income, the insurance premium and indemnities, 

consumption and loan performance for a farmer with 1.y

i
β =   The first two columns 

compare these values across measured versus estimated ARBY contracts with a strike-

point set at 100% of long term valley yields.  The third column gives these values without 

insurance.  The bottom panel of the table reports the certainty equivalents corresponding to 

each of these three options for five different degrees of risk aversion, ranging from “Very 

Low” to “Very High.”  For a person with Very High risk aversion, the uninsured 

consumption stream has a certainty equivalence value of $1,565 (see bottom right entry of 

Table 1).  Given that the uninsured consumption stream has a mean of $1,971, this implies 

that the most risk averse individual would be willing to pay $406, or 20.6% of expected 

annual consumption, in order to completely eliminate risk.  The size of this risk premium 

of course diminishes as risk aversion diminishes (and would be zero for a risk neutral 

                                                 
18 While this proportion is arbitrary, the important feature from reality this intends to capture is that farmers 
will not give away everything in order to repay the loans. They would rather satisfy their basic needs before 
repaying any loan. 
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farmer).  An individual with Very Low risk aversion, for example, has a certainty 

equivalent of $1,878 and thus is only willing to give up $93, or just under 5% of expected 

annual consumption, to completely eliminate risk. 

So how valuable is area-based yield insurance to borrowers?  For an individual 

with Very High risk aversion, the certainty equivalence of measured ARBY insurance is 

$1,825 (see bottom left entry in Table 1).  This figure indicates that the highly risk averse 

person would be willing to pay up to $260, beyond the total annual premium of $547, in 

order to buy the measured ARBY insurance.  Farmers are willing to pay these amounts 

because the insurance reduces consumption variability, as shown by the standard deviation 

figures in the top half of Table 1.  These willingness-to-pay figures of course decline as 

risk aversion diminishes, as shown in Table 1. 

The corresponding figures for a weather index based estimated ARBY insurance 

are shown in the middle column of Table 1.  For a highly risk averse farmer, the certainty 

equivalence of the weather index is $130 (=1,925-1,695) less than the value this farmer 

would assign an ARBY contract based on measured yields.  Put differently, this farmer 

would be willing to pay up to $130 (=1,695-1,565) more than the actuarially fair premium 

for the weather-index insurance, whereas the same farmer would be willing to pay up to 

additional $260 for an ARBY insurance based on measured yields.  It should be noted that 

the actuarially fair premium for the measured ARBY insurance is $33 more than that for 

weather index-based insurance.  As risk aversion declines, the differences between all three 

contracts (no insurance, measured ARBY and weather index-based ARBY) diminish.19  

                                                 
19 It should also be noted that the analysis here only examines the favorable case in which 1.y

i
β =  Further 

analysis could identify farmer types (with 
y

i
β approaching zero) for whom the insurance would cease to be 

valuable. 
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Table 1 
The Value of Actual and Estimated ARBY Insurance 

(Coverage = 100% acreage & 1y

i
β = ) 

With Insurance 
(Strike Point 100% of Long-run 

Average Valley Yields) 

Measured 
ARBY 

Estimated 
ARBY 

(Weather Index) 

No 
Insurance 

 

 
 
 

 

Mean Mean Mean 

Net income, $ 2,601 2,601 2,601 

Insurance payment (total), $ 547 514 0 

Expected indemnity (total), $ 547 514 0 

Consumption, $ 
1,932  
(797) a 

1,945 
(990) a 

1,971 
(1,276) a 

Loan repayment, $ 
669 
(0) a 

656 
(77) a 

631 
(118) a 

Lending return (%) 21.7 19.4 14.7 

 
Certainty Equivalent Value to Borrower ($’s) 

 

Very Low Risk Aversion (g=0.2) 1,904 1,889 1,878 

Low Risk Aversion (g=0.33) 1,885 1,849 1,813 

Middle Risk Aversion (g=0.5) 1,862 1,798 1,726 

High Risk Aversion (g=0.67) 1,846 1,742 1,643 

Very High Risk Aversion (g=0.8) 1,825 1,695 1,565 
a Standard errors in parentheses. 
Note: Average loan: $ 550; Interest rate: 21.7%. 

 

To put these numbers in context, it is useful to compare them to the additional costs 

that a private sector insurance provider might charge to recover the fixed costs related to 

product development, marketing and administration.  Under the assumption that the 

loading factor is 1/3 of the premium, the insurance schemes analyzed here would cost 

about another $130/year.  This amount is approximately equal to the farmer’s total excess 

willingness to pay for weather index-based ARBY insurance, and about half the amount 
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the farmer would be willing to pay for measured ARBY insurance.  These crude 

calculations suggest that there could be demand for ‘fully loaded’ measured ARBY 

insurance, but not for fully loaded weather index-based ARBY insurance. 

Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 provides an alternative depiction of the same information, showing the 

cumulative distribution of consumption (as defined in equations [13] and [14]).  As can be 

seen, both types of ARBY insurance contracts reduce the probability of extreme outcomes. 

Without insurance, there is a 20% probability that the producer’s net income falls below 

$600 (or 3,750 kilos of rice on their 5 hectares).  Under measured ARBY insurance, that 

probability drops to zero, while it is 10% under a weather index-based estimated ARBY 
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insurance.  Because of the insurance premium, the probability of high outcomes is of 

course also reduced under both ARBY schemes.  But as the certainty equivalent values in 

Table 1 show, risk averse borrowers prefer this swap.  A risk neutral borrower would of 

course be (almost) indifferent between the three distributions.20 

Table 2 

Typical Farmer and Lender: Value to Borrower by Strike Point  

(Coverage = 100% acreage & 1
i

β = . Farmer has high risk aversion) 

Measured ARBY  Estimated ARBY  

 
Certainty 

Equivalent, $’s 

Insurance 
Premium  

Per-Hectare, 

tπ  

($’s) 

  Certainty 
Equivalent, $’s 

Insurance 
Premium  

Per-Hectare, 

tπ  

($’s) 

No insurance 1,643 0  1,643 0 

Insurance Strike Point, 
c

t
y%  (% of Long-run Average Valley Yields) 

40% 1,615 11  1,640 5 

50% 1,670 20  1,647 11 

75% 1,770 55  1,695 42 

90% 1,817 86  1,729 75 

100% 1,846 109  1,742 103 

 

Finally, Table 2 explores the impact of lowering the strike point.  As can be seen, 

the actuarially fair premium drops quickly (more so for the estimated ARBY) as the strike 

point declines. While expected utility is strictly increasing in the strike point for the typical 

farmer being analyzed, this will not necessarily be true for farmers with different values 

of y

i
β .  The analysis above can be easily extended to different values of the y

i
β .  Using 

                                                 
20 The risk neutral farmer would prefer no insurance as it allows greater amounts of default under the 
consumption minimum repayment rule. 
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information on the valley-wide distribution of the y

i
β ,21 it would then be possible to 

estimate the potential demand for any particular ARBY scheme. 

 

4. Area-based Yield Insurance and the Reduction of Default 
Probabilities: Crowding-in Demand and Supply in the Credit Market 

 

If we were to make the draconian assumption that individuals always repay lenders 

as much as is financially possible (i.e., set c=0), then loan default would not be a major 

issue in our simulations.  However as we make the more realistic assumption that farmers 

will retain enough income to at least feed their families (setting c to 20% of long-term 

expected income), loan default becomes an issue. We find that under this repayment 

assumption, a larger share of the benefits of ARBY insurance will pass to the lender in the 

form of even lower default rates and higher earnings. In particular, simulation results show 

that ARBY insurance eliminates loan default and increases realized returns on the lender’s 

loan portfolio by between 4% and 6%, depending on the ARBY index used (measured or 

estimated). This shift of benefits to the lender means,22 however, that the insurance is less 

valuable to borrowers in the short term sense.  However, additional value would accrue to 

borrowers once we take into account their gain in future utility from not having defaulted, 

and thus not having lost valuable collateral or reputation, in the present.  Additional 

analysis can further explore these points. 

                                                 
21 Econometric estimation of equation [1] yields the distribution of the

y

i
β . Experimental data would provide 

further insights about the demand for ARBY insurance for various
y

i
β –type farmers given different 

insurance strike points. 
22 These results provide a rationale for the participation of lenders in delivering ARBY insurance, bundled 
with an agricultural loan (this could also reduce insurance marketing costs). Recent field visit to a southern 
coastal valley in Peru confirmed the interest of the main agricultural lender in delivering ARBY-type 
insurance as an add-on to the loans already offered. 
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The likelihood that ARBY insurance can reduce default suggests that it could have 

impacts on both the demand and supply sides of the credit market.  From the demand side, 

the elimination of the probability of default eliminates the risk that borrowers will lose 

their collateral.  As discussed by Boucher et al. (2007), studies in Guatemala, Honduras, 

Nicaragua and Peru suggest that between 15% and 30% of all potential borrowers are “risk 

rationed,” refusing available loan contracts (and retreating to safer, lower return activities) 

in order to avoid the risk of default and collateral loss.  The returns, in terms of higher 

investment and productivity levels, to ARBY insurance that brings these individuals into 

the market are potentially quite high (see Boucher and Guirkinger, 2006). 

