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Abstract 
The Hirsch index is a number that synthesizes a researcher’s output. It is defined as the maximum number 
h such that the researcher has h papers with at least h citations each. Two axiomatic characterizations of 
this index are suggested. One of them provides a simple conceptualization of the Hirsch index: after 
selecting those outputs deserving index 1, the Hirsch index of any other output x is the minimum value of 
a two-part decomposition of x. 
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1. Introduction 

 
The physicist Jorge E. Hirsch (2005) has suggested the h-index, also known as the 
Hirsch index, as a way to characterize the scientific output of a researcher. The Hirsch 
index of a researcher i is the maximum number h of i’s papers having at least h citations 
each; see Wikipedia (2009) for a discussion of advantages and criticisms. 
 
The Hirsch index, by now “famous” according to Sidiropoulos et al. (2007, p. 253), has 
been axiomatically characterized by Woeginger (2008a, 2008b) within the domain of 
scientific impact indices taking values in the set of non-negative integers. This note 
offers another two axiomatizations, but for a larger domain, consisting of scientific 
impact indices taking values in the set of non-negative real numbers. 
 
The second characterization (Proposition 3.6) is probably the most valuable because it 
hinges on an axiom expressing a sort of non-manipulability condition. According to this 
condition, it cannot be in a researcher’s interest to partition his or her output into two 
parts, compute the index of each part, and next claim that the index of the whole output 
is the sum of the index of the two parts. 
 
 
2. Definitions and axioms 
 
Following Woeginger (2008a, p. 225; 2008b, p. 299), let ℕ designate the set of non-
negative integers and X designate the set of all vectors x = (x1, x2, … , xn) such that: (i) n 
≥ 1; (ii) every component xi belongs to ℕ; and (iii) x1 ≥ x2 ≥ … ≥ xn. A researcher with n 
≥ 1 publications can be represented by the member x = (x1, … , xn) of X such that xi is 
the number of citations of paper i, with citations are arranged in a non-increasing order. 
For x ∈ X, dx denotes the number of components (or dimension) of vector x, x− = 
min{x1, … , xdx} and x+ = max{x1, … , xdx}. 
 
Definition 2.1. A research output index (or index, for short) is a mapping f : X → ℝ+, 
where ℝ+ designates the set of non-negative real numbers.  
 
For x ∈ X, f(x) can be viewed as a measure of the value, relevance, impact… of output x 
or a measure of the productivity, quality, visibility… of the researcher who generated x. 
 
Definition 2.2. The Hirsch index is the research output index h such that, for all x ∈ X, 
h(x) = max{k ∈ {0, 1, … , dx}: xk ≥ k}. 
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BOU. Boundedness. For all x ∈ X, min{x−, dx} ≤ f(x) ≤ min{x+, dx}.  
 
The condition BOU states that f(x) cannot be greater than the minimum between the 
number of papers and the number of citations of the most cited paper. It also says that 
f(x) cannot be smaller than the minimum between the number of papers and the number 
of citations of the least cited paper. BOU allows f(x) to be interpreted as a measure of 
the number of quality papers in output x. In particular, more citations are necessary but 
not sufficient for the index to rise.  
 
For x ∈ X and r ∈ {1, … , dx}, let x−r designate the member of X obtained from x by 
removing xr. For instance, if x = (9, 7, 1) then x−1 = (7, 1), x−2 = (9, 1) and x−3 = (9, 7). 
 
MAX. Maximization under minimal exclusion. For x ∈ X, if dx ≥ 2 and x− < dx then f(x) 
= max{f(x−r)}1 ≤ r ≤ dx.  
 
Suppose x− ≥ dx. If BOU is assumed, then all the papers are quality papers, so the 
researcher achieves the maximum index that BOU allows. MAX presumes that x− < dx 
implies that some paper is not a quality paper and deals with this case by considering 
the ways in which output x can be reached from outputs containing one paper less. 
MAX holds that the value of x is the maximum among the values of the outputs lacking 
one paper. By MAX, if not all the papers are quality papers, then, in some history 
leading to the final output, the marginal contribution of the last paper to research quality 
is null: a researcher not achieving the maximum index with a given set of papers can 
choose to remove some paper without altering the resulting Hirsch index. 
 
Define X1 = {x ∈ X: x+ = 1 or there is exactly one i ∈ {1, … , dx} such that xi > 1}. The 
set X1 is formed by two types of output: (i) outputs consisting of one citation papers; 
and (ii) outputs in which only one paper has more than one citation.  
 