In addition, as documented by Tarazona and Trivelli (2006) and Trivelli et al. 

(2006) for the case of the north coast of Peru, local agricultural lenders (the Cajas 

Municipales) are extremely reluctant to carry a large loan portfolio.  At the root of this 

reluctance is a two-sided fear of covariant risk.  Directly, locally based lenders clearly do 

not want to carry a large fraction of their portfolio in loans where the likelihood of default 

is highly correlated (as would happen in a drought year).  In addition, covariant risk of this 

sort also generates a secondary political risk.  When a large number of producers face 

default, they have obvious political incentives to demand a bail-out or other form of debt 

forgiveness.  Precisely this scenario took place following the 1998 El Niño event. The 

resulting governmentally mandated Rescate Financiero (Financial Rescue), which required 

lenders to restructure certain overdue loans, further reduced lenders’ willingness to lend to 

agriculture (see Trivelli et al., 2006).  Seen in this light, ARBY insurance potentially offers 

a double benefit to lenders.  If uptake is sufficiently high, ARBY insurance can reduce 
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both the direct risk of correlated default as well as the risk of political default which, as 

made evident in the case of Peru, is also produced by covariant shocks. 

 

5. Implementation Issues for Area-based Yield Insurance: From Theory 
to Practice 
 

The ex ante analysis above indicates large private and social gains to area-based 

yield insurance.  ARBY would appear to be an attractive option precisely because it 

promises to crowd-in supply and demand in rural credit markets, enhancing the 

productivity of the sector. 

These observations raise the question as to why the private insurance market (in 

Peru and elsewhere) generally fails to offer ARBY insurance products.23  There are at least 

three reasons for the failure of the private market to provide this insurance: 

1. The novelty of the product and the costs associated with its innovation; 

2. Scarcity of reliable, long-term data on area yields or the weather indices needed 
to estimate them (meaning that potential insurance providers face parameter 
uncertainty as they try to write insurance contracts); and, 

3. Costs of marketing the product, especially to the smallholder sector (where 
returns are likely to be highest). 

 

Following the example of other micro-insurance products, a potential solution to 

problem 3 is to bundle ARBY contracts with microfinance products.   Indeed this bundling 

strategy has already been proposed elsewhere.24  In a country like Peru, where the private 

insurance sector has virtually no experience in offering agricultural insurance, the strategy 

                                                 
23 In the context of the US, it is often argued that government subsidized conventional insurance products 
crowd-out market supply of ARBY insurance contracts. Such crowding out is not the issue in Peru and most 
other areas in the developing world. A review of the design, and viability, of the ARBY-like US contracts, 
offered under the Group Risk Plan (GRP), can be found in Skees et al. (1997) and Deng et al. (2007), 
respectively.   
24 See Alderman and Haque (2007) and Hess and Syroka (2005) for the case of crop insurance, and Karlan 
and Zinman (2005) for an example of this bundling in the case of micro health insurance. 
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of channeling an ARBY insurance product through micro-finance institutions, which have 

extensive outreach and clientele amongst the target population of small-farmers, is 

particularly attractive.25 

The other two problems have a public good character.  Problem 2 in  a very direct 

sense reflects past public good failures in the form of a public sector that has not 

maintained credible long-term yield and, or weather information. Problem 1 also presents 

an important obstacle since no individual insurance provider may have incentives to pay 

innovation costs, especially given problems 2 and 3. 

These observations suggest that there may be a public role in underwriting 

innovation costs, creating reliable long-term information,26 and sharing some of the excess 

risk (that results from parameter uncertainty) until experience and more reliable long-term 

information come on-line.  But how costly would it be for a public sector entity to 

underwrite the risk of an ARBY insurance scheme over a short term period until sufficient 

learning had occurred to permit the private sector to bear the full risk of the program? 