UNI. Outputs with value equal to unity. For all x ∈ X1, f(x) = 1.  
 
UNI sets the unit of measure by selecting outputs deserving index 1. By UNI, if some 
paper has some citation, the index is 1 when no paper obtains more than one citation or 
there is only one paper. For instance, UNI implies that having 10 papers each of which 
is cited once is equivalent to producing only one paper and having it cited 10 times. 
 
For x ∈ X, define xΣ = x1 + … + xdx. Let X' designate the set of all vectors x = (x1, … , 
xn) such that n ≥ 1 and each xi belongs to ℕ. For x ∈ X' and y ∈ X' with dx ≥ dy, x ⊕ y is 
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the member z of X' such that: (i) for all i ∈ {1, … , dy}, zi = xi + yi; and (ii) for all i ∈ {dy 
+ 1, … , dx}, zi = xi. 
 
Definition 2.3. A simple decomposition of x ∈ X is a pair (y, z) ∈ X × X such that: (i) if 
dx ≥ 2 or xΣ ≥ 2, then y ≠ x ≠ z; and (ii) there are y' ∈ X' and z' ∈ X' such that y' ⊕ z' = x 
and, for each α ∈ {y, z}, dα' ≤ dx and α is the member of X obtained from α' by 
arranging the components of α' in a non-increasing order. The set of simple 
decompositions of x ∈ X is δ(x). 
 
A simple decomposition (y, z) of output x can be seen as a history of how x could have 
been reached in two periods, with the output of each period ready to be evaluated by an 
index and with x different from y and z if there are least two papers or at least two 
citations. As an illustration, let x = (7, 5, 3, 3, 0) be the output in which paper 1 has 7 
citations, paper 2 has 5, papers 3 and 4 have 3 citations each, and paper 5 has no 
citation. Then (y, z) with y = (5, 2, 1) and z = (6, 3, 1, 0) is a simple decomposition 
representing the history such that: in the first period, paper 1 receives 1 citation, paper 2 
receives 5 and paper 3 receives 2; and, in the second period, paper 1 receives 6 citations 
more, paper 3 receives 1 citation more, paper 4 receives 3 citations, and paper 5 receives 
none. In decomposition (y, z), paper 2 implicitly receives 0 citations in the second 
period. If this is made explicit with z* = (6, 3, 1, 0, 0), then (y, z*) is also a simple 
decomposition of x.  
 
MIN. Minimization under simple decompositions. For all x ∈ X\X1, f(x) = min{f(y) + 
f(z)}(y,z)∈δ(x).  
 
For outputs not in X1, MIN suggests that the index is two-period history insensitive. If 
the value of a history (y, z) ∈ δ(x) is the sum of the values of y and z, then, by MIN, the 
value of x is the smallest value of a history leading to x. Implicit in MIN is some form 
of non-manipulability: MIN does not allow a researcher i to improve his or her own 
index by breaking his or her career into two periods (junior and senior periods, for 
example) and by recalculating next the index of the total output as the sum of the index 
of the two partial outputs. MAX and MIN can be viewed as symmetrical requirements: 
whereas MAX deals with the effect of varying the number of papers, MIN considers the 
effect of splitting the number of citations (and, possibly, papers). Both MAX and MIN 
express some compromise between a “liberal” and a “conservative” output evaluation. 
MAX is liberal in considering maximum values and conservative in letting the value of 
an n paper output coincide with the value of some n − 1 paper output. MIN is liberal is 
considering the sum of outputs and conservative in choosing a minimum value. 
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3. Results 
 
Remark 3.1. The Hirsch index satisfies BOU. 
 
Let x ∈ X and n = dx. Case 1: x+ ≥ n. By definition, h(x) ≤ n. Hence, h(x) ≤ n = min{x+, 
n}. Case 2: x+ < n. Since h(x) > x+ would imply that some paper has more citations than 
the maximum number of citations, h(x) ≤ x+ = min{x+, n}. Case 3: x− ≥ n. This means 
that each of the n papers receives at least n citations, so h(x) = n = min{x−, n}. Case 4: x− 
< n. In this case, each of the n papers receives at least x− citations, for which reason h(x) 
≥ x− = min{x−, n}. 
 
Remark 3.2. The Hirsch index satisfies MAX. 
 