Over the long-term, the expected cost of an underwriting guarantee is of course 

zero.  That is, if the program were run for a long-time, then the premiums collected would 

almost surely cover the indemnity payments.  In the short term, in contrast, it is possible 

that accumulated premiums would be insufficient to cover indemnity payouts.  To get a 

handle on the magnitude of this risk, Table 3 shows the probability of losses of different 

magnitudes associated with insurance underwriting.27  The table is based on the simulation 

                                                 
25 Needless to say, careful attention must be paid to institutional details such as regulation of the insurance 
product and cost-sharing of marketing and administrative expenses between the micro-finance institution and 
the private insurance sector. 
26 As discussed above, ARBY insurance will become more valuable to farmers as direct reliable yield 
measurement can replace the reliance on weather indices and estimated average yields. 
27 For purposes of this analysis, administrative costs are assumed to be zero. 
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analysis of Lambayeque rice producers used above.  Two alternative insurance contracts 

are illustrated.  The first (Contract I) sets the strike point at 80% of long-run average valley 

yields.  The actuarially fair premium for this contract is $65 per-planted hectare.  This 

amount represents 11.8% of the production loan taken by a typical rice farmer.  Rolling 

this cost into the interest rate would increase the annual interest on the loan by 

approximately 25.6 percentage points.  The second contract (Contract II) sets the strike 

point at 100% of long-run average valley yields.  With its higher strike point, this second 

contract is more expensive, requiring a premium of $109 per-planted hectare. 

The rows of the table display the probabilities that per-hectare insurance losses 

take on certain amounts.  Gains and losses over a T-year time horizon are calculated as 

follows:28 

     ∑
=

−
T

t

tT
1

)(ρπ , 

where π is the per-hectare premium and ρt is the indemnity payment for year t.  Note that 

premiums are pooled over the T years and, under this definition, losses appear as negative 

values.   

As can be seen in Table 3, for the case of the 80% ARBY plan, over a single year 

time horizon, there is a 2% probability that insurance losses exceed  $300 per-hectare 

financed (recall however, that the farmer’s debt obligation is $110 per-hectare).  When risk 

is pooled over just two years, that risk drops to almost zero.  When risk (and premiums) are 

pooled over a five year period, the probability that losses exceed $100 is only 3%, while 

the probability that losses are between zero and $100 is 26%.   Put differently, premiums 

                                                 
28 Note that we are not discounting the indemnity payments.  
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collected are sufficient to cover losses 74% of the time even when risk is pooled only over 

a five year horizon. 

Table 3 

Short-term Costs and Risks of Underwriting ARBY Insurance 

 

 Contract I 

(Strike point = 80% of 

long-run average valley 

yields) 

Contract II 

(Strike point = 100% of 

long-run average valley 

yields) 

Expected Yield per Cultivable 
Hectare ($US) 

$916 $916 

Actuarially Fair Annual Premium 
per Planted Hectare 

$65 $109 

Premium as % of Typical Loan* 11.8% 19.8% 
Time Horizon Over which Loss 

Probabilities Calculated (years) 

 
1 

 
2 

 
5 

 
1 

 
2 

 
5 

Expected Loss 0 0 0 0 0 0 
Probability of loss greater than 
$300/hectare 

2% 0% 0% 8% 5% 2% 

Probability of loss between $200 
and $300/hectare 

2% 2% ~0% 7% 8% 5% 

Probability of loss between $100 
and  $200/hectare 

2% 3% 3% 8% 6% 20% 

Probability of loss between $50 
and $100/hectare 

2% 5% 7% 6% 7% 16% 

Probability of loss between $0 
and $50/hectare 

3% 25% 19% 5% 20% 19% 

* Average loan: $ 550. 

 

The full estimated cumulative distribution function for losses (on which the figures 

in Table 3 are based) for the 100% ARBY plan is presented in Figure 2.  As can be seen, 

the risk of losses over a one-year horizon is not trivial.  However, this risk diminishes 

rapidly if the underwriter takes on a long-term commitment.  Note also that this risk 

exposure could be reduced further by raising the premium to farmers, or by charging a 

usage fee to participating lenders (who would benefit from diminished default risk). 



 28

 

Figure 2 

 

 

6. Conclusions 

The analysis presented here has used real data to illustrate the potential for area-

based yield insurance to crowd-in supply and demand for agricultural finance.29  While this 

potential has been recognized at least in part by a number of other authors (such as Hess 

(2003) and Skees and Barnett (2006)), the actual implementation of area-based yield 

                                                 
29 It should be stressed that the valuation of insurance presented here assumes that producers behave in 
accordance with the axioms of the expected utility hypotheses.  Behavioral research indicates that in reality 
individuals may depart from a number of these axioms.  In an effort to get a sharper insight into the real 
world value of ARBY insurance, the authors of this study are planning to run field experiments to explore 
individuals’ willingness to pay for ARBY insurance. 
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insurance has often floundered over the lack of credible long-term statistical information 

needed to make area-based yield insurance immediately attractive to the private sector. But 

as argued in this paper, this lack of information reflects a past history of public good 

failures. An appropriate response would thus seem to be a dual approach in which (1) 

needed informational infrastructure is created and (2) short term parameter uncertainty is 

resolved by public sharing of risk (through subsidies to the cost of insurance, for instance).  

The returns to such a dual approach would seem to be large, both in terms of rural income 

generation, but also in terms of underwriting the income growth of the small farm sector 

that suffers most from risk and incomplete financial markets.  

Finally, efforts should be made to avoid distorting interventions from the public 

sector in rural financial markets. Recent history in several developing countries alerts us of 

the harmful effects of political intervention.  
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Appendix: Econometric Results 
 

 

Table A1 
Data fitting for water outflows from the Tinajones Reservoir 

Density: Beta (335.07, 1832; 2.53, 2.98) 

 Historical Data Fitted Data 

Mean 1,038 1,021 
Standard Deviation 323 281 
Median 1,021 1,055 
Minimum 443 494 
Maximum 1,745 1,730 
Number of observations 36 100 

 

   Note: See equation [10] in the text.  Units expressed in millions of cubic meters. 

 

 

Table A2 
Regression Results for Parametric Functions Between Water Outflows and: 

 

 Coefficient T Statistic 

Average Valley Yield, Kg/Ha (Eqn. [11])   

  Water Outflows ( t
ω ) 6.45 1.52 

  Water Outflows squared ( 2

t
ω ) -0.0026 -1.28 

  Constant 2,030 0.95 
  R-squared 0.1031 
  N 36 

Sown Valley Area, Has (Eqn. [12])   

  Water Outflows ( t
ω ) 112.36 2.79 

  Water Outflows squared ( 2

t
ω ) -0.0396 -2.08 

  Constant -37,880 -1.87 
  R-squared 0.4191 
  N 36 

 

 The residuals were fitted to mean zero normal distributions with standard 

deviations of 1,231 (average valley yields, y
tε ) and 1,629 (valley sown area, s

tε ). 
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Table A3 
Regression of Individual Yields on Average Valley Yields 

(Random Coefficients) 
 

Estimated Data  Simulated Data* 

 
Mean 

Standard 
Deviation 

 
Mean 

Standard 
Deviation 

Idiosyncratic shock, y
itε  (Kg/Ha) ~0 137  0.2 137 

Individual farmers’ beta, y
iβ  1.02 0.23  1.03 0.24 

 

* Simulations are based on random draws from normal distributions with the above 

indicated means and standard deviations. 

    Note: See equation [1] in the text.  n = 528 (= 176 observations X 3 years). 
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Table A4 
Descriptive Statistics 

 

 Mean Median 
Standard 
Deviation 

Minimum Maximum 

Estimated betas, y
iβ  1.024 1.019 0.230 0.241 1.511 

Simulated betas 1.032 1.034 0.237 0.098 1.852 

Simulated Individual yield, ,ity  

(Kg/Ha) 
5,870 5,871 273 a 371 10,527 

Simulated valley average 

yield, )( ty ω (Kg/Ha) 
5,727 5,898 389 4,587 6,066 

Adjusted individual sown area (Ha) b 2.72 2.74 1.22 0.63 5.00 

Adjusted average valley yield, ty~  

(Kg/Ha) c 
3,160 3,183 1,634 411 7,613 

Idiosyncratic shock, y
itε  (Kg/Ha) 0.20 1.08 137 a -601 533  

Historical water outflows, tω  

(millions of cubic meters, MCM) 
1,038 1,021 323 443 1,745 

Simulated water outflows, MCM 1,021 1,055 281 494 1,730 

Estimated error from regressing ty on 

tω , y
tε  (Eqn.[11]) 

-37 -83 1,028 -2,468 2,200 

Estimated error from regressing ts on 

tω , s
tε  (Eqn.[12]) 

-1,577 -865 21,253 -26,711 10,731 

 

a Average standard deviation across 100 years.   

b It equals 
max

s

st  x5, where ts  is truncated between 7,200 and 57,200 hectares.   

c 
max

~

s

s
yy t

tt =  (Eqn.[5]).   

Note:  Simulations assume subsistence consumption equal to 20% of expected income ($275); 

and loan size equal to 40% of expected income ($ 550). Expected income ($ 1,375) 

results from multiplying the adjusted average valley yield (in Kg/Ha) times the average 

adjusted sown area (in Has.) times the price of a Kg of rice (3,160x2.72x0.16). 

 

  