Let x ∈ X, x− < dx = n ≥ 2 and h = h(x). It follows from x− < n that h(x) < n. This means 
that the last component xn of x is irrelevant to compute h(x), so h(x−n) = h(x) and 
max{h(x−1), … , h(x−n)} ≥ h(x−n) = h(x). To show that max{h(x−1), … , h(x−n)} ≤ h(x) 
suppose that, for some i ∈ {1, … , n}, h(x−i) > h(x). Then there are at least h + 1 
components in x−i not smaller than h + 1. Accordingly, there are at least h + 1 
components in x not smaller than h + 1. This implies h(x) ≥ h + 1: contradiction. 
 
Proposition 3.3. An index f satisfies BOU and MAX if and only if f is the Hirsch index. 
 
Proof. “⇐” Remarks 3.1 and 3.2. “⇒” Let f satisfy BOU and MAX. For n ∈ ℕ\{0}, 
define Dn = {x ∈ X: dx = n}. The proof is by induction on the sets Dn. Step 1: f = h on 
D1. Choose x ∈ D1. This makes x = (x1). By BOU, f(x) = min{x1, 1}. Hence, x1 = 0 
implies f(x) = 0 = h(x); and x1 ≥ 1 implies f(x) = 1 = h(x). Step 2: for n ≥ 2, if f = h on D1 
∪ … ∪ Dn−1, then f = h on D1 ∪ … ∪ Dn−1 ∪ Dn. Choose n ≥ 2 and assume that f = h on 
D1 ∪ … ∪ Dn−1. To show that f = h on D1 ∪ … ∪ Dn, choose x ∈ Dn. Case 1: for all i ∈ 
{1, … , n}, xi ≥ n. By BOU, min{x−, n} ≤ f(x) ≤ min{x+, n}. Therefore, f(x) = n = h(x). 
Case 2: for some i ∈ {1, … , n}, xi < n. This yields x− < n. By MAX, f(x) = max{f(x−1), 
… , f(x−n)}. By the induction hypothesis, for all i ∈ {1, … , n}, f(x− i) = h(x−i). Thus, f(x) 
= max{h(x−1), … , h(x−n)}. By Remark 3.2, h satisfies MAX. Hence, as x− < dx ≥ 2, 
max{h(x−1), … , h(x−n)} = h(x).  
 
For x ∈ X with h = h(x) ≥ 2, set r = h/2 if h is even and r = (h + 1)/2 otherwise. Then 
define (x1, x2) ∈ δ(x) as follows: (i) x 1 ∈ X' collects, for paper i ∈ {1, … , r}, xi citations 
and, for paper i ∈ {h + 1, … , dx}, xi/2 citations if xi is even and (xi + 1)/2 citations 
otherwise; (ii) x2 ∈ X' collects, for paper i ∈ {r + 1, … , h}, xi citations and, for paper i 
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∈ {h + 1, … , dx}, xi/2 citations if xi is even and (xi − 1)/2 citations otherwise; and (iii) 
for k ∈ {1, 2}, xk is obtained from x k by arranging citations in a non-increasing order. 
Roughly speaking, (x1, x2) is the simple decomposition of x in which xi collects the 
citations of half of the papers contributing to the Hirsch index and half of the citations 
of those papers not contributing to the index.  
 
Remark 3.4. For all x ∈ X\X1, h(x1) + h(x2) = h(x), where (x1, x2) ∈ δ(x). 
 
Let x ∈ X\X1 and h = h(x). Case 1: h even. Then h(x1) ≥ h/2 because x1 has at least h/2 
papers with at least h citations each. That h(x1) ≤ h/2 follows from the fact that h(x) = h 
implies xh+1 ≤ h and, thus, paper i ∈ {h + 1, … , n} has at most h/2 citations in x1. In 
sum, h(x1) = h/2. The same reasoning proves that h(x2) = h/2. Case 2: h odd. Let h' = (h 
+ 1)/2. Then h(x1) ≥ h' because x1 has at least h' papers with at least h citations each. 
That h(x1) ≤ h' follows from the fact that h(x) = h implies xh+1 ≤ h and, consequently, 
paper i ∈ {h + 1, … , n} has at most h' citations in x1. This shows that h(x1) = h'. With 
h'' = (h − 1)/2, h(x2) ≥ h'' because x2 has at least h'' papers with at least h citations each. 
Being h odd, paper i ∈ {h + 1, … , n} has at most h'' − 1 citations in x2, for which 
reason h(x2) ≤ h''. Summarizing, h(x2) = h'' and h(x1) + h(x2) = h' + h'' = h. 
 
Remark 3.5. The Hirsch index satisfies UNI and MIN.  
 
UNI follows immediately from the definition of the Hirsch index. As for MIN, let x ∈ 
X\X1 and h = h(x). Step 1: min{h(y) + h(z)}(y,z)∈δ(x) ≤ h. Follows from Remark 3.4. Step 
2: min{h(y) + h(z)}(y,z)∈δ(x) ≥ h. Choose (y, z) ∈ δ(x). Let h1 = h(y) and h2 = h(z). Clearly, 
h1 ≤ h and h2 ≤ h: with less citations the Hirsch index cannot be higher. As a result, of 
the h papers that, in x, have at least h citations each, at most h1 may have more than h1 
citations in y. This leaves at least h − h1 papers in z with at least h − h1 citations each. In 
consequence, h2 ≥ h − h1 and h1 + h2 ≥ h. 
 
Proposition 3.6. An index f satisfies UNI and MIN if and only if f is the Hirsch index. 
 
Proof. “⇐” Remark 3.5. “⇒” Let f satisfy UNI and MIN. For n ∈ ℕ\{0}, define Dn = 
{x ∈ X: dx = n} and let 0n stand for the x ∈ Dn such that, for all i ∈ {1, … , n}, xi = 0. 
Step 1: for all n ∈ ℕ\{0}, f(0n) = 0. Case 1: n = 1. Suppose not: f(01) > 0. Since δ(01) = 
{(01, 01)}, by MIN, f(01) = f(01) + f(01). Hence, f(01) = 0: contradiction. Case 2: n ≥ 2. 
Taking case 1 as the base case of an induction argument, choose n ≥ 2 and suppose that, 
for all k ∈ {1, … , n − 1}, f(0k) = 0. Choose (y, z) ∈ δ(0n). By definition of simple 
decomposition: (i) there are r ≤ n and k ≤ n such that y = 0r and z = 0k; and (ii) since n ≥ 
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2, r ≠ n ≠ k. Consequently, r < n > k. In view of this, by the induction hypothesis, h(y) + 
h(z) = 0. In sum, for all (y, z) ∈ δ(0n), h(y) + h(z) = 0. By MIN, h(0n) = 0.  
 
Step 2: f = h on D1. Choose x ∈ D1. If x = 01, then, by step 1, f(x) = 0 = h(x). Otherwise, 
x ∈ X1 and, by UNI, f(x) = 1 = h(x).  
 
Step 3: for n ≥ 2, if f = h on D1 ∪ … ∪ Dn−1 then f = h on D1 ∪ … ∪ Dn−1 ∪ Dn. Choose 
n ≥ 2 and suppose f = h on D1 ∪ … ∪ Dn−1. To show that f = h on D1 ∪ … ∪ Dn, let x ∈ 
Dn. If x ∈ X1, then, by UNI, f(x) = 1 = h(x). If x ∉ X1, then consider (x1, x2) ∈ δ(x). By 
MIN, f(x) ≤ f(x1) + f(x2). As x ∉ X1, at least two papers get at least two citations, so h(x) 
≥ 2. Because of this, the dimension of both x1 and x2 is smaller than n. By the induction 
hypothesis, f(x1) = h(x1) and f(x2) = h(x2). Consequently, f(x) ≤ f(x1) + f(x2) = h(x1) + 
h(x2) = h(x), the last equality by Remark 3.4. To show that f(x) ≥ h(x), suppose 
otherwise: f(x) < h(x).  
 
By MIN, there is (y, z) ∈ δ(x) with f(x) = f(y) + f(z). Clearly, xΣ ≥ 2: if xΣ = 0, then, by 
step 1, f(x) = 0 = h(x); and if xΣ = 1, then f(x) = 1 = h(x). In addition, dx ≥ 2. Hence, by 
definition of simple decomposition, y ≠ x ≠ z. By Remark 3.5, h satisfies MIN, so h(x) ≤ 
h(y) + h(z). As f(x) < h(x), f(y) + f(z) < h(y) + h(z). This implies that, for some v ∈ {y, z}, 
f(v) < h(v). Given that v ≠ x, vΣ < xΣ. All in all, f(x) < h(x) implies that, for some v ∈ X, 
vΣ < xΣ and f(v) < h(v). The same reasoning could be then applied to f(v) < h(v) to 
conclude that, for some w ∈ X, wΣ < vΣ and f(w) < h(w). By replicating this reasoning 
successively, a sequence (x, v, w, … ) is generated in which some member t must 
eventually satisfy t ∈ D1 ∪ … ∪ Dn−1 or t ∈ X1. Both cases contradict f(t) < h(t): the 
first one, by the induction hypothesis; the second one, by UNI.  
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